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Abstract

Sirtuin belongs to a family of typical histone deacetylase which regulates the fundamental cellular biological processes
including gene expression, genome stability, mitosis, nutrient metabolism, aging, mitochondrial function, and cell motility.
Michael et. al. reported that B-site mutation (Q167A and H187A) decreased the SIRT2 activity but still the structural changes
were not reported. Hence, we performed 5 ns molecular dynamics (MD) simulation on SIRT2 Apo-form and complexes with
substrate/NAD+ and inhibitor of wild type (WT), Q167A, and H187A. The results revealed that the assembly and disassembly
of C-site induced by presence of substrate/NAD+ and inhibitor, respectively. This assembly and disassembly was mainly due
to the interaction between the substrate/NAD+ and inhibitor and F96 and the distance between F96 and H187 which are
present at the neck of the C-site. MD simulations suggest that the conformational change of L3 plays a major role in
assembly and disassembly of C-site. Our current results strongly suggest that the distinct conformational change of L3 as
well as the assembly and disassembly of C-site plays an important role in SIRT2 deacetylation function. Our study unveiled
the structural changes of SIRT2 in presence of NAD+ and inhibitor which should be helpful to improve the inhibitory
potency of SIRT2.
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Introduction

The posttranslational modification regulates a number of

cellular processes including the modulation of DNA accessibility,

replication and repair, acetylation and deacetylation of proteins.

Acetylated histones are generally correlated well with gene activity,

whereas deacetylated histones are associated with chromatin

structure that is less accessible to transcriptional activation [1].

One of the best post translation modifications is the cleavage of

acetyl group from a-amino group of lysine residues in histone tails

of nucleosomes catalyzed by histone deacetylases (HDACs) family.

So far, four different classes of HDACs have been identified in

humans and ramifications into two groups based on its mechanism

(i) the zinc-dependent or classical HDACs: HDAC 1, 2, 3 and 8

are homologues of reduced potassium dependency (Class I), Class

II includes six subtypes and divided into two subclasses, class IIa

(HDAC 4, 5, 7, 9) and Class IIb (HDAC 6,10) and HDAC 11

comes under Class IV (ii) the nicotinamide adenine dinucleotide

(NAD+) dependent Sir2 proteins (sirtuins, Class III HDAC) [2].

The HDACs and histone acetyltransferases (HATs) regulate the

activity of non-histone protein targets such as p53 (deacetylated by

HDAC1) [3,4] or a-tubulin (by HDAC6 and Sirt2) [5].

Sirtuins are a class of NAD+-dependent deacetylase protein and

ADP-ribose-transferase enzymes homologous to yeast Sir2 protein

[6,7] and evolutionally conserved from bacteria to mammals [8].

Sirtuins have been implicated in the control of diverse biological

processes, such as apoptosis, aging, transcriptional silencing,

chromosomal stability, neurodegeneration, cell cycle progression,

autophagy, growth suppression, inflammation, stress response and

overall cellular metabolism [9–13]. In human, seven distinct

NAD+-dependent Sirtuin enzymes (SIRT1-7) were reported which

are involved in the regulation of neuronal survival. The seven

enzymes (SIRT1-7) shared conserved catalytic core domain of

,275 amino acids but differ in their N- and C- terminal. Indeed,

SIRT1, present in nucleus, has been reported to protect against

neuronal death. Mostly SIRT2 present in the cytoplasm and

nucleus where it associates with microtubules and deacetylates a-

tubulin [14,15] and promotes neurodegeneration. SIRT3, SIRT4

and SIRT5, localized in mitochondria, play a role in energy

metabolism and responses to oxidative stress [16]. A growing body

of evidence implicates that SIRT1 and SIRT2 are important

regulators of neurodegeneration [13,17]. Recent studies find that

SIRT2, a second member of the NAD+-dependent HDAC family,

which is most widely known for its ability to interact with a-tubulin

[14]. The structure of SIRT2 catalytic domain consists of large
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and small domains (Figure. 1). The large domain contains a typical

Rossmann fold, comprises of 6 parallel ß-sheets surrounded by 6

a-helices. The small domain was classified into Zinc (Zn) binding

and helical domains. The Zn binding domain consists of 3 anti-

parallel ß-sheets, one a-helix and Zn2+ was anchored by 4

conserved Cysteine residues (C195, C200, C221, and C224) in all

classes of Sir2-like enzymes and the helical domain comprised of 4

helices, 2 short and 2 long helices. The cofactor-binding (NAD+)

pocket was divided into three regions: adenine ribose moiety of

NAD+ is bound in A-site, nicotinamide ribose moiety in B-site and

C-site, nicotinamide is located deep inside the catalytic pocket

[18]. Small molecules that can modulate sirtuin activity have been

shown to have potential in treating cancer [19,20], Parkinson’s

disease [21], obesity and diabetes [22–25], aging and aging-related

diseases [26] as well as it is a putative therapeutic target for

affecting Huntington disease (HD) mediated transcriptional

dysregualtions.

Michael et. al. experientially proved that the mutations of Q167A

and H187A reduced the SIRT2 deacetylation activity and strongly

suggest that these two residues are key player in the catalysis [18],

but fail to produce the structural changes responsible for activity

deterioration. The molecular dynamics (MD) simulation is a valu-

able tool to investigate a wide range of conformational change and

motional phenomena in biomolecular systems such as proteins and

nucleic acids [27]. MD simulation is an alternative and very

efficacious technique through which one can gather information

regarding the conformational changes of the protein due to the

substrate or inhibitor binding. MD simulation is widely used to

obtain information based on the time-dependent conformational

change that is experimentally inaccessible. In this work, the MD

simulation method was utilized to examine the structure and

functional effect of wild type (WT) and SIRT2 mutant (Q167A

and H187A) in B-site. Totally, nine independent MD simulations

were carried out to obtain the equilibrium trajectories and detailed

analysis of these trajectories suggested that the conformational

rearrangement will be responsible to trigger and suppress the

SIRT2 activity.

Methods and Materials

Molecular Docking Study
Due to the absence of experimentally determined SIRT2

complexes, molecular docking technique was employed to obtain

the complex structures. The atomic coordinates of Apo SIRT2

under the accession code 1J8F [18] was taken from Protein Data

Bank (PDB) [28]. The 2D form of acetylated lysine (substrate), co-

factor (NAD+), and inhibitor were sketched using ChemSketch v12

and converted into 3D format with the help of Discovery Studio

(DS) v2.5. LigandFit was used to understand the hydrogen bond,

hydrophobic interactions between the SIRT2 and small molecules

(substrate, NAD+, and inhibitor). Only the water present in the

active was taken for the docking process and the remaining water

molecules were removed. The hydrogen atoms were added by

applying CHARMm [29] force field to neutralize the receptor, to

attain its suitable orientation in energy minimization. LigandFit

have two methods to find the binding sites (i) protein-ligand

complex, the sole binding site can be found using the ‘docked

ligand’ mode and (ii) absence of protein-ligand complex (known

shape only), employs a cavity finding algorithm for detecting

invaginations of possible candidate active site regions in protein.

Figure 1. SIRT2 Structure properties a) Secondary structural detail, and b) Helical Domain (blue), Zinc binding domain (magenta),
Zinc (gray) and Large domain (red).
doi:10.1371/journal.pone.0059278.g001

SIRT2 Active Site Assembly by Dynamics Simulation
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To obtain the most stable energy-minimized conformation of

small molecules, maximum number of 255 conformations were

generated for each by applying Poling algorithm [30] using the

Best Conformation with a constraint of energy value greater than

20 kcalmol21 from the global minimum. We generated the SIRT2

complexes by docking NAD+, acetylated lysine, and inhibitor into

its suitable binding site. The resultant docked complexes with

substrate/NAD+, inhibitor, and Apo-form were used as a starting

structure for MD simulations. The two mutants were constructed

using the interactive DS by replacing Q167 and H187 in the WT

with alanine.

Molecular Dynamics Simulation
MD simulation was performed to gain insight into processes on

an atomistic scale and also to analyze the dynamics behavior of

protein and small molecule in aqueous solution. The classical MD

simulations were performed using GROMACS 3.3 software

package [31–33] by applying leap-frog integration steps to solve

the equations of motion. Herein we used 9 systems for MD

simulations study, each of 5 ns for WT, Q167A and H187A, Apo-

form as well as with substrate/NAD+ and inhibitor. Since the

topology of substrate/NAD+ and inhibitor was not available for

GROMOS96 [34,35] force field, we used the PRODRG server

[36] to generate a set of parameters for bonds and angles based on

the similar force field. No new atom types are included for

substrate/NAD+ and inhibitor so that the atom charges and force

constants are defined in the GROMOS96 force field. The SP3

[37] water model was used to create aqueous environment and the

periodic boundary conditions were applied in all directions. The

system was solvated with SPC water molecules. Before the MD

Table 1. Active site residues in Sirutin 2.

NAD Binding Site Adenosine Binding Site
Ribose Binding
Site Nicotinamide Binding Site

Literature Report N286 E288 R97 A85 Q167 H187 S88 H149 F96 N168 I169 D170

Docking Result

WT-NAD N286 2 2 A85 Q167 H187 2 2 2 N168 I169 D170

Q167A-NAD N286 2 2 A85 2 2 2 2 2 N168 D170

H187A-NAD N286 2 2 A85 Q167 2 2 2 2 N168 I169 D170

WT-Inhibitor 2 2 2 2 Q167 2 2 2 2 2 I169 2

Q167A-Inhbitor 2 2 2 2 A167 H187 2 2 2 2 I169 2

H187A-Inhibitor 2 2 2 2 Q167 2 2 2 2 2 I169 2

doi:10.1371/journal.pone.0059278.t001

Table 2. Summary of nine model systems details for
molecular dynamics simulations calculations.

System* Protein Atoms Water Molecules Na+ Ions

WT_Apo 3038 20486 4

WT_Sub 3110 20443 2

WT_Inhi 3071 20461 4

Q167A_Apo 3032 20495 4

Q167A_Sub 3106 20465 1

Q167A_Inhi 3065 20468 4

H187A_Apo 3032 20496 4

H187A_Sub 3106 20444 1

H187A_Inhi 3065 20467 4

*WT_Apo: Wild type Apo-form, WT_Sub: wild type in presence of NAD and
acetylated lysine; WT_Inhi: wild type in presence of inhibitor; Q167A: Glutamine
mutate to Alanine Apo-form, Q167A_Sub: Glutamine mutate to Alanine in
presence of NAD and acetylated lysine; Q167A_Inhi: Glutamine mutate to
Alanine in presence of inhibitor; H187A: Histidine mutate to Alanine Apo-form,
H187A_Sub: Histidine mutate to Alanine in presence of NAD and acetylated
lysine; H187A_Inhi: Histidine mutate to Alanine in presence of inhibitor.
doi:10.1371/journal.pone.0059278.t002

Figure 2. Root mean square deviation (RMSD) of Ca atoms. a)
Apo_form, b) SIRT2 bound with substrate/NAD+, and c) SIRT2 with
inhibitor.
doi:10.1371/journal.pone.0059278.g002
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simulation, an energy minimization was performed for all the nine

systems (WT and mutants Apo-form, presence of substrate/NAD+

and inhibitor) to remove the poor van der Waal contacts in initial

geometry. After the minimization process, two stages of equilibra-

tion were conducted: (i) 500 ps MD simulation of protein non-

hydrogen atoms with positions restrained to allow the formation of

solvation layers and (ii) another of 2 ns without positional

restriction [38,39]. The second step is important for the systems

to accommodate the thermodynamics conditions imposed in

simulations. After the equilibration stages, nine systems were

subjected to 5 ns MD simulations for further analysis. All MD

simulations applied the constraints algorithms SETTLE [40] and

LINCS [41] for a time step of 2 fs. The LINCS algorithm was

used to constrain all covalent interaction in non-water molecules,

while the SETTLE algorithm was used to constrain bond lengths

and angles in water molecules. A twin range cutoff was set for

long-range interactions: 0.9 nm for van der Waals and 1.4 nm for

electrostatic interactions. For coulomb interactions, the reaction

field correction term [42] was employed, with a dielectric constant

set to 0.8 [43]. Cutoff values of 1.4 and 0.8 Å were used for van

der Waals and coulomb interactions, respectively. A periodic

boundary condition in the isobaric-isothermal (NPT) ensemble

with a constant temperature of 300 K and pressure at 1 atm by

using Berendsen weak coupling [44] time of 0.2 ps was employed

to control the temperature. Finally, the production run was

performed for 5 ns and non-bonded interactions were calculated

as well as the particle mesh Ewald method [45] was applied to

treat the long-range electrostatic interactions. We performed MD

Figure 3. Root mean square fluctuation (RMSF) of Ca atoms. a) Apo_form, b) SIRT2 bound with substrate/NAD+, and c) SIRT2 with inhibitor.
doi:10.1371/journal.pone.0059278.g003
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simulations at 300 K on the Apo-form and complexes to

investigate the dynamic nature of the interactions between the

protein and substrate/NAD+ as well as with inhibitor. The average

structure was calculated from the last 2 ns of the WT as well as

mutants for subsequent structural analyses. All molecular struc-

tures were inspected using the VMD [46] and PyMol [47].

Results and Discussions

Molecular Docking
The molecular docking approach is one of the most reputable

methods in drug discovery process to find the critical interactions

between protein-ligand and protein-protein complexes. Docking

accuracy was measured by the relative true binding mode of small

molecules in receptor active site which determine the quality of

docking methodology. Until now there is a lack of SIRT2 complex

structures, hence molecular docking was carried out using the

SIRT2 Apo-form as a receptor to identify the suitable active site as

well as the binding orientation of substrate/NAD+ and inhibitor.

The apo-form of SIRT2 (PDB: 1J8f) was selected as receptor and

the NAD+ and acetylated lysine were docked in the suitbale

binding pocket which exit between the small and large domain.

The inhibitor was docked in the ‘‘C’’ site of NAD binding pocket

which are mainly responsible for the deacetylase process of SIRT2

[48,49]. The docking process saved top 25 conformations for each

molecule (NAD+, acetylated lysine and inhibitor) based on the

dock score value after the energy minimization using the smart

minimizer method which begins with steepest descent algorithm and

followed by conjugate gradient method. Among the 25 confor-

mation, the complexes which show a high docking score was

selected as initial SIRT2-complex structures for MD simulations.

Based on the literatures, NAD binding pocket residues of SIRT2

was confirmed by multiple sequence analysis of sirtuin family. The

NAD+ and the inhibitor binding site were well defined and

reported in many literatures. Hence to further validate the

complex structures, hydrogen bond interactions between the

SIRT2 and the NAD+ and inhibitor were analyzed (Table 1).

Finally, the observed binding site of SIRT2 was verified by

comparing the volume occupied by NAD+ in the complex

structure of yeast sirtuin (PDB ID: 1SZC) [50]. For inhibitor,

Sir2Af2 bound with NAD, ADPribose and nicotinamide was used

as a reference structure (PDB ID: 1YC2) [51] to identify the

perfect binding site. The comparison of NAD+ and nicotinamide

binding site in the crystal structure of yeast and Af2 Sirtuin shows

a similar binding mode, respectively. The docked substrate/NAD+

and inhibitor are well placed in the SIRT2 active site and showed

all necessary interactions which are reported in the literatures

[50,51]. Finally, the best SIRT2 complexes (File S1) were

subjected to MD simulation to observe its structural changes due

to the binding of substrate/NAD+ and inhibitor.

Molecular Dynamics Simulation
The objective of our MD simulation study was to explore the

assembly of C-site will enhance the deacetylation process in

SIRT2. In order to understand the internal motions and

conformational changes of Apo-form and SIRT2 complexes,

WT and mutants, namely, H187A and Q167A, the 5 ns time scale

MD simulations were performed and analyzed. The summary of

data obtained for 9 SIRT2 systems are presented in Table 2. The

systems stability and fluctuation of the residues were confirmed by

calculating root mean square deviation (RMSD) and root mean

square fluctuation (RMSF) of Ca atom, respectively.

Figure 4. Structural comparison of SIRT2 in presence of substrate/NAD+ a) WT and Q167A and b) WT and H187A. Red, green, and
yellow indicates WT, Q167A, and H187A, respectively. NAD was shown in stick.
doi:10.1371/journal.pone.0059278.g004
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Stability and Flexibility of SIRT2 Structures during
Molecular Dynamics Simulation

An initial evaluation of structural drift provided the stability of

protein in 9 systems by the RMSD analyzes of Ca atoms with

respect to the function of time for WT, Q167A and H187A. The

RMSD plots of WT and mutants during 5 ns simulation

demonstrated the stability of proteins. The RMSD value of WT

Apo-form was varies between 0.32 and 0.33 nm, but in case of

both mutants it showed the variations of 0.28–0.30 nm (Figure. 2).

These data revealed that the stability of Apo-form increased upon

mutations. The inhibitor complexes of WT also have shown

greater deviation when compared with both mutants but in case of

substrate/NAD+ the mutant complexes shows much deviation

than WT (Figure. 2). From the 5 ns production run, last 2 ns

simulation of whole system is fairly stable indicated by small

magnitude of RMSD of the Ca atom which confirmed the protein

stability. Hence, the representative structures for 9 systems were

obtained from last 2 ns of MD simulation trajectory used for

further analyses.

The relative flexibility of each system was characterized by

plotting RMSF for both WT and mutants (Figure. 3). The

WT_Apo shows the values less than 0.2 nm indicates the

minimum fluctuation. Q167A_Apo shows the similar fluctuation

compared with WT_Apo except L4, L11, and L17 where there is

slight increase (.0.2 nm). In case of H187A, the plot shows

significantly larger fluctuation (,0.4 nm) in the conserved loops

(Figure. 3a). In presence of substrate/NAD+ and inhibitor binding

all the systems were stabilized and shown the similar fluctuation.

Conformational Changes in SIRT2 Wild Type Compared
with Mutants

In presence of substrate/NAD+. Comparing the domains

present in WT and Q167A, small shift in the helical and Zn

binding domains and H12 present in the large domain shows

a considerable deviation albeit there is not any considerable

secondary structure change in large and small domains. In-

terestingly part of the two conserved loops (L3 and L8) which

connects the small and large domains was changed into helix

(Figure. 4a).

IncaseofH187A,there isasmallhelix formationinL3,L8aswellas

there is a considerable deviation in the H3 present in the helical

Figure 5. Structural comparison of SIRT2 in presence of inhibitor a) WT and Q167A and b) WT and H187A. Red, green, and yellow
indicates WT, Q167A, and H187A, respectively. Inhibitor was shown in stick.
doi:10.1371/journal.pone.0059278.g005

Figure 6. Superimpose of binding orientation of NAD+ in SIRT2
active site. a) WT with Q167A, deviation of N9A of adenine was 4.14 Å
and b) WT and H187A deviation of N9A of adenine was 1.66 Å. WT-
magenta, Q167A-green, and H187A-yellow.
doi:10.1371/journal.pone.0059278.g006
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domain. The three anti-parallel b-sheets were changed into loop

which indicated a distortion of Zn binding domain (Figure. 4b).

Considerable changes were observed in the H12 present in the large

domain. Here also there is a formation of helix in the two conserved

loops (L3 and L8) connects the small and large domains.

In presence of inhibitor. In Q167A, Zn binding domain was

distorteddue to thechangeof secondarystructureconformation from

anti-parallel ß-sheet into loop. The H3 which was partial distortion in

WT has not shown any changes due Q167A. There was a helix

formation in the conserved L8 and H12 was partially distorted and

shifted above in Q167A. In H187A, H3 was able to distort as in WT

but there isnotanychanges inZnbindingdomain.Formationofhelix

in the conserved loops L3 and L8 and there was an extension of H12

was observed in large domain (Figure. 5).

Comparing the Structural Displacement in NAD+ Binding
Pocket in Wild Type and Mutants

In presence of substrate/NAD+. The WT, NAD+ interacts

with most of the critical residues present in A, B and C-site of

Figure 7. Comparison of C-site deviation due to the presence of NAD+. a) WT_Sub and Q167A, and b) WT_Sub and H187A. The distance are
represented in Å.
doi:10.1371/journal.pone.0059278.g007

Figure 8. Distance between phenyl ring of F96 and phenyl group of NAD and inhibitor was plotted as a function of time in presence
of NAD and inhibitor.
doi:10.1371/journal.pone.0059278.g008

SIRT2 Active Site Assembly by Dynamics Simulation
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SIRT2 and forms a strong p-p stacking interaction between the

nicotinamide of NAD+ and phenyl group of F96. The adenosine

moiety of NAD+ shows good interactions with A85, G86, R97,

N286, K287, E288, E323 and C324 which are present in A-site.

Comparing the binding mode of NAD+ in WT and mutants

showed the shift between N9A in NAD+ for Q167A (0.41 nm) and

H187A (0.16 nm) in the adenosine moiety (Figure. 6). Hence we

compute the Ca distance to find the deviation of each residues

present in A-site. In Q167A, the A85 (Ca: 0.233 nm), R86 (Ca:

0.33 nm, CZ: 0.96 nm), N286 (ND2:0.31 nm), K287 (Ca:

0.28 nm), and E288 (Ca: 0.51 nm, CD: 0.63 nm) shows a de-

viation compared with WT. In case of H187A, the R86 shows

much deviation when compared to other A-site residues such as

A85 (Ca: 0.28 nm), N286 (Ca: 0.25 nm, N: 0.25 nm), K287 (Ca:

0.24 nm) and E288 (Ca: 0.25 nm and CD: 0.25 nm). Among all

the residues in A-site, R97 and E288 show a considerable

deviation in both mutations.

The residues 167, 187 present in B-site which helps the

nicotinamide part of NAD+ to enter into the C-site by making

interactions with phosphate groups of NAD+ in WT. The Ca
distance of residues 167 and 187 was calculated between the WT

and mutants; the mutation of Q167 into A shows a Ca deviation of

0.16 nm (Q167A). Due to the mutation of Q167A, H187 showed

a remarkable deviations of 2.56 Å in Ca and 4.72 Å in side chain.

In H187A, the Ca distance between H187 (WT) and A187 in

H187A shows a deviation of 2.06 Å but the Q167 residue not

shows a deviation as expected.

The C-site residues such as S88, F96, H149, N168, D169, and

I170 interacts with nicotinamide part of NAD+ which helps in the

polarization and hydrolysis NAD glycosidic bond. In Q167A, the

Ca deviation of 2.81 Å for S88, 4.34 Å for F96, 4.0 Å for N168,

3.41 Å for I169, and D170 (2.36 nm) (Figure. 7a). In case of

H187A, F96 (Ca 0.26 nm, CZ 6.61 Å), N168 (Ca 2.82 Å, I169

Ca 3.38 Å), D170 (Ca 2.1 Å) deviation was observed when

compared with WT (Figure. 7b). In both type of mutations we

observed that the F96 has shown a huge deviations when

compared with WT.

In WT, after 3 ns the phenyl ring of F96 moves closely to NAD+

from 0.61 to 0.43 nm which is in the range of the aromatic (p-p)

interaction. In Q167A and H187A the distance was gradually

increased to 0.64 and 0.8 nm, respectively (Figure. 8). Hence due

to these mutations the p-p stacking interaction was lost. This

indicates that F96 forms a tight stacking with NAD+ which is one

of the critical interactions in SIRT2 mechanism and plays a vital

role in the formation of C-site pocket. The p-p stacking interaction

may be one of the reasons to reduce the flexibility of substrate/

NAD+ complex and made the structure more stable throughout

the MD simulations.

In presence of inhibitor. In Q167A, A-site residues have

shown only a side chain deviation of 9 Å, 3.47 Å, 3.6 Å, 3 Å for

R41, E267, K231, and E232, respectively. In H187A, only R41,

Figure 9. The total number of intermolecular hydrogen bond interactions exhibited by NAD+ and inhibitor in complex with SIRT2
as a function of time.
doi:10.1371/journal.pone.0059278.g009
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PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e59278



K231, and E232 shows a side chain deviations of 8.07 Å, 6.48 Å,

and 3.98 Å, respectively. In case of B-site, both the mutations does

not shown substantial changes in residue 167 but shows a Ca

deviation of 2.56 Å and 2.06 Å in Q167A and H187A. In both

mutations, the C-site F96 was not able to move away from its

original position as we observed in WT. One of the reasons for

Figure 10. Time trace of Ca-Ca distance between F96 and H187 in WT was plotted as a function of time to highlight the difference in
orientation of the conserved F96 in the L3.
doi:10.1371/journal.pone.0059278.g010

Figure 11. Electrostatic potential map indicates the assembly and disassembly of C-site in presence of NAD+ and inhibitor.
doi:10.1371/journal.pone.0059278.g011

SIRT2 Active Site Assembly by Dynamics Simulation
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F96 rigidity in Q167A was the disability of distortion of H3 present

in the helical domain. In case of H187A, albeit there was

a distortion in H3 but this was moved upwards when compared

with WT. The Ca distance of F96 between WT and Q167 was 13.

57 Å and WT and H187A shows a distance of 11.11 Å.

Hydrogen Bonds Analysis between NAD+ and Inhibitor in
SIRT2

Hydrogen bond (Hbond) plays a crucial role in stabilizing the

complex such as protein-substrate/NAD+, protein-activator, and

protein-inhibitor. Therefore, we analyzed the Hbond framework

for mutated structures as well as WT, to determine the interactions

between protein and small molecules. Hbond between SIRT2 and

substrate/NAD+ and inhibitor was calculated based on the two

criteria: (1) a proton donor (D) and acceptor (A) distance of 3.5 Å

or less and (2) a D-H … A angle of 120o or more. In WT and

mutants, SIRT2 substrate/NAD+ complex have shown a well

conserved Hbond with NAD+ in WT but in both mutations it

shows a less number of Hbonds compared with WT. The

WT_Sub complex have shown approximately 10–12 number of

Hbond but in case of both mutations the numbers of Hbonds was

relatively less which implies that the mutation of B-site was not

able to contact with substrate/NAD+ or inhibitor. The number

and percentage of Hbond occupation of each complex was

evaluated and shown in Figure. 9. Taking into account all the

simulation results shown above disclosed that the NAD+ occupied

a suitable place only in WT and due to both mutations the NAD+

was not able orient in the correct binding pocket. This analysis

showed that B-site mutation affects the NAD+ binding which leads

to suppress of SIRT2 deacetylation process.

Reasons for the Assembly and Disassembly of C-site
From the above analysis it was clear that the mutation in the B-

site would affect the C-site. These changes will be responsible for

the assembly and disassembly of C-site. In case of substrate/NAD+

binding there was a p-p interactions between the phenyl group of

F96 and nicotinamide part of NAD+ but this interaction was

absent in case of mutations (Figure. 8). In WT_Sub complex,

initially 0.7 nm was found between phenyl group of F96 and

NAD+, after 2 ns the distance was maintained at 0.5 nm

throughout the simulations. In case of both mutations we observed

a distance greater than the WT, which confirmed there was less

chance for the formation of p-p stacking interactions between the

phenyl ring of F96 and NAD+. This indicates that F96 moved

away from its original position. In case of Inhibitor binding, WT

shows a average distance of 1.4 nm but Q167A and H187A shows

a distance of ,0.5 which was less than WT.

To affirm the assembly and disassembly of C-site due to B-site

mutations, the Ca distance was calculated between the residue H/

A187 and F96, which was presented at the neck of the C-site. In

presence of substrate, the WT shows a distance of 1.2 nm and

maintained after 3 ns but in both mutations the distance was

nearly 1.5 nm. In presence of inhibitor, the distance between these

two residues was nearly 2 nm in WT but in Q167A and H187A

the distance was less than 0.7 nm and maintained 1.3 nm,

respectively (Figure. 10). The above results clearly insight that

the mutations in B-site will affect the assembly of C-site, which was

responsible for the SIRT2 deacetylation activity. To confirm the

disassembly of C-site due to B-site mutations we compute the

electrostatic potential map.

Electrostatic Potential Surface Analysis
The electrostatic potential surface of protein serves as important

driving force to direct the diffusion of small molecules into its

active site as well as to stabilize the end point interactions between

small molecule and protein. Thus we calculated SIRT2 APBS

electrostatic potential surface [52] in presence of substrate/NAD+

and inhibitor for WT and mutants (Figure. 11). In the WT_Sub

complex, the C-site has strong negative electrical property which

can steadily hold the positive charge of nicotinamide in NAD+.

The electrostatic potential of SIRT2 was retained in presence of

inhibitor in WT but the assembly of C-site was disturbed by

moving the F96 residue (2.07 nm) away from its original position

(Figure. 11a). This reposition makes that the C-site not suitable for

NAD+ binding by disassembly its shape. In both mutations

(Q167A and H187A) the C-site was not able to assembly as in WT

hence it was not able to process the deacetylation of NAD+

(Figure. 11) as effect as in WT. This confirms that the assembly of

C-site was important for SIRT2 deacetylation process. From this

result it was clearly visible that the assembly of C-site will be

critical for the SIRT2 function. Hence, we suggest that this may be

one of the reasons to reduce the SIRT2 activity which were

experimentally proved by Michael et al.

Conclusions
Sirtuins, NAD+-dependent histone deacetylases are interesting

epigenetic regulators due to their actions on histones but also

a regulator of signal transduction networks due to their non-histone

substrates. A mutational study of SIRT2 has provided new insights

into the molecular hindrances responsible for SIRT2 functions.

Hence, MD simulations were performed to provide a structural basis

to activate and inhibit the SIRT2 in presence of substrate/NAD+and

inhibitor. In this study, GROMACS package, GROMOS96 force

field and explicit water molecules were used. The simulation results

suggest the existence of important and functionally relevant

differences between conformational dynamics of SIRT2. In WT

due to NAD binding, large groove between large and small domains

was narrowed which makes suitable place for NAD+ deacetylation

reaction but due to mutations this groove was not able to narrow.

NAD+ and inhibitor binding in WT bring F96 presents in L3 loop

close and far away from H187, which make the assembly and

disassembly of C-site, due to this process the nicotinamide

deacetylation reaction was activated and inhibited, respectively. All

the changes in WT are responsible for the formation of C-site cavity

was absent in case of mutations. In summary, we have shown that the

assembly and disassembly of C-site of NAD binding pocket by 5 ns

time scale is related primarily to the presenceof substrate/NAD+and

inhibitor. Therefore, we propose that any small molecules which

increase the distance between F96 and H187 and make the

disassembly of C-site as well as which can reduce the flexibility of

L3 or shift F96 from its original place will be a good inhibitor for

SIRT2.

Supporting Information

File S1 An archive containing the initial docking
strucutre of WT and NAD, WT and Inhibitor, Q167A
and NAD, Q167A and Inhibitor, H187A and NAD, and
H187A and Inhibitor.
(ZIP)

Author Contributions

Conceived and designed the experiments: SS. Performed the experiments:

SS. Analyzed the data: SS MA GPC KWL. Contributed reagents/

materials/analysis tools: KWL. Wrote the paper: SS.

SIRT2 Active Site Assembly by Dynamics Simulation

PLOS ONE | www.plosone.org 10 March 2013 | Volume 8 | Issue 3 | e59278



References

1. Kouzarides D (2007) Chromatin modifications and their function. Cell. 124:

693–705.
2. Sakkiah S, Krishnamoorthy N, Gajendrarao P, Thangapandian S, Lee Y, et al.

(2009) Pharmacophore modeling and virtual screening for SIRT1 activators.
BKCS. 30: 1152–1156.

3. Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, et al. (2002) MDM2-

HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J.
21: 6236–6245.

4. Juan LJ, Shia WJ, Chen MH, Yang WM, Seto E, et al. (2000) Histone
deacetylases specifically down-regulate p53-dependent gene activation. J. Biol.

Chem. 274: 20436–20443.

5. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation
of non-histone proteins. Gene. 363: 5–23.

6. Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of
sirtuins. Annu. Rev. Biochem. 75: 1–13.

7. Michan S, Sinclair D (2007) Sirtuins in mammals: Insights into their biological
function, Biochemical J. 404: 1–13.

8. Du J, Jiang H, Lin H (2009) Investigating the ADP-ribosyltransferase activity of

sirtuins with NAD analogues and 32P-NAD. Biochem. 48: 2878–2890.
9. Marcia C, Haigis LP, Guarente P (2006) Mammalian sirtuins–emerging roles in

physiology, aging, and calorie restriction. Genes Dev. 20: 2913–2920.
10. Saunders LR, Verdin E (2007) Sirtuins: Critical regulators at the crossroads

between cancer and aging. Oncogene 26: 5489–5504.

11. Gan L, Mucke L (2008) Paths of Convergence: Sirtuins in Aging and
Neurodegeneration. Neuron. 58: 10–14.

12. Milne JC, Denu JM. (2008) The Sirtuin family: therapeutic targets to treat
diseases of aging. Current Opinion in Chemical Biology 12: 11–17.

13. Outeiro TF, Marques O, Kazantsev A (2008) Therapeutic role of sirtuins in
neurodegenerative disease. Biochimica et Biophysica Acta. 1782: 363–369.

14. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The Human Sir2

Ortholog, SIRT2, Is an NAD+-Dependent Tubulin Deacetylase. Molecular Cell
11: 437–444.

15. Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY, et al. (2008) Sirt2 interacts with
14-3-3 b/c and down-regulates the activity of p53. Biochemical and Biophysical

Research Communications 368: 690–695.

16. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005)
Evolutionarily conserved and nonconserved cellular localizations and functions

of human SIRT proteins. Mol. Biol. Cell 16: 4623–4635.
17. Westphal CH, Dipp MA, Guarente L (2007) A therapeutic role for sirtuins in

diseases of aging?. Trends in biochemical sciences 32: 555–560.
18. Finnin MS, Donigian JR, Pavletich NP (2001) Structure of the histone

deacetylase SIRT2. Nat Struct Mol Biol. 8: 621–625.

19. Zhao W, Kruse JP, Tang Y, Jung SY, Qin J, et al. (2008) Negative regulation of
the deacetylase SIRT1 by DBC1. Nature 451: 587–590.

20. Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, et al. (2006) Antitumor
activity of a small-molecule inhibitor of human silent information regulator 2

enzymes. Can. Res. 66: 4368–4377.

21. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, et al.
(2007) Sirtuin 2 inhibitors rescue a-synuclein-mediated toxicity in models of

Parkinson’s disease. Science 317: 516–519.
22. Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature

444: 868–874.
23. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, et al. (2007) Small

molecule activators of SIRT1 as therapeutics for the treatment of type 2

diabetes. Nature 450: 712–716.
24. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, et al. (2006)

Resveratrol Improves Mitochondrial Function and Protects against Metabolic
Disease by Activating SIRT1 and PGC-16. Cell 127: 1109–1122.

25. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. (2006) Resveratrol

improves health and survival of mice on a high-calorie diet. Nature. 444: 337–
342.

26. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al. (2003)
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan.

Nature 425: 191–196.

27. Yoshida T, Kadota Y, Hitaoka S, Kori E, Horikawa Y, et al. (2009) Expression
and molecular dynamics studies on effect of amino acid substitutions at Arg344

in human cathepsin A on the protein local conformation. Biochim. Biophys.
Acta. 1794: 1693–1699.

28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The

Protein Data Bank. Nucleic Acids Research 28: 235–242.

29. Brooks B, Bruccoleri R, Olafson B, States D, Swaminathan S, et al. (1983)
CHARMM: A program for macromolecular energy, minimization, and

dynamics calculations. J. Comput. Chem. 4: 187–217.

30. Smellie A, Teig SL, Towbin P (1995) Poling: Promoting conformational

variation. J. Comp. Chem. 16: 171–187.

31. Berendsen HJC, Van Der Spoel D, Van Drunen R (1995) GROMACS: A

message-passing parallel molecular dynamics implementation. Comp. Phy.
Comm. 91: 43–56.

32. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, et al. (2005)
GROMACS: Fast, flexible, and free. J. Comp. Chem. 26: 1701–1718.

33. Lindahl E, Hess B, Van Der Spoel D (2001) GROMACS 3.0: a package for
molecular simulation and trajectory analysis. J. Mol. Mod. 7: 306–317.

34. Van Gunsteren WF, Berendsen HJC (1987) Groningen Molecular Simulation
(GROMOS) Library Manual, BIOMOS b.v., Groningen.

35. Van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kruger P, et al.

(1996) Biomolecular Simulation: The GROMOS96 Manual and User Guide;

vdf Hochschlverlag AG an der ETZ Zurich and BIOMOS b.v.: Zurich,
Groningen.

36. Aalten DMF, Bywater R, Findlay JBC, Hendlich M, Hooft RWW, et al. (1996)

PRODRG, a program for generating molecular topologies and unique

molecular descriptors from coordinates of small molecules. J. Computer-Aided
Molecular Design 10: 255–262.

37. Berendsen HJC, Postma JPM, Van Gunsteren WF, Hermans J (1981)
Interaction models for water in relation to protein hydration. Intermol. Forces

331–342.

38. Sakkiah S, Thangapandian S, Park C, Son M, Lee KW (2012) Molecular

Docking and Dynamcis Simulation, Receptor-based Hypothesis: Application to
Identify Novel Sirtuin 2 Inhibitors. Chem. Biol. Drug Des. 80: 315–327.

39. Sakkiah S, Chandrasekaran M, Lee Y, Kim S, Lee KW (2012) Molecular
modeling study for conformational changes of sirtuin 2 due to substrate and

inhibitor binding. J. Biomol. Str. Dyn. 30: 235–254.

40. Miyamoto S, Kollman P (1992) Settle: An analytical version of the SHAKE and

RATTLE algorithm for rigid water models. J. Comput. Chem. 13: 952–962.

41. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear
constraint solver for molecular simulations. J. Comp. Chem. 18: 1463–1472.

42. Schreiber H, Steinhauser O (1992) Taming cut-off induced artifacts in molecular
dynamics studies of solvated polypeptides: The reaction field method. J. Mol.

Biol. 228: 909–923.

43. Paul ES, Wilfred FVG (1994) Consistent dielectric properties of the sample point

charge and extended simple point charge water models at 277 and 300K. J.
Chem. Phys. 100: 3169–3174.

44. Berendsen HJC, Postma JPM, Gunsteren WFV, DiNola A, Haak JR (1984)
Molecular dynamics with coupling to an external bath. J. Chem. Phy. 81: 3684–

3690.

45. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N. log(N)

method for Ewald sums in large systems. J. Chem. Phys. 98: 10089–10092.

46. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J.

Mol. Grap. 14: 33–38.

47. W.L.DeLano, PyMol User’s Guide (2004) DeLano Scientific LLC, San

Francisco.

48. Sakkiah S, Baek A, Lee KW (2012) Pharmacophore modeling and molecular

dynamics simulation to identify the critical chemical features against human
sirtuin 2 inhibitors. J. Mol. Str. 1011: 66–75.

49. Sakkiah S, Arooj M, Kumar MR, Eom SH, Lee KW. Identification of Inhibitor

Binding Site in Human Sirtuin 2 Using Molecular Docking and Dynamics

Simulations. Plos One. In Press.

50. Zhao K, Harshaw R, Chai X, Marmorstein R (2004) Structural basis for

nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2
histone/protein deacetyases. PNAS. 101: 8563–8568.

51. Avalos JL, Bever KM, Wolberger C (2005) Mechanism of Sirtuin Inhibition by

Nicotinamide: Altering the NAD+ Cosubstrate Specificity of a Sir2 Enzyme.

Molecular Cell 17: 855–868.

52. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of
nanosystems: Application to microtubules and the ribosome. PNAS. 98: 10037–

10041.

SIRT2 Active Site Assembly by Dynamics Simulation

PLOS ONE | www.plosone.org 11 March 2013 | Volume 8 | Issue 3 | e59278


