Skip to main content
. Author manuscript; available in PMC: 2014 Mar 19.
Published in final edited form as: Environ Sci Technol. 2013 Feb 27;47(6):2457–2470. doi: 10.1021/es302714g

TABLE 4.

Summary of assumed biodegradation rate constants in vapor intrusion models

Reaction kinetics Models Rate constants
Monod equation
dSdt=VmaxSS+Km
Ostendorf and Kampbell (60) Hydrocarbons:
Vmax = (5.56~11.3) × 10−9kg/m3/s
Km = (5.56~8.67) × 10−4kg/m3
Zero order reaction
dSdt=k0
VADBIO (82) BTX and fuel hydrocarbons
k0 = (1.56~3.78) × 10−7kg/m3/s
Parker (80) k0 = 1~10 mg/kg/day (maximum decay rate)
First order reaction
dSdt=k1S
R-UNSAT (65) k1 (MTBE) = 1 × 10−8s−1
k1 (BTEX) = (1~100) × 10−7s−1
IMPACT (8385) k1 (VOC) = 4.46 × 10−8~5.01 × 10−7s−1
VADBIO (82) BTX and fuel hydrocarbons k1 = (1.39~3.33) × 10−4s−1
T & R model (76) k1 (Benzene) = 1.93 × 10−8s−1 in soil
k1 (Benzene) = 5.99 × 10−7s−1 in air
The ASU model (8788) k1 (BTEX) = (0.018~2) × h−1 in water
Devaull (79) Aromatic hydrocarbons
k1 = 9.14 × 10−6s−1 in water
Straight chain and branched aliphatic hydrocarbons
k1 = 8.22 × 10−4s−1 in water
Verginelli and Baciocchi (81) BTEX and other hydrocarbons
k1 = 0.79 − 71h−1 for aerobic biodegradation
k1 = 1.9 × 10−4 − 1.55 × 10−2h−1 for anaerobic biodegradation
Second order reaction
dSdt=k2S[0]
Where [O] is the oxygen concentration
The Brown model (86) k2 (Benzene) = (1.79~179) × 10−5m3/kg/s in water

Note: (MTBE: Methyl tert-butyl ether; BTEX: benzene, toluene, ethylbenzene and xylene; BTX: benzene, toluene and xylene)