Table 5.
Regression Models Predicting Alcohol Problems from IATs and Explicit Predictors.
Alcohol Problems B | SE B | t | Cohen’s d | |
---|---|---|---|---|
Drinking Identity IAT | ||||
Gender | 0.16 | 0.16 | 1.00 | 0.12 |
Drinking Identity IAT | 0.53* | 0.21 | 2.49 | 0.29 |
ASCS | 0.13*** | 0.02 | 6.26 | 0.74 |
IAT × ASCS | −0.07 | 0.04 | −1.60 | 0.19 |
Alcohol Excitement IAT | ||||
Gender | −0.14 | 0.16 | −0.92 | 0.11 |
Alcohol Excitement IAT | 0.33 | 0.20 | 1.64 | 0.20 |
DMQ-Enhance | 0.64*** | 0.07 | 8.72 | 1.04 |
IAT × DMQ-Enhance | −0.23 | 0.19 | −1.23 | 0.15 |
Alcohol Approach IAT | ||||
Gender | −0.02 | 0.17 | −0.14 | 0.02 |
Alcohol Approach IAT | 0.50† | 0.26 | 1.94 | 0.23 |
BAS-Fun | 0.21*** | 0.04 | 5.51 | 0.66 |
IAT × BAS-Fun | −0.06 | 0.11 | −0.50 | 0.06 |
Alcohol Cope BIAT | ||||
Gender | −0.23 | 0.16 | −1.48 | 0.17 |
Alcohol Cope BIAT | −0.21 | 0.18 | −1.13 | 0.13 |
DMQ-Cope | 0.95* | 0.12 | 7.69 | 0.91 |
BIAT × DMQ Cope | 0.11 | 0.26 | 0.41 | 0.05 |
Combined IAT Model | ||||
Gender | 0.13 | 0.18 | 0.72 | 0.09 |
Drinking Identity IAT | 0.77** | 0.22 | 3.45 | 0.42 |
Alcohol Excitement IAT | 0.42 | 0.24 | 1.73 | 0.21 |
Alcohol Approach IAT | 0.29 | 0.29 | 1.01 | 0.12 |
Alcohol Cope BIAT | −0.07 | 0.20 | −0.36 | 0.04 |
Note. IAT scores and explicit predictors were grand-mean centered. Gender was dummy-coded (0 = men, 1 = women). Cohen’s d = 2t/√df. The regression models used generalized linear models with a negative binomial log link. ASCS = Alcohol Self-Concept Scale. DMQ-Enhance = the enhance subscale of the Drinking Motives Questionnaire; DMQ-Cope = the coping subscale of the Drinking Motives Questionnaire; BAS-Fun = the fun-seeking subscale of the Behavioral Activation Scale. Corrected alpha = .029.
p < .053.
p < .029.
p < .01.
p < .001.