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Abstract

Narrative comprehension is a fundamental cognitive skill that involves the coordination of different functional
brain regions. We develop a spectral graphical model with model averaging to study the connectivity networks
underlying these brain regions using fMRI data collected from a story comprehension task. Based on the spectral
density matrices in the frequency domain, this model captures the temporal dependency of the entire fMRI time
series between brain regions. A Bayesian model averaging procedure is then applied to select the best directional
links that constitute the brain network. Using this model, brain networks of three distinct age groups are con-
structed to assess the dynamic change of network connectivity with respect to age.
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Introduction

Narrative comprehension, a skill that develops in the
early school-age years (Lorch et al., 1998), consists of a

variety of skills and strategies that decode and interact with
the text in a story. The logical coherence (cause and effect),
the goals and internal states of the characters, and the integra-
tion of different parts in the story are the three most impor-
tant aspects related to the development of children’s
narrative comprehension ability. Moreover, to connect differ-
ent components and summarize the story, it is necessary for a
reader (or listener) to build the causal relationships through-
out the whole narrative (Barthes and Duisit, 1975). Therefore,
the ability to comprehend a story is much more complicated
than understanding the text sentence by sentence and, thus,
involves sophisticated cognitive processes and interactions
from different functional regions in the brain.

Various network models have emerged recently to study
the neural interactions among different brain regions in a cog-
nitive or sensory task (Friston, 2009; Friston et al., 2003, 2011;
Mclntosh and Gonzalez-Lima, 1994; Roebroeck et al., 2005;
Zheng and Rajapakse, 2006). Structural equation modeling
(SEM) was first introduced by McIntosh et al. (1994) in the
network analysis of vision tasks using PET data, and has

since been widely applied for modeling neural connectivity
based on different brain imaging techniques such as
functional MRI and electro-encephalography/magneto-
encephalography (EEG/MEG) (Buchel and Friston, 1997;
Bullmore et al., 2000; Karunanayaka et al., 2007; McIntosh
et al., 1994; Mclntosh and Gonzalez-Lima, 1994). In an SEM
model of fMRI data obtained during a story-listening experi-
ment, Karunanayaka et al. (2007) describe how the age-
related connectivity of the neural network changes through
children’s development of narrative comprehension. How-
ever, the network analysis in SEM is confirmatory as it de-
pends on a presumed neural network structure that is often
obtained from existing neuro-anatomical results. The choice
of such a prior structure is not straightforward for a compli-
cated cognitive process, such as narrative comprehension.

Graphical models are a class of statistical models that en-
code the casual relationships between random variables
using conditional probability. In the literature, directed graph-
ical models are also known as Bayesian Networks (BN). Unlike
SEM, BN can not only estimate the path strength in the net-
work, but also identify the network structure based on the
functional imaging data. In a BN, the nodes in the graph rep-
resent random variables of interest, and the edges denote the
conditional dependency structure among the variables. In
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Zheng and Rajapakse (2006), BN were first applied to build
brain connectivity networks in a silent reading task and an in-
terference counting task. However, these models assume that
fMRI signals are independent and identically distributed,
and do not take into account any temporal correlation within
the fMRI signals. The Dynamic Bayesian Network (DBN) is
an extension of BN and provides a framework for building net-
works on time-series data using fixed-length time-delayed
edges in the graph. In Burge et al. (2009), Li et al. (2008), and
Rajapakse and Zhou (2007), DBN was applied to analyzing
fMRI data for various cognitive tasks.

To investigate the neural network structure for narrative
comprehension, we propose a spectral network model with
model averaging based on the graphical model framework
for multivariate time series (Bach and Jordan, 2004). In this
approach, the neural interactions and temporal dependence
among different brain regions are measured by spectral den-
sity matrices after a Fourier transform of the fMRI signals into
the frequency domain. Unlike DBN, this approach measures
the temporal characteristics of the time series in the frequency
domain instead of measuring connections between brain re-
gions with a prespecified lag in the time domain.

As a starting point to build the connectivity network of the
narrative comprehension task, the activation regions are
detected by a group spatial Independent Component Analy-
sis (ICA) and confirmed by a random effect General Linear
Model (GLM) following the procedure in Karunanayaka
et al. (2007). For each region a representative time series is
extracted by averaging the voxel of peak activation and its
neighboring voxels. The spectral network model is then ap-
plied on the set of representative time series to learn the net-
work structure among these active regions. We compare our
results in three different age groups with the a priori model
(Karunanayaka et al., 2007) based on known neuro-anatomi-
cal results for story comprehension and language processing.
Synthetic multivariate time series are simulated from vector
autoregressive (VAR) models to show the advantage of our
approach over static BN and DBN models for constructing
connectivity networks using time-series data.

Materials and Methods

Experiment and image preprocessing

The fMRI data were collected from 313 children (279 Cau-
casian, 22 Africa-American, 2 Asian, 2 Hispanic, 1 Native
American, and 17 Multi-ethnic), including 152 boys and 161
girls (Schmithorst et al., 2006). The study was approved by
the Institutional Review Board of Cincinnati Children’s Hos-
pital Medical Center. Informed consent was obtained from
the child’s parents or guardian before participation. Assent
was also obtained from subjects 8 years and older.

The fMRI paradigm consisted of a 30-sec on-off block de-
sign (Fig. 1) (Holland et al., 2007). Children listened to differ-
ent stories read by adult female speaker during active
periods. Each story was followed by a control period of 30-
sec of pure tones of 1-sec duration at intervals 1–3 sec. Each
story contains 9, 10, or 11 sentences of contrasting syntactic

constructions in order to increase the relative processing
load for this aspect of language comprehension. The pure
tones were designed to control for sublexical auditory pro-
cessing. Moreover, children were instructed to answer 10
multiple-choice questions at the end of the scanning session
to assess their performance during the task.

One hundred ten fMRI scans were obtained per subject dur-
ing the narrative comprehension paradigm using a Bruker 3T
Medspec (Bruker Medizintechnik, Karlsruhe, Germany) imag-
ing system. The total scan time was 5 min and 30 sec, and the
first 10 scans were discarded in order to allow the spins to
reach relaxation equilibrium. Details of the EPI-fMRI parame-
ters were TR/TE = 3000/38 ms, BW = 125 kHz, FOV = 25.6 cm ·
25.6 cm, matrix = 64 · 64, and slice thickness = 5 mm. T1-
weighted inversion recovery MDEFT scans were obtained
from each subject for anatomical co-registration.

The fMRI data were preprocessed using in-house software
written in Interactive Data Language (IDL; ITT Visual Informa-
tion Solutions, Boulder, CO). A multi-echo reference scan
(Schmithorst et al., 2006) was used for the correction of Nyquist
ghosts and geometric distortion from B0 field inhomogeneity
in image reconstruction (Schmithorst et al., 2001), and a pyra-
mid iterative co-registration algorithm was used for motion
correction (Thevenaz et al., 1998). The data were subsequently
transformed into the stereotaxic space using linear affine trans-
formation (Talairach and Tournoux, 1988).

The spectral graphical model with model averaging

The network construction consists of two main steps. In the
first step, the group ICA is conducted to identify spatial-inde-
pendent components of active brain regions. Once we iden-
tify these regions, each of them is regarded as a node in the
network and then the spectral graphical model is applied to
construct a connectivity network among these regions.

Group ICA. The preprocessed fMRI data were concate-
nated subject-wise and then a group spatial ICA was applied
to identify activated brain regions involved in story compre-
hension (Calhoun et al., 2001; McKeown et al., 1998; Schmi-
thorst and Holland, 2004). First Principal Component
Analysis (PCA) was applied to reduce the data dimension
in the time domain for each child. Then, the data were concat-
enated across subjects and the PCA was further applied on
this grouped data set to reduce the temporal data dimension
to 40. The Fast ICA algorithm (Hyvarinen, 1999) was repeated
for 25 times, and a hierarchical agglomerative clustering algo-
rithm (Himberg et al., 2004) was used to group IC compo-
nents. Details of the group ICA method can be found in
Schmithorst et al. (2006). In those IC clusters identified to be
task related, active cortical regions are determined by a
voxelwise one-sample t-test performed on the individual IC
maps, with Bonferroni correction for multiple voxel compar-
isons. The task-related regions are also identified by a stan-
dard random effect GLM analysis (Karunanayaka et al.,
2007). For each active brain region, the average of the fMRI
signals from the maximum activation voxel and its six neigh-
bors is chosen as the representative time series.

FIG. 1. The block design of
the fMRI experiment for story
comprehension.
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Neural network modeling with BN. BN have been exten-
sively studied in Machine Learning and Statistics literature
(Friedman and Goldszmidt, 1998; Geiger and Heckerman,
1994; Heckerman et al., 1995; Jordan, 1998) as a flexible struc-
ture learning technique. A BN is a directed acyclic graph
(DAG) that encodes the causal relationships among a set of
random variables. When applied to brain connectivity model-
ing, each node in the graph stands for a task-related brain
region. Consider a BN of brain regions indexed by
f1, 2, . . . , Mg, and let Xk = (Xk, 1, Xk, 2, . . . , Xk, T) be the input
data for the (k)th region. Under the model assumptions of
DAG, the joint likelihood of the data given a DAG can be
decomposed into a product of a series of conditional probabil-
ities ( Jordan, 1998) (Fig. 2):

P(X1, X2, . . . , XMjS, hS) =
YM
k = 1

P(Xkjpk, S, hS) (1)

where pk denotes the multivariate time series for the parent
regions of the (k)th region, S denotes the network of interest,
and hS denotes the parameters in S. In recent BN applications
to neural network construction (Zheng and Rajapakse, 2006),
the inputs (Xk,t, pk,t) are assumed to be independent and dis-
cretized; thus, each conditional probability in Equation (1)
can be written as P(Xkjpk, S, hS) =

QT
t = 1 P(Xk, tjpk, t, S, hS): To

select the most likely network from the list of possible ones,
the Akaike information criterion (AIC) of the following
form is commonly used (Akaike, 1974)

AIC(S) = �log P(X1, X2, . . . , XMjS, ĥS)þ qs: (2)

Here ĥS is the maximum likelihood estimate of hS and qS de-
notes the effective number of parameters in the model.

Spectral density matrix of the network. In this section, we
describe the graphical model approach (Bach and Jordan, 2004)
for learning brain connectivity structure. In the remaining of the
article, we will use the term ‘‘Spectral Bayesian Network’’ (SBN)
for this graphical approach since it learns the network structure
based on the spectral density matrix of the multivariate time-
series input in the frequency domain. Let X = fX1, X2, . . . , XMgT

be the M · T multivariate time series for M task-related active
brain regions, where each row Xk = (Xk, 1, Xk, 2, . . . , Xk, T) is the
univariate time course representing the (k)th region. DenoteeXt = (X1, t, X2, t, . . . , XM, t) as the (t)th column of X. Assuming
that X is centered and stationary, the autocovariance function
of X is an M · M matrix defined as

G(h) = E[eXtþh
eX¢

t] (3)

for any lag h 2 f0, � 1, � 2, . . .g.The off-diagonal elements in
the sub block Gk, pk

, (h) denote the cross-covariances of brain
region k and its parent nodes pk. For a given h, this block de-
scribes the pairwise linear dependency between the brain re-
gions in {k, pk}. The spectral density matrix of X is defined as

f(x) =
1

2p
+
1

h = �1
G(h) expf� ixhg, (4)

for x 2 [� p, p]. The f(x) is an M · M symmetric matrix with a
fixed frequency x, and the (i, j) entries from all the spectral
matrices aggregate together to form a spectral decomposition
of the temporal dependence between the activations in brain
region i and j (Salvador et al., 2005, 2007) (Fig. 3). After apply-
ing Bayes’ rule to the conditional probabilities in Equation (1),
the AIC score of a given network S can be rewritten as

AIC(S) = �log
YM
k = 1

P(Xkjpk, S, ĥS)þ qS

= � +
M

k = 1

log
p(Xk, pkjS, ĥS)

p(pkjS, ĥS)
þ qS: ð5Þ

This is a sum of likelihood p(XAjS, ĥS), A � f1, 2, . . . , Mg
with respect to the network structure S, plus the penalty
qS on network complexity. Assuming that the multivariate

FIG. 2. The decomposition of the joint likelihood of data in
Bayesian Networks (BN). Each likelihood is simplified into a
product of local conditional probabilities based on the net-
work structure ( Jordan, 1998). Color images available online
at www.liebertonline.com/brain

FIG. 3. The estimated cross spectral density between two time
series with different levels of connectivity strength, with 90%
sample quartile intervals (dash line) in 1000 simulations. The bi-
variate time series are generated from VAR models as described
in section Simulation studies, with connection parameter p = 0.1
(top), 0.6 (middle), and 0.9 (bottom) for the link between the two
time series. The sample mean and standard deviation of the dif-
ferences of SBN AIC scores between the true network (con-
nected) and the empty networks in the simulations are shown
above the plots. AIC, Akaike information criterion; SBN, Spec-
tral Bayesian Network; VAR, vector autoregressive. Color
images available online at www.liebertonline.com/brain
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time-series X = fX1, X2, . . . , XMgT are generated from a sta-
tionary Gaussian process, each local likelihood in Equation
(5) can be approximated using the corresponding sub block
in the spectral density matrix of X. plus a constant term C
that does not depend on the network structure (Bach and
Jordan, 2004; Jordan, 1998)

log p(XAjS, ĥS) � T

4p

Z p

� p
log jfA(x)jdxþC, (6)

where A � f1, 2, . . . , Mg is an arbitrary set of the nodes in the
graph, fA(x) is the square block of f(x) with respect to the
nodes in A, and ĥ corresponds to the estimated spectral den-
sity of the input time-series X. The Appendix gives the com-
plete derivation of the log likelihood estimate. The AIC
score for the complete network can be written as

AIC(S) = � T

4p
+
M

k = 1

Z p

� p
log
ĵffXk, pkg(x)j
ĵffpkg(x)j

dxþ qS (7)

� � 1

2
+
M

k = 1

+
T

j = 1

log
ĵffXk, pkg(xj)j
ĵffpkg(xj)j

þ qS: (8)

Here f̂ (x) is the maximum likelihood estimate of the spectral
densities, and each f̂f�g(x) in Equation (7) is a sub block of
f̂ (x). In practice f(x) is estimated by smoothing the periodo-
grams of the multivariate time-series X at discrete frequencies
xj, resulting in a numerical integration in Equation (8). Gauss-
ian spectral window is applied for periodogram smoothing
(Appendix). Since the estimated spectral densities represent
the cross-covariance of the brain activity among different re-
gions in the frequency domain (Fig. 3), Equation (8) provides
a concise selection criterion based on the dependency infor-
mation across the whole spectrum, rather than depending
on specific time lags.

Structure learning by Bayesian model averaging. The se-
lection of the best network structure is a crucial step in the
model. Many factors influence this decision process, and spe-
cial care should be exercised to address this issue. The first
concern is due to the high noise level of fMRI data. With
such a noisy dataset, the best model chosen by the model se-
lection criterion (for instance, using the AIC scores) is the best
model for the contaminated data; thus, simply choosing the
model with the smallest AIC score may lead to false identifi-
cation of the true model. The second disadvantage of the tra-
ditional model selection procedures, such as AIC and
Bayesian Information Criterion, lies in the fact that no prior
network structure information can be incorporated into the
selection. In brain imaging, researchers have garnered well-
established neuro-anatomical knowledge over the years. It
is unreasonable from a modeling perspective to ignore vali-
dated information about the brain during our network search
procedures. The last issue is the notion of model equivalence
in the learning of BN structure. In BN, two graphs are said to
be equivalent if the factorization in Equation (1) based on one
graph is identical to the factorization based on the other.
When the estimation of network structure is the main focus,
we need to distinguish the networks that are different yet
have the same AIC score.

Observing these three issues, we propose the following
Bayesian model averaging (BMA) approach to identify the

optimal network structure. Instead of a direct comparison
of all the competing networks, our method computes and
ranks the posterior probability of the existence of a particular
link given the observed data, and constructs the connectivity
network by adding the most plausible link one at a time. Since
these posterior probabilities are unique, the network identi-
fied using this procedure is also unique.

In BMA (Hoeting et al., 1999), the posterior distribution of
an arbitrary variable of interest, D, given data D, can be writ-
ten in the following form

p(DjD) = +
K

k = 1

p(DjMk, D)p(MkjD), (9)

where the posterior distribution p(DjD) is constructed by av-
eraging K candidate models Mk. In learning network struc-
tures, each model Mk represents a candidate network Sk.
The quantity of interest D is the existence of an edge Ea/b be-
tween two brain regions a and b. We further assume
p(Ea/bjSk, D) = 1 if the kth network structure Sk contains the
edge a/b, and p(Ea/bjSk, D) = 0 if this edge is not in Sk.
Our BMA approach for network construction is described
by the following algorithm:

1. Choose S as the pool of candidate network structures.
2. Compute the network score for each Sk in S using the

AIC metric in Equation (8).
3. Compute p(Ea/bjD) for each edge Ea/b, from averaging

over all networks in S.

p(Ea/bjD) = +
Sk2S

p(Ea/bjSk, D)p(SkjD): (10)

An estimate of p(SkjD) can be obtained when we compute
AIC (Bozdogan, 1987).

4. Build the network.

a) Start with an empty graph S.
b) Consider all edges not in S, add the one with highest

p(Ea/bjD) into S.
c) If cycle is formed, delete the current edge.
d) Repeat b) and c) until no edges outside S satisfies

p(Ea/bjD)

maxall edgefp(Ea/bjD)g >C (11)

5. Output S.

The algorithm starts with an empty network and adds edges
one by one into the graph according to their posterior probabil-
ity averaging from the pool unless the current addition results
in a cyclic graph, which is not allowed by the definition of BN.
We build a network only with the connections supported by
the data since all the edges with relative low posterior probabil-
ity are excluded in the construction, which is controlled by the
threshold C in Equation (11) ( Jeffreys, 1998; Madigan and
Raftery, 1994). Jeffreys (1998) and Madigan and Raftery
(1994) suggest the use of a value between 0.1 and 0.001 analo-
gous to p-values to exclude edge with significantly small pos-
terior probability. In this article, we use C = 0.05, which is a
common choice of significance level in hypothesis testing.
We have examined the impact of threshold C in learning lan-
guage network structure in the section Study on children’s
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narrative comprehension, and the resulting networks are the
same for C ranging from 0.01 to 0.1.

For the selection of S, we discard networks with relatively
small posterior probabilities such that p(SjD)/max p(SjD) < C.
This is because networks with very low posterior probabilities
are generally very different from the ground truth. Discarding
these poor candidate models will enable the model selection
procedure to avoid substantial contribution to the sum in
Equation (10) by a large number of unreasonable networks
each contributing a small posterior probability. This is a com-
mon practice in BMA (Hoeting et al., 1999; Raftery et al., 1997).
Again, we choose C = 0.05. Furthemore, the computation in
Equation (10) requires the estimation of the posterior probabil-
ity for each candidate model. When the number of nodes in the
network is moderate (which is the case for our narrative com-
prehension study), exhaustive computation over all the com-
peting models is feasible. Since the number of the candidate
models grows exponentially as the number of nodes increases,
stochastic approximation may be needed for larger networks.

Results

Simulation studies

In this section we perform several simulations to demon-
strate the robustness of the SBN model in detecting the net-
work structure underlying multivariate time series. The
results of the spectral model are compared with those of static
BN and DBN. The multivariate time-series X = (X1, X2,
. . . , XM)T are generated from a first-order VAR model. We
consider a network with four nodes (M = 4):

eXt =FeXt� 1þ et (12)

et ~ Normal (~0, r2I4)
~X0~ Normal (~0, r2

0I4)

�

where ~Xt is a four-dimensional observation at time t, and F
is the 4 · 4 one-step connectivity matrix. Any nonzero off-
diagonal entry Fij represents an unidirectional interaction
from node Xi to node Xj. There is no connection in the graph
for nodes Xi and Xj when Fi,j =Fj,i = 0. The et, t = 1, 2, . . . , T are
assumed to be independent and identically distributed Gauss-
ian noise with zero mean and diagonal covariance matrix r2I4.
To ensure that the time series are Gaussian and stationary, We
assume X0 to be Gaussian with zero mean and diagonal covari-
ance matrix r2

0I4. In this study, we examine three different con-
nectivity matrices F with different levels of connections:

F1 =

p0

p1 p0

p1 p1 p0

p1 p1 p1 p0

0
BBB@

1
CCCA, F2 =

p0

p1 p0

p1 p0

p1 p1 p0

0
BBB@

1
CCCA,

F3 =

p0

p1 p0

p0

p1 p0

0
BBB@

1
CCCA (13)

The corresponding network structures are demonstrated in
Figure 4.

We consider a variety of parameter settings to test the ro-
bustness of SBN modeling. First, we study the effect of the

length of observed time-series T when other parameters are
fixed (p1 = 0:8, p0 = 0:1, r2 = 0:5, r2

0 = 1): Synthetic time series
are generated with length ranging from 50 to 500 and the sim-
ulations are repeated 100 times. In each run we compute the
graphs learned from each method and record the percentage
of successful identification of the true network structure from
which the time series are generated.

Figure 5 demonstrates the difference in terms of structural
learning between ordinary BN (Zheng and Rajapakse, 2006),
DBN (Rajapakse and Zhou, 2007), and our approach. The
MATLAB software package, Bayes Net Toolbox (Murphy,
2001), is used for BN and DBN models. Clearly, SBN

FIG. 4. The three graphical structures for simulating four-
dimensional multivariate time series from VAR models.

FIG. 5. Percentage of identifying true structure under differ-
ent signal lengths (T). Green: SBN. Blue: Dynamic Bayesian
Networks (DBN). Red: Gaussian Bayesian Network without
assuming temporal dependency. Time series are simulated
from the three different graphs (F1, F2, F3) as shown in
Figure 4.
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outperforms BN and DBN consistently in model identifica-
tion, especially when the length of the time-series T is limited.
When the true data generated network structure is complex
(F1) a moderate T is necessary to guarantee the performance
of SBN. For simpler structure as in F2 and F3 SBN can iden-
tify close to 100% of the true network when T ‡ 100, while
both BN and DBN give poor results. Compared with DBN
and SBN, the performance of BN is much worse. This is be-
cause the synthetic data are simulated with strong temporal
correlation (autoregressive) especially in F1 and F2.

Furthermore, we examine the impact of the connectivity
strength on model performance when the observed time se-
ries have a moderate length (T = 500) and a short length
(T = 100). Other parameters are fixed (p0 = 0:1, r2 = 0:5,
r2

0 = 1): Figure 6 shows that SBN can detect the right network
structure under moderate connectivity strength (0.4 £ p1 £ 0.9)
when the observed time courses are of moderate length
(T = 500). Figure 7 shows that when the length of observation
is limited (T = 100), SBN can still learn the true network struc-
ture if the network has moderate numbers of connections (F2,
F3) with relatively strong connectivity strengths. In both sim-
ulations, SBN models perform much better than BN and DBN
unless the connectivity strength is weak (p1 £ 0.3). It is worth
mentioning that the SBN approach is for learning the network
structure instead of estimating the strength of any specific
link in the network. Thus, although we validate the perfor-
mance of SBN mainly using data from first-order VAR mod-

els, SBN can be applied to VAR models with longer lags or
time series with other type of temporal structure.

Study on children’s narrative comprehension

Six task-related spatial-independent components are iden-
tified using the procedure outlined in the section The spectral
graphical model with model averaging in the narrative com-
prehension task (Schmithorst et al., 2006). The ICA maps dis-
played in Figure 8 show the activations in each task-related
component. The components are ordered according to the
phase of the averaged Fourier component relative to the ref-
erence on–off time course. The activated brain regions and ac-
tivation foci are shown in Table 1. These task-related regions
are also identified by a random-effect GLM analysis (Karuna-
nayaka et al., 2007).

Two knowledge-based anatomical networks of language
comprehension circuit have been proposed (Fig. 9) (Karuna-
nayaka et al., 2007). The extended language network includes
six regions of interest (ROI) that are identified by ICA: Brod-
mann area (BA) 22, BA 22 posterior, BA 39, BA 41, BA 44, and
hippocampus. A simplified structure was also suggested in
Karunanayaka et al. (2007), which does not include hippo-
campus (Fig. 8d). The simplified structure is more consistent
with the Wernicke-Geschwind model and previous neuro-
anatomical results, and is the focus in the study using linear
SEM (Karunanayaka et al., 2007). Thus, in this article, we
apply the SBN approach with model averaging to learn
the network connectivity among the five brain regions

FIG. 6. Percentage of identifying true structure under differ-
ent strengths of connectivity (p1) when the length of time-
series T = 500. Blue: SBN. Red: DBN. Green: Gaussian
Bayesian Network without assuming temporal dependency.
Time series are simulated from the three different graphs
(F1, F2, F3) as shown in Figure 4.

FIG. 7. Percentage of identifying true structure under differ-
ent strengths of connectivity (p1) when the length of time-
series T = 100. Blue: SBN. Red: DBN. Green: Gaussian Bayesian
Network without assuming temporal dependency. Time se-
ries are simulated from the three different graphs (F1, F2, F3

as shown in Figure 4.
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FIG. 8. The six task-related networks (a-f) found from spatial group-independent component analysis of 313 children per-
forming a narrative story comprehension task. The brain regions included in regions of interests (in the left and the right hemi-
spheres) of each map are shown in Table 1. Slice range: Z =�25 to + 50 mm (Talairach coordinates). All images are in
radiological orientation. Extracted from Schmithorst et al. (2006).

Table 1. Activation Foci (Talairach Coordinates) for the Task-Related Independent

Component Analysis Components

ICA component Brain function Brain region BA Coordinates (X,Y,Z)

a Primary auditory cortex L. superior temporal gyrus 41 �38, �21, 15
R. superior temporal gyrus 41 46, �21, 20

b Processing of auditory spectral and temporal
information

L. superior temporal gyrus 22 �54, �13, 5

R. superior temporal gyrus 22 50, �17, 5
c Broca’s Area and left lateralized phonological

working memory network
L. medial temporal gyrus 21 �54, �33, 0

L. inferior frontal gyrus 46 �38, 43, 5
L. inferior frontal gyrus 44/45 �42, 7, 30
L. inferior parietal lobule 40 �50, �53, 30
L. middle frontal gyrus 8 �6, 23, 45

d Memory encoding and storage of narrative
elements

L. hippocampus �26, �25, �5

R. hippocampus 22, �21, �5
e Wernicke’s Area. Acoustic word recognition L. superior temporal gyrus 22 �50, �49, 15

R. superior temporal gyrus 22 46, �53, 10
f Higher order semantic processing L. angular gyrus 39 �46, �53, 25

R. angular gyrus 39 46, �49, 25
L. precuneus/posterior cingulate 7/31 �10, �45, 30

Talairach coordinates were extracted from Schmithorst et al. (2006).
ICA, independent component analysis; BA, Brodmann area; L., left; R., right.
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represented by the independent components a, b, c, e, and f,
which encompass Brodmann Areas BA 22, BA 22 posterior,
BA 39, BA 41, and BA 44. We compare our results with the
simplified network (Figure 9) proposed based on neuro-
anatomical knowledge.

For each of the five ROIs, a representative fMRI time series
is selected by averaging from the voxel of maximum activa-
tion and all its neighboring voxel per hemisphere per chil-
dren. We divide the subjects into three age groups: 5 to 8, 9
to 13, and 14 to 18 years old. For each age group, the struc-
tures of the neural functional networks in both left and
right hemisphere are estimated using SBN with model aver-
aging. The input to SBN for each age group is the median
time series from all subjects within the age range. For the
left hemisphere, we consider a five-node network among
BA 22, BA 22 posterior, BA 39, BA 41, and BA 44, and for
the right hemisphere, we only look at the network of BA 22,
BA 22 posterior, BA 39, and BA 41. We omitted BA 44 (Broca’s
area) from the right hemisphere model because this region
did not reach significance in the first-level analysis with
ICA or GLM and is not considered to be functionally related
to narrative comprehension.

Our model selection procedure searches among all the mod-
els in the candidate pool S and decides the most probable set of
links. Thus, the choice of pool S is very important. First, we re-
strict S to only contain networks starting from brain region BA
41, which is a well-accepted anatomical result since BA 41 cor-
responds to the primary auditory cortex for the initial process-
ing of acoustic information. Furthermore, instead of averaging
from all possible neural networks with no edge pointed to BA
41, we discard networks with relative small posterior probabil-
ity such that p(S j D)/max p(S j D) < 0.05. Using the edge score
in Equation (10), we computed the posterior probability of the
existence of all possible connections among the task-related re-
gions and then the network structure is constructed using the
averaging algorithm outlined in the section Structure learning
by Bayesian model averaging.

Figure 10 shows the connectivity network learned for the
left hemisphere. The estimated networks stand for the aver-
age neural connectivity predicted during the task of narrative

comprehension in children ranging in age from 5 to 8, 9 to 13,
and 14 to 18 years. Most of the estimated pathways predicted
are highly consistent among the three age groups except the
links from BA 41 to BA 39 in the 5–8 group and from BA 41
to BA 44 in the 14–18 group. The edge scores computed
based on model averaging are shown in Table 2. All the
edge scores have been rescaled for each age group separately
such that Sk p(Sk j D) = 1.The connections from BA 41 to BA
22 and from BA 22 to BA 44 show the highest edge scores
across three groups, which suggest a pathway with relative
high connectivity magnitude through these regions in all
these development stage of children. Of particular impor-
tance, we observe that the youngest age group of children
have a strong connection (edge score 0.440) between primary
auditory cortex (BA 41) and auditory-language association
areas (BA 39) that is not detected in the older age groups of
children. Instead, the oldest children exhibit a long-range con-
nection (edge score 0.841) between primary auditory cortex
(BA 41) and Broca’s area (BA 44) along the arcuate fasiculus.
The weak connection between BA22 and BA39 in the left

FIG. 9. Knowledge-based neural/brain network for narra-
tive story comprehension. The simplified network does not
include the hippocampus identified in IC d. The Talairach co-
ordinates of the activation foci are shown in Table 1.

FIG. 10. The estimated neural network for narrative story
comprehension in the left hemisphere for three different age
groups—5 to 8 (top), 9 to 13 (middle), and 14 to 18 (bottom)—
based on the Bayesian averaged network that utilized a net-
work scoring criterion as part of the SBN approach. Green
edges are the connections not identified in all the age groups.

396 LIN ET AL.



hemisphere (connection strength < 0.2 for all age groups in
Table 2) is consistent with our understanding of the language
network connections within the brain in that the anterior part
of BA22 is directly involved with phonological processing
while the posterior part of BA22 (BA22 posterior) is tradition-
ally referred to as Wernicke’s Area for language processing
and feeds forward into language association areas in the
Angular gyrus (BA39) (Catani and Jones, 2004; Karuna-
nayaka et al., 2007).

With no activation identified in BA 44 in the right hemi-
sphere, Figure 11 shows the estimated networks among BA
22, BA 22 posterior, BA 39, and BA 41 for children in three dif-
ferent age groups in the right hemisphere. Similar to the net-
works learned for the left hemisphere, the network structures
are highly consistent among the groups. The eldest age group
shows an additional path from BA 41 to BA 22 Posterior,
which is not present in the two younger age groups, but its
score is relatively low compared with all other edges in the
network. A single pathway, BA41/BA 22/BA 22 posteri-
or/BA 39 is learned by the model averaging algorithm,
which is a simpler connectivity structure compared with its
counterpart in the left hemisphere.

Discussion & Future Work

In this article, we applied the spectral graphical model with
model averaging to construct brain connectivity networks
using fMRI data. The advantage of our approach is three-
fold. First, it assumes only a standard a priori constraint on
the network structure and the algorithm can select the most
probable network based on data. Second, this approach uti-
lizes the fMRI signals transformed into the frequency domain
to build a spectral graphical model; thus, the temporal char-
acteristic of the entire time series are accounted for. This is
fundamentally different from the BN and DBN approaches
(Rajapakse and Zhou, 2007; Zheng and Rajapakse, 2006),
where the data are assumed to follow an autoregressive pro-
cess with fixed lags (DBN) or no lag (BN). Third, we adopt the
BMA technique for model selection, which is less sensitive to
noise and more robust against outliers.

Previous network models (Karunanayaka et al., 2007) pro-
posed for this narrative comprehension task have used a

Table 2. Edge Scores in the Functional Networks Learned for Both Hemispheres in Each Age Group

Start region End region Age 5–8 Age 9–13 Age 14–18

Left hemisphere
BA 22 (IC b) BA 22 Post (IC e) 0.535 0.818 0.555
BA 22 (IC b) BA 39 (IC f) 0.180 0.195 0.084
BA 22 (IC b) BA 44 (IC c) 0.937 0.864 0.955
BA 22 Post (IC e) BA 39 (IC f) 0.584 0.766 0.955
BA 22 Post (IC e) BA 44 (IC c) 0.937 0.864 0.538
BA 41 (IC a) BA 22 (IC b) 0.937 0.864 0.955
BA 41 (IC a) BA 22 Post (IC e) 0.567 0.092 0.800
BA 41 (IC a) BA 39 (IC f) 0.440
BA 41 (IC a) BA 44 (IC c) 0.841
Right hemisphere
BA 22 (IC b) BA 22 Post (IC e) 0.853 0.976 0.760
BA 22 Post (IC e) BA 39 (IC f) 0.802 0.976 0.958
BA 41 (IC a) BA 22 (IC b) 0.924 0.976 0.958
BA 41 (IC a) BA 22 Post (IC e) 0.396

The edge score of an effective connection between two brain regions is computed using the Bayesian averaging approach defined in equa-
tion (10). The edge scores have been rescaled in each group so that the sum of the posterior probabilities of the candidate networks is one.

FIG. 11. The estimated neural network for narrative story
comprehension in the right hemisphere for three different age
groups—5 to 8 (top), 9 to 13 (middle), and 14 to 18 (bottom)—
based on the Bayesian averaged network that utilized a network
scoring criterion as part of the SBN approach. Green edges are
the connections not identified in all the age groups.
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linear deterministic modeling approach (structural equation
model) that requires a rigidly defined set of a priori network
elements and links between them. The current treatment
using SBN with model averaging is more flexible than the
SEM approach because it does not require a priori definition
of all the network elements and connections. Instead, the op-
timization of the network in the frequency domain can gener-
ate new graphs that include connections that were not
predicted a priori. Moreover, compared with other BN (BN,
DBN) that have been applied to the structure learning of neu-
ral networks using fMRI data, the SBN approach considers
the whole spectrum (and thus the whole autocovariance func-
tion, G(h), h ‡ 0) of the fMRI time series in the approximation
of the likelihood function, while the applications using other
BN only considered fixed lags such as G(1) and G(0) (Li et al.,
2008; Rajapakse and Zhou, 2007; Zheng and Rajapakse, 2006).

The Dynamic Causal Models (DCM) are another popular
class of network models that do not rely on the autoregressive
assumptions of the underlying time series (Friston et al., 2003,
2011; Penny et al., 2004a, 2004b). Instead, DCM captures the
network structure by tuning model parameters that minimize
the difference between the predicted output of a dynamic sys-
tem and the observed time series. In comparison, our ap-
proach is fundamentally different from DCM in two
respects. DCM is built upon time domain data, whereas our
model is based on the spectral domain and has the flexibility
of examining network structure of different frequency bands.
DCM utilizes the Bayesian model selection criterion to choose
the optimal network, whereas our method adopts the BMA
concept for stepwise selection of the best connections. In
this article, we focus on demonstrating the applicability of
the SBN for learning brain connectivity network. A detailed
comparative study between DCM and SBN is currently
under investigation.

In our treatment of the connectivity in the narrative com-
prehension network, the left and right hemispheres are mod-
eled separately. This approach was used for two reasons.
First, the activation patterns corresponding to this task have
been found for the right and left hemispheres in both children
and adults using conventional GLM analysis (Holland et al.,
2007; Schmithorst et al., 2006) as well as ICA (Karunanayaka
et al., 2007). Further, the literature on hemispheric dominance
has demonstrated that left and right hemisphere networks for
language processing are asymmetric by multiple imaging and
behavioral methods, including fMRI, PET, Transcranial
Doppler ultrasound, Dichotic listening tests, and lesion stud-
ies (Lohmann et al., 2005; Petersen et al., 2000; Springer et al.,
1999). Between 92% and 96% of right-handed adults are left
dominant for language processing in the brain (Springer
et al., 1999) and diffusion MRI tractography has gone so far
as to demonstrate that the arcuate fasciculus, the major
white matter pathway connecting key language regions in
the left hemisphere, is incomplete in left-dominant individu-
als (Catani et al., 2007). Clearly, cooperation between hemi-
spheres is important for this task and the presented data
demonstrate a high degree of symmetry in the pattern of ac-
tivation. Therefore, it is appropriate to consider the interac-
tion between the hemispheres for this task. However,
considering a bi-hemisphere network, the number of nodes
becomes 10 to 14, requiring a much longer observed time se-
ries to guarantee the model performance. The simulations in-
cluded in Figures 5–7 demonstrate that our algorithm needs a

longer time series to accurately estimate connection strengths
in larger networks. Thus, we decide to investigate the intra-
hemisphere networks only, given the limitations of the
fMRI data we have from this group of children.

The left hemisphere SBN model differs somewhat from the
knowledge-based model in that the expected feed forward
connection between IC f (BA 39 located in the Angular
Gyrus) to IC c, which includes BA 44 (Broca’s Area) in the in-
ferior frontal gyrus, was not predicted. Instead, the Bayesian
model predicts connections to Broca’s Area arising directly
from Wernicke’s area IC e (BA 22 posterior) and IC b (BA
22). The SBN approach also detected two age-dependent con-
nections in the left-hemisphere language network for the nar-
rative comprehension task. These can be seen in Figure 10 and
in Table 2. An additional connection leading directly from IC
a in the superior temporal gyrus (BA 41 auditory cortex) to IC
c (BA 44), shown in Figure 10c as a dashed line, was predicted
in the 14–18-year-old age group but not in the two younger
groups of children. Such a connection is plausible given the
strong connections between auditory and language areas
along the path of the arcuate fasciculus in the brain. In the
5–8-year-old group, SBN predicts a connection directly from
IC a (BA 41) to IC f (BA 39), which vanishes in the older
age groups. These data-driven predictions can provide a
basis for revision and refinement of language network mod-
els and the influence of brain development on them.

The weak edge scores predicted for all age groups between
the anterior portion of BA 22 in the superior temporal gyrus
and BA 39 in the Angular gyrus in the left hemisphere are
expected based on earlier findings (Karunanayaka et al.,
2007). Recent findings from diffusion tractography imaging
elegantly demonstrate the physical pathways associated
with the left-dominant language network along the acruate
fasiculus as including the connection from BA22 posterior
to BA39 (Catani and Jones, 2004; Catani et al., 2007). So, the
SBN predictions of strong connectivity along this pathway
are satisfying in that they are in line with anatomical findings
as well as connectivity estimates based on other techniques.

The SBN models for the right hemisphere focus on the
4-node network among the auditory and posterior language
areas (ICs a, b, e, and f) for the narrative comprehension
task as diagramed in Figure 11. This prediction is consistent
with recent neuro-anatomical findings based on diffusion ten-
sor imaging that demonstrate strong asymmetry between left-
and right-hemisphere white matter connections along the ar-
cuate fasciculus pathway (Catani and Jones, 2004; Catani
et al., 2007). Right-hemisphere networks selected by SBN
were identical for the two younger age groups of children
but included an additional connection between auditory cor-
tex (BA 41) and Wernicke’s area (BA 22 posterior) in the oldest
group of 14–18-year-olds (Table 2). This may correspond with
continued myelination in late adolescence (Toga et al., 2006).

The application of the network learning approach
proposed here using SBN to model language connectivity
network in the developing brain provides a gnomic demon-
stration of the flexibility of this method to predict changing
connectivity in networks as a function of physiological or be-
havioral variables. In this case the age grouping of the subjects
is used to demonstrate that different connections are important
during development. A similar approach could be used in the
future to examine data from patients with neurological diseases
such as epilepsy, stroke, or aphasia. In that case, connectivity
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strength predicted by the graphs could pinpoint deficits in net-
work connections that underlie symptoms of the disorder. The
simulations show us that the SBN approach can correctly predict
the networks structure, provided a sufficient sample of the tem-
poral network behavior is available. The results in children of
different ages shown in Figures 10 and 11 go one step further
and demonstrate the power of this graphical modeling approach
for predicting the dynamic evolution of network connectivity—
in this case as a function of subject age.

As a nonparametric approach to approximate the model
selection criterion (AIC) using frequency-domain data in-
stead of building specific parametric model in the time do-
main, the SBN model prefers a longer time series for better
performance in network structure learning as shown in the
simulations. Typical fMRI experiments contain 100–250
time-series samples. For conventional fMRI statistical analy-
sis, this time series is available for each voxel in each slice
of the brain image volume. Future work using the SBN
approach to estimate task-related brain connectivity could
benefit from data sets with higher sampling rate and longer
time-series. fMRI has limitations on the sampling rate that
limit it to a second or more, depending on the number of sli-
ces acquired at each time point. However, other brain imag-
ing techniques such as EEG or MEG can provide time-series
data with much higher sampling rates of 5 kHz or greater.
Group ICA of fMRI data to generate the network model
combined with SBN of MEG data from the same task might
permit better estimates of connection strengths and variabil-
ity with age, handedness, or gender in a whole-brain bi-
hemisphere functional network in the future.
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Appendix

In a Spectral Bayesian Network (SBN) model of M · T mul-
tivariate time-series X = fX1, X2, . . . , XMgT, where M is the
number of nodes (brain regions) in the network and T is the
length of time series, the likelihood is first decomposed
based on the network structure S as in static Bayesian Net-
works (BN):

log (XjS, hS) = +
M

k = 1

log
p(Xk, pkjS, hS)

p(pkjs, hS)
,

where Xk and pk denotes the (multivariate) time series of the
(k)th nodes and the parent nodes of the (k)th nodes, respec-
tively, and hS denotes the collection of parameters in all the
local probability distributions above. The distributions
p(YjS,hS), Y = {Xk, pk} or fpkg, k = 1, 2, . . . , M cannot be further
decomposed as in Equation (2) since Y is indeed a subset of
the multivariate time-series X. Instead, when T is long
enough, each local log-likelihood logp(YjS,hS) can be esti-
mated by

log p(YjS, hS) � �T · hhs(Y),

where h (Y) is the entropy rate of the time series given
that it is a finite sample of a stationary ergodic process.
This approximation is based on the asymptotic equiparti-
tion property: limT/1 log p(Yjh)=T =�hh(Y). This is also
known as the Shannon-McMillian-Breiman theorem in in-
formation theory (Cover et al., 1991). Assuming the station-
ary and Gaussianity for the multivariate time-series Y, the
entropy rate can be computed from spectral densities
directly

h(Y) =
MY

2
log 2peþ 1

4p

Z p

� p
log jfy(x)jdx,

where e is the natural number, MY is the dimension of Y, and
fy(x) is the MY · MY spectral density matrix of Y. Thus, the
Akaike information criterion (AIC) score for a Spectral BN
can be aggregated as

AIC(S) = � log (XjS, ĥS)þ qS

= � T

4p
+
M

k = 1

Z p

� p
log
ĵffXk, pkg(x)j
ĵffpkg(x)j

dxþ qSþC,

where f̂Y(x) are the spectral density estimates corresponding
to the set of nodes Y, and C = M log 2pe/2 is a constant inde-
pendent of the network structure. Suppose we have a set of
discrete estimation of f(x) at Fourier frequencies, the integra-
tion above can be further approximated by interpolations and
the AIC score in SBN modeling is

AIC(S) � � 1

2
+
M

k = 1

+
T

j = 1

log
jf̂fXk, pkg(xj)j
ĵffpkg(xj)j

þ qS,

where the constant term is ignored. The Gaussian spectral
window Wr(k) = expf� k2=2r2g=r

ffiffiffiffiffiffi
2p
p

is applied to smooth
the peridograms to obtain the spectral density estimate. The
optimal smoothing parameter r is chosen by applying
the AIC on the whittle approximation of the likelihood of
the multivariate time series. We follow Bach and Jordan
(2004) to use qs = T�+M

k = 1(2jpkj þ 1) as the penalty of the net-
work complexity where T* is the effective length of the
spectral density sequence after smoothing.

400 LIN ET AL.


