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Abstract
Many biological channels perform highly selective transport without direct input of metabolic
energy and without transitions from a “closed” to an “open” state during transport. Mechanisms of
selectivity of such channels serve as an inspiration for creation of artificial nanomolecular sorting
devices and biosensors. To elucidate the transport mechanisms, it is important to understand the
transport on the single molecule level in the experimentally relevant regime when multiple
particles are crowded in the channel. In this Letter we analyze the effects of interparticle crowding
on the nonequilibrium transport times through a finite-length channel by means of analytical
theory and computer simulations.

The functioning of living cells depends critically on molecular transport through various
transport channels [1]. Many of them function without a direct input of metabolic energy
and without a movable “gate” that would involve transitions from an “open” to a “closed”
state during transport. Nevertheless, such channels are selective, efficient, and fast.
Examples include porins, nuclear pore complex, and others [2,3]. The functioning of such
channels has served as an inspiration for the creation of artificial biosensors and
nanomolecular filters [4–8] that promise to play an ever increasing role in nanotechnological
and nanomedical applications, such as single-mismatch DNA detection [7], enantiomer
separation [8], pathogen detection [9], and design of antibiotic drugs optimized for
penetrating the cell [10]. Such manmade channels also serve as test beds for examining
models of biological transport [5,6].

Biological and artificial transport channels, such as those mentioned above, usually contain
a passageway through which the molecules translocate by diffusion. From recent
experimental and theoretical work, it has become increasingly clear that in many cases the
transport selectivity of such channels is not dictated merely by molecule size, but is
controlled by transient binding of the transported molecules inside the passageway [2–18].
The crucial insight into understanding the transport selectivity of such channels is that even
in the absence of any physical barrier for the entrance to the channel, the probability of a
particle to translocate through it is low (of an order of the aspect ratio of the channel) [13].
Transient trapping (due to binding) inside the channel overcomes this “dimensionality
barrier” [13,14]. However, if the molecules are trapped in the channel for too long, the
channel becomes crowded and transport is diminished. The interplay of these two effects
provides a basis for selective transport, whereby only the molecules that are trapped in the
channel for an optimal time transit through the channel with a high flux [12–16]. Related
mechanisms have been known in the context of carrier-assisted membrane transport as
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“facilitated diffusion” [11]. Theoretical models that include the transient trapping combined
with the effects of confinement [11–15] provide a good explanation of the behavior of the
mean flux through nanochannels and show a good agreement with the experimental data
[12].

However, from a biological perspective, transport of a single molecule can constitute a
significant signalling effect [1]. Thus, it is important to understand the transport through
such channels on the single molecule level. Advances in fluorescent microscopy and other
methods allow one to follow the transport of individual molecules through a channel [7,16].
Single molecule tracking experiments provide a wealth of information about the transport
mechanisms, which is not accessible from the measurements of the bulk flux through the
channel. The kinetics of transport of a single particle through the channel in the absence of
other particles is well understood [13,14,17]. In this Letter, we analyze the effects of
crowding of the particles inside the channel on the transport times of individual particles in
the experimentally relevant regime when a nonequilibrium steady state flux passes through
the channel.

Single particle
Here, we briefly review the kinetics of a single particle passing through the channel in order
to explain the methods employed herein. The channel is represented as a sequence of
“sites”1, …, N. Inside, the particle performs diffusionlike random walk starting at the
“entrance” site 1 and hopping between the internal sites 1 ≤ i ≤ N at an average rate r (for
simplicity, we assume that the channel is uniform). The particle can leave the channel from
the terminal sites 1 and N with an average rate ro. Transient trapping in the channel is
described by choosing ro < r. This hopping process is illustrated in Fig. 1. At any time t, the
position of the particle in the channel is described by the vector of probabilities pi(t) to be at
a particular site i: |p(t)〉 = ((p1(t),…, pi(t),…, pN(t)). We also define the vector |i〉 as a vector
with the ith element equal to 1 and all other elements equal to 0, so that 〈i|p(t)〉 = pi(t)
(where 〈x|y〉 is the scalar product of the vectors |x〉 and |y〉). The master equation for the
probability vector, describing the hopping through and out of the channel ends, can be

written as  [18]. The formal solution of the master equation can be written
as |p(t)〉 = eM̂t|p(0)〉, where |p(0)〉 is the initial condition [17]; for a particle starting at site 1, |
p(0)〉 = |1〉 = (1, 0, …, 0) The instantaneous probability flux to the right out of the channel is
ropN(t), and the probability that the particle had exited the channel from the right side by

time t is  [14(d),17].

The total probability to exit to the right  is

(1)

where 〈i|X̂|j〉 ≡ X̂ij. After some algebra [18], Eq. (1) gives for the total probability to exit

from the channel on the right (the translocation probability): , in accord
with previous works [12,14]. Note that P→ increases as ro diminishes. That is, trapping of
the particle in the channel increases the translocation probability [11,14].
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We now calculate the directional mean exit times. The probability distribution of the exit

times to the right f→(t) is  [14(d),17]. Thus, the mean
time to exit the right is

(2)

Similarly, the mean first passage time to the left is . The
mean time to exit from any of the ends is

(3)

Using the equations above, we obtain explicit expressions for the mean times:

(4)

in agreement with previous results obtained in the continuum limit [14(d)]. Note that the
mean trapping time T̄ is linearly proportional to the channel length N. Surprisingly, the
mean time for the particle to exit to the left T ̄← also scales like N for N ≫ 1, due to the
possibility of large excursions into the channel before it returns to the left end. By contrast,
the mean exit time to the right has two distinct regimes. For short channels, or strong

trapping (Nro/r ≪ 1), , while for long channels, or weak trapping, (Nro/r ≫ 1),

 (see also Fig. 3). Physically, for strong trapping, the bottleneck for the exit to the
right is the release from the channel end, while for long channels and weak trapping the exit
time is dominated by the time it takes to diffuse through the channel from left to right.

Single particle on the background of the steady-state flux
When a finite flux J impinges onto the channel entrance, at any moment there can be many
particles in the channel that might interfere with each other’s passage and prevent the
entrance of new ones. The particles in the channel obey the same kinetics as the single
particles, with a condition that a site can contain up to a maximal number of particles m. For
constant J, a nonequilibrium steady state is established and the system can be described in

terms of site occupancies . The steady-state profile of a uniform channel can be

solved exactly:  [12,18–20].

We now turn to the main results of this Letter—how does the crowding, when many
particles are present in the channel, affect the transport times of individual particles within
the nonequilibrium steady-state flux. To the best of our knowledge, no exact analytical
solution exists in this case. The transport of an individual particle can be viewed as
occurring on the background of the steady-state density profile|n〉ss. In the mean-field
approximation, the probability pi(t) of a particle to be present at a given site is described by
the following equations [18–21]:
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(5)

with the appropriate boundary conditions [18]. Using matrix notations: 
Explicit matrix elements of M̂ssare given in [18]. As in the single-particle case above, these
linear equations can be solved analytically.

To test the feasibility of the mean-field approximation, we compared the probability of a
particle to exit to the right, computed using the exact solution for the steady-state density

with the mean-field result (see below). First, the average exit flux to the right is ,
which yields for the probability of an individual particle within this steady-state flux to exit
to the right [12,18]:

(6)

On the other hand, from the mean-field approximation of Eq. (5)  [see

Eq. (1)]. Using the expressions for , after some algebra we get the same result as the exact
expression, Eq. (6). Thus, the mean-field approximation yields an exact result: the
probability of an individual particle to exit to the right is not affected by crowding and is the
same as in the single-particle case (at least for uniform channels) [19,20]. The directional
mean exit times can be calculated by repeating the same algebra as for the case of a single

particle, but with Mss instead of M. We find that the mean trapping time is  —
surprisingly, like the translocation probability, the mean trapping time is also not affected by

the crowding. By contrast, the directional times to exit to the right and to the left, 
respectively, do change due to interparticle interactions, compared to the single-particle
case. After some algebra [18], one gets for the mean time to exit to the left,

,

(7)

where  is a γ function. The mean exit time to the right can be obtained in a
similar fashion. The dependence of the exit times on the impinging flux J is illustrated in
Fig. 2. Unlike the exit probabilities, crowding increases the mean time to exit to the
rightT̄→, and decreases the mean time to exit to the leftT̄←. Interestingly, however, the
qualitative dependence on the channel length N is similar to the single-particle case (J = 0),
as shown in Fig. 3. Importantly, the transport times remain finite even in the fully jammed
regime (J → ∞), when the flux through the channel saturates to its maximal value. In

particular, the mean time to exit to the right tends to , while the mean time to exit to

the left tends to  [18].

In order to corroborate the results of the mean-field approximation and to investigate the
limits of its validity, we performed computer simulations of the transport through the
channel using a variant of the Kinetic Monte Carlo algorithm [22]. Both the simulations and
the mean-field results show that the forward times are increased due to the jamming while
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the backward times are decreased. The increase in forward exit times is easily understood
considering the reduction in hopping rates inside the channel due to crowding. The origin of
the decrease in the backward exit time is more subtle: the crowding increases the number of
particles which hop backwards out of the channel immediately after their entrance For wide
channels that can accommodate more than one particle at each site, the mean-field results for

the directional transport times  agree closely with the simulations. For strictly
single file channels (m = 1), the mean field approximation underestimates the actual value of

the exit time to the right  and overestimates the exit time to the left , but still
reproduces the right qualitative dependence of the times on the flux J and other parameters.
The reason for the underestimation of the time to exit to the right is that the mean-field
approximation neglects the correlation between successive jumps (a particle hopping to one
of its neighbor sites leaves behind it a vacancy and thus has a higher probability to hop back
to the same site in the next jump). Interestingly, the simulations show that the mean field
result for the mean trapping time T̅ss is exact (at least for a uniform channel). Corrections to
the mean-field diffusion rate of a tracer particle in equilibrium conditions were calculated in
[21] using effective medium theory. Such corrections improve the approximation also in our
case; however, their systematic analysis lies outside the scope of the present Letter.

Discussion
To summarize, we have analyzed the effects of crowding and interparticle competition for
space on the transport times through narrow channels of finite length under a nonequilibrium
steady-state condition. The results of the mean-field analysis are corroborated by computer
simulations. We have shown that in uniform channels the jamming increases the forward
exit time, while decreasing the backward exit time. Surprisingly, jamming does not affect
the mean dwelling time in uniform channels. The situation might be different in nonuniform
channels; however, the mean-field approximation should provide a qualitatively correct
picture even in this case [19,20], full discussion of which lies beyond the scope of the
present work. The model provides a theoretical framework for analysis of single molecule
transport through biological and artificial nanochannels. The parameters of the model, the
rates ro and r, can be related to the experimentally controlled factors such as diffusion
coefficients inside and outside the channel and the binding affinity of the molecule in the
channel. We emphasize the difference between the results of this Letter and the well-studied
case of tracer diffusion in infinite single-file channels [23]. Finally, we note that the methods
of this Letter can be extended to treat arbitrary molecular signalling pathways and other
systems [24].
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FIG. 1.
The channel is represented by a sequence of sites 1, …, N between which the particles can
hop with rate r. The rate of hopping out of the channel from its ends is ro. In the single-
particle case, a particle starts at site 1 and hops inside the channel until it exits from either
end. In the multiparticle case, the particles enter at site 1 with rate J(1 – n1/m) where m is the
maximal occupancy allowed. The line shows the steady-state concentration profile.
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FIG. 2.
(color online) Ratios of the mean exit times in the jammed regime to the single-particle

times. Upper lines— . Lower lines— . Solid red lines—analytical solution,
dotted lines—simulations; N = 6, r = 1, ro = 0.1, m = 3 for all lines. Inset: Same for single-
file transport (m = 1).
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FIG. 3.
(color online) Dependence of the transport time in the crowded regime on the channel length
N. Dashed red lines—- mean-field results; symbols—corresponding simulations; r = 1, ro =
0.01, J = 0:5. The dependence on N is qualitatively similar to the single-particle case—see
text. Inset: The transition between small N (linear dependence) and large N (quadratic
dependence) regimes (logarithmic scale); r = 1, ro = 0.01, J = 0.1.
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