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Abstract
Nonvolatile acid is produced from the metabolism of organic sulfur in dietary protein, and the
production of organic anions during the combustion of neutral foods. Organic anion salts that are
found primarily in plant foods are directly absorbed in the gastrointestinal tract and yield
bicarbonate. The difference between endogenously produced nonvolatile acid and absorbed alkali
precursors yields the dietary acid load, technically known as the net endogenous acid production,
and must be excreted by the kidney to maintain acid-base balance. Although typically around 1
mEq/kg/day, dietary acid load is lower with greater intake of fruits and vegetables. In the setting
of chronic kidney disease, a high dietary acid load invokes adaptive mechanisms to increase acid
excretion despite reduced nephron number, such as increased per nephron ammoniagenesis and
augmented distal acid excretion mediated by the renin-angiotensin system and endothelin-1. These
adaptations may promote renal injury. Additionally, high dietary acid loads produce low-grade,
subclinical acidosis that may result in bone and muscle loss. Early studies suggest that lowering
the dietary acid load can improve subclinical acidosis, preserve bone and muscle, and slow decline
of glomerular filtration rate in animal models and humans. Studies focusing on hard clinical
outcomes are needed.
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Introduction
Diet is a major determinant of the acid load that must be excreted by the kidney to maintain
acid-base balance (1). Although contemporary diets in industrialized nations are largely
acid-inducing, this may not have been the case throughout the vast majority of human
evolution, during which more alkalinizing foods were consumed (2-4). As a consequence,
humans may be poorly adapted to contemporary acid-inducing diets and this may contribute
to the pathogenesis of modern epidemics of chronic disease, including kidney disease (5). A
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modest body of research, including animal studies, observational epidemiology and small
clinical trials, has examined the potential role of the dietary acid load in patients with
chronic kidney disease (CKD). The evidence largely supports the hypothesis of a direct
relationship between higher dietary acid load and CKD progression, bone loss and
sarcopenia (6-9). However, due to a wide variety of techniques and terminology used to
quantify the dietary acid load, it is not widely appreciated by nephrologists. In this review,
we will discuss the dietary determinants of the daily acid load using simplifying
terminology, as appropriate, and summarize the published literature on the role of dietary
acid load in progression of CKD and CKD-related morbidity.

Net endogenous acid production and relationship to diet
Endogenous acid production

Metabolic processes generate both volatile and nonvolatile acids. Volatile acid is expired
through respiration as CO2, whereas nonvolatile acid (H+) must be excreted by the kidney in
the form of ammonium and titratable acid (10). The amount of nonvolatile acid produced by
the body during metabolism is termed the endogenous acid production (11-13). The
difference between endogenous acid production and the input of alkali absorbed in the
gastrointestinal (GI) tract is the net endogenous acid production, and represents the total
amount of nonvolatile acid that must be excreted to maintain daily acid-base balance (14).
Although the term net endogenous acid production is favored (14), a variety of terms have
been used to describe dietary acid load in the literature. A list of terms and definitions used
in this review is provided in Table 1.

Endogenous acid is produced when organic sulfur, found in the amino acids methionine and
cysteine, is oxidized to inorganic sulfate (11, 15, 16). Additional acid is produced when
neutral foods are oxidized to organic anions that are excreted in the urine, including citrate,
urate, and oxalate (11, 17). This component, termed the organic anion production, is
classically considered diet-independent (11), but may be augmented in response to net
alkalinizing diets as a mechanism to increase base excretion (18-21). In addition to these
acids that are produced endogenously from neutral foods, exogenous acids and bases are
also directly absorbed in the GI tract. In particular, absorbed metabolizable organic anions,
such as citrate and malate, are abundant in fruits and vegetables and undergo combustion in
the body to yield bicarbonate (12-14, 17, 22). The difference in absorbed, nonmetabolizable
cations and anions provides an index of the overall absorption of alkali (i.e. metabolizable
organic anions) in the GI tract (13, 23). As a result, the net endogenous acid production is
the sum of these biochemical reactions that can either yield or consume protons, and is
dependent on diet (1, 13, 14, 17, 22-25).

Measuring dietary acid load
Several groups have derived methods to estimate the dietary acid load from measures of
dietary intake (2, 14, 23-25). The most widely used methods calculate either the net
endogenous acid production, or the more classically diet-dependent portion of net acid
excretion, known as the potential renal acid load (Table 2) (22-24). Net endogenous acid
production can be estimated either indirectly, based on the ratio of protein to potassium
intake in the diet (25), or directly, using the sulfur content of foods, body weight or diet-
based estimates of organic anion production and the calculated GI alkali absorption (2).
Each of these intake-based estimates are limited by imprecision in the measurement of
dietary intake as a result of inaccurate reporting and variation over time. Additionally,
absorption of nutrients in the GI tract and the actual nutrient composition of specific foods
can vary considerably across individuals and methods of preparation, but this is not
accounted for by these equations (Table 2).
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To surmount challenges inherent in dietary intake assessment, net endogenous acid
production can be most accurately assessed as the steady-state net acid excretion measured
in a 24 hour urine collection (Table 2) (14). In addition to error related to under and over-
collection, in some circumstances evaluation of urinary acidification may require collection
under oil, making this more difficult to perform clinically (26, 27). Furthermore, estimating
dietary acid load in this way assumes acid-base equilibrium and that short term dietary
intake is similar to habitual intake, which can be more directly ascertained by a food
frequency questionnaire (28). Urine pH has also been proposed as a cost-effective, simple
tool to monitor net endogenous acid production and may be appropriate for use in large
population based studies (29). However, the relationship between net acid excretion and
urine pH may not be reliable in populations with CKD, age-related renal function decline, or
in those with renal tubular acidosis where distal acidification of the urine is compromised
(30-33).

Foods and dietary acid load
The potential renal acid load of selected common foods using the equation develop by
Remer has been reported previously (Figure 1) (22). This equation does not account for
differences in the sulfur content of proteins from different sources (3, 34, 35). Other
estimates that directly account for sulfur, as well as the impact of dietary alkali on organic
anion production, yield essentially neutral estimates for nuts and legumes (2, 5). In general,
common foods that impart a high dietary acid load include cheese, meat, eggs and grains,
whereas fruits and vegetables provide alkali (22, 36-39). The average American diet delivers
approximately 15-17% of its energy as protein, predominantly from animal sources (40). In
addition, it is low in potassium-rich fruit and vegetables (41) resulting in an average dietary
acid load of approximately 1 mEq/kg/day (17). This is consistent with median estimates of
dietary acid load of approximately 50-75 mEq/day reported in several general population
cohorts and nearly neutral acid load in populations consuming a vegan diet (8, 24, 35-39,
42-44).

To demonstrate the net endogenous acid production of diets that are relatively enriched with
plant foods (fruits, vegetables, nuts and legumes) but not vegan, we calculated the dietary
acid load of three diets prescribed in the Dietary Approaches to Stop Hypertension (DASH)
trial (45). The DASH study included a control diet with macronutrient and mineral content
similar to average US consumption; a fruit and vegetable diet in which servings of sweets
and grains were replaced with fruits and vegetables; and a combination diet that was
enriched in fruits, vegetables and low fat dairy with reductions in fats, oils and meats (45).
The fruit and vegetable diet yields a substantially reduced dietary acid load compared to
control (net endogenous acid production of 31 versus 78 mEq/d), despite comparable protein
intake (Table 3). The combination diet included a higher intake of protein than control, but
also resulted in a lower dietary acid load due to more servings of fruits and vegetables (45).
Recently, a small trial of patients with early CKD confirmed that augmentation of fruit and
vegetable intake can lower net acid excretion by approximately a third and was comparable
to administration of 0.5 mEq/kg/day of sodium bicarbonate (7). Overall these findings
suggest that replacing nutrient poor, energy dense foods that are common in contemporary
diets, with greater intake of fruits and vegetables could substantially lower net endogenous
acid production without requiring excessive protein restriction (46, 47).

Acid excretion and development of acidosis in CKD
Metabolic acidosis is a common complication of moderate to severe CKD that results from
impaired renal acid excretion (48-51). Although overt metabolic acidosis is a late
complication of CKD, low-grade, subclinical metabolic acidosis likely begins early in CKD,
but may be hidden by intracellular and bone buffering (52-56). In rat models of early CKD,
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acid loading resulted in decline of renal cortical and intramuscular pH with little change in
overt measures of systemic acidosis, such as serum bicarbonate and blood pH (57). This
finding suggests that the subtle differences in serum bicarbonate concentrations that result
from differences in dietary acid load (44), may indicate a significant degree of underlying
subclinical acidosis that could be mitigated by greater intake of base (58).

The presence of subclinical acidosis in patients with CKD is supported indirectly by a recent
study in which the kidney’s response to a bolus of intravenous serum bicarbonate was
evaluated in patients with stage 2 versus stage 1 CKD in the setting of a constant diet (56).
Despite equivalent serum bicarbonate concentrations, the decline in renal acid excretion was
blunted in participants with stage 2 versus stage 1 CKD, suggesting a total body deficit of
buffer stores early in CKD that was otherwise unapparent. Administration of alkali
supplements to both groups for 30 days decreased the difference between groups (56).
Similar physiology is observed in older adults and closely linked to age-related renal
function decline (30, 59). In older populations, reduction of the net endogenous acid
production to near neutral results in small, but measurable, increases in serum bicarbonate
and pH (8). Overall, the current body of literature suggests that modern dietary patterns
result in low grade, subclinical metabolic acidosis in the setting of CKD and age-related
renal function decline that may be “hidden” by a normal serum bicarbonate concentration.

Relationship of acidosis and dietary acid load to CKD progression
Metabolic acidosis and CKD progression

Several observational studies have demonstrated that metabolic acidosis is associated with
progression of kidney disease (60-62). Consistent with these observational findings, a
single-center randomized study demonstrated that amelioration of metabolic acidosis with
exogenous alkali supplements slowed progression of patients with late stage CKD to dialysis
dependence (63). Importantly, lower serum bicarbonate levels, even within the normal
range, are also associated with faster disease progression (61), suggesting that differences in
dietary acid load may underlie this observation (44).

Dietary acid load and CKD progression
In a small clinical trial of 120 patients with stage 2 hypertensive CKD and normal serum
bicarbonate, the addition of sodium bicarbonate at a dose of 0.5 mEq/kg/day, resulted in a
slower rate of decline in both creatinine-based and cystatin C-based estimates of glomerular
filtration rate (GFR) compared to placebo over 5 years of follow-up (64). Notably, achieved
serum bicarbonate levels in the treatment arm were not significantly different from placebo,
but daily net acid excretion was lowered by about 15 mEq/day, reflecting the fall in net
endogenous acid production. Subsequently, a similar finding was observed in participants
with moderate to severe hypertensive CKD from the African American Study of Kidney
Disease and Hypertension (AASK) who were consuming their free-living diets (6). In this
observational study, higher estimated net endogenous acid production, based solely on diet
(i.e. without the use of exogenous alkali supplements), was associated with a faster rate of
decline in directly measured I125iothalamate GFR (6). This finding was present even after
adjustment for serum bicarbonate and among the subset with normal serum bicarbonate
concentrations. It is important to note that dietary acid load is related to protein intake, a risk
factor for CKD progression that has been widely studied (65-68).

Two proposed mechanisms may underlie the associations between dietary acid load and
progressive CKD, including tubular toxicity of elevated ammonium concentrations and
activation of the renin-angiotensin system (56, 58, 69). With increased dietary acid load,
production of ammonia is increased in the proximal tubule and H+ excretion is increased
distally to augment overall acid excretion (10, 70, 71). In the setting of a reduced number of
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functioning nephrons in CKD, the per nephron demand for acid excretion rises dramatically,
resulting in a markedly elevated rate of per nephron ammonia generation (71-73), rising
intramedullary ammonium gradient (74), and increases in angiotensin II, aldosterone and
endothelin-1 that promote H+ excretion (Figure 2) (70, 75-79).

In animal models, both acid loading and potassium deficiency augmented ammoniagenesis
and resulted in activation of the alternative complement cascade (69, 80). In a rat model of
early CKD, Wesson and colleagues demonstrated that acid loading increased, and base-
loading decreased, angiotensin II, endothelin-1 and aldosterone-mediated renal injury (75,
81, 82). Additionally, base administration better preserved GFR and reduced kidney injury
compared to acid-loaded or control animals in these and other models of CKD (58, 69, 82,
83). Subsequently, small translational studies in patients with early CKD demonstrated that
lowering dietary acid load either with supplements or fruits and vegetables decreased
urinary endothelin-1, aldosterone and markers of tubulointersitial injury in addition to
slowing GFR decline (7, 64, 84).It is not yet known how these therapies may interact with
other renoprotective strategies, such as renin-angiotensin system antagonism.

Relationship of acidosis and dietary acid load to morbidity in CKD
Metabolic acidosis and morbidity in CKD

To increase the availability of amino acid substrates for ammoniagenesis (72), metabolic
acidosis stimulates muscle catabolism and inhibits albumin production through activation of
the ATP-dependent ubiquitin-proteolytic pathway (85-89). Additionally, overt metabolic
acidosis induces calciuria due to a combination of physiochemical effects on bone mineral
and activation of osteoclastic bone resorption (90, 91). As a result of this physiology,
chronic metabolic acidosis is associated with bone and muscle loss and growth restriction in
children, each of which can be corrected by base administration (63, 92-97).

Dietary acid load and morbidity in CKD
These adverse physiologic consequences of overt metabolic acidosis may be present to a
lesser degree in states of low grade, subclinical acidosis, such as early CKD and aging.
Several studies suggest that these adverse effects may be mitigated by a reduction in the
dietary acid load, although this area remains controversial (98, 99). In interventional studies,
markers of bone resorption are reduced by potassium bicarbonate supplementation or
consumption of the DASH diet (9, 100, 101). Observational studies have also documented
an association between lower dietary acid load and improved bone density (102, 103), as
well as lower rates of hip fracture in elderly women (103, 104). Importantly, adequate
protein intake is important for bone health, therefore lowering acid load through greater
intake of fruits and vegetables is likely to have a larger effect than protein restriction alone,
but further work is needed in this area (105, 106). Finally, administration of alkali
supplements to neutralize the daily acid load improves nitrogen balance in healthy elderly
patients without overt metabolic acidosis (8). Most of this work has been performed in aging
populations in which low grade metabolic acidosis may be present due to age-related renal
function decline. It is possible that similar mechanisms underlie the elevated risk of fracture
and frailty observed in CKD (107-111), but this hypothesis requires further testing.

Implications for care and research
Nutritional recommendations in CKD have focused on restriction of individual nutrients,
such as dietary protein, potassium, phosphate and sodium (112). While the restriction of
some nutrients, such as protein, has modest benefits in CKD (66-68), little guidance is
provided regarding the intake of foods. From an acid-base perspective, a foods-based
approach that considers the balance of acid-inducing and base-inducing dietary inputs is
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more logical and reflects consumption patterns. Greater intake of fruits and vegetables and
lower intake of cereal grains, can lower dietary acid load without the need for excessive
protein restriction or a large pill burden. This foods-based approach has theoretical benefits
over supplement-based approaches, due to more favorable effects on blood pressure (7, 39,
43, 45) and other health benefits of fruits and vegetables (113). Risk of hyperkalemia may
be greater in patients with moderate to severe CKD consuming diets high in fruits and
vegetables and is an important area for future studies. Risk of hyperkalemia did not differ by
dietary acid load in the AASK study (114), however, AASK only included participants with
hypertensive kidney disease and these risks may be higher in diabetic patients.

CKD is a condition in which case detection and awareness are low (115). Public health
strategies focusing on improving diet quality on a population level have the potential to
improve CKD outcomes even in the large population of patients with early to moderate
CKD who are undiagnosed or unaware. The benefits and harms of lowering dietary acid
load for secondary prevention in early to moderate CKD should be rigorously tested.
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Clinical Summary

• The dietary acid load is determined by the balance of acid-inducing foods, such
as meats, eggs, cheese and cereal grains, and base-inducing foods, such as fruits
and vegetables.

• In the setting of chronic kidney disease and aging, higher dietary acid load may
result in low-grade, subclinical acidosis despite a normal serum bicarbonate
concentration.

• Adaptations to maintain stable blood pH and augment per nephron acid
excretion in the setting of chronic kidney disease may promote bone and muscle
loss and further decline in glomerular filtration rate, but can be mitigated by
alkali.

• Studies with hard outcomes are needed to determine the safety and benefits of a
foods-based approach to reducing the dietary acid load in patients with early to
moderate chronic kidney disease.
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Figure 1.
Estimated acid-producing potential of selected foods. Potential renal acid load (PRAL) of
selected food items (per 100g serving) is adapted from estimates performed by Remer (22),
and calculated as: PRAL (mEq/d) = 0.49 × protein (g/d) + 0.037 × P (mg/d) − 0.021 × K
(mg/d) − 0.026 × Mg (mg/d) − 0.013 × Ca (mg/d).

Scialla and Anderson Page 14

Adv Chronic Kidney Dis. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Proposed physiologic adaptations and consequences resulting from a high dietary acid load
in the setting of chronic kidney disease. Blue boxes represent physiologic responses and red
boxes their potential adverse effects. Dashed lines represent projected clinical sequelae for
which current evidence is indirect.
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Table 1

Definitions and relationships between terminology used in prior literature

Term Definition Relationship to other terms†

Endogenous acid production
(EAP)

The sum of acid produced during oxidation of sulfur-
containing protein and the generation of organic anions
(OA) from neutral foods

EAP = NEAP + GI alkali absorption

Gastrointestinal (GI) alkali
absorption

The net addition of alkali as the result of nutrients absorbed
in the GI tract.

GI alkali absorption = EAP − NEAP

Net endogenous acid production
(NEAP)

The total load of nonvolatile acid added to the body as a
result of endogenous acid production and GI absorption.

NEAP = EAP − GI alkali absorption

NEAP = PRAL + OA production‡

Potential renal acid load
(PRAL)

The contribution of a food or dietary pattern to net
endogenous acid production.

PRAL ≈ NEAP − OA production‡

Net acid excretion
(NAE)

The total amount of acid excreted by the kidney daily NAE ≈ NEAP

NAE ≈ PRAL + OA production‡

†
all terms represented in mEq

‡
Results from endogenous production of organic anions from neutral foods and is classicially considered diet-independent
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Table 2

Measurements used in literature in estimation dietary acid load

Method Data Needed Calculation Strengths Limitations

Endogenous Acid
Production
(EAP)

Dietary intake
or
24 hour urine
collection

Diet:
EAP (mEq/d) = 0.75 ×
dietary sulfur
(mEq/d) + organic anion

(OA) production§
Urine:
EAP (mEq/d) = urinary
sulfate (mEq/d) +

OA production§

• Easily measured

• Accounts for
differences in sulfur
content of different
protein sources

• Can reflect long
term intake

• Ignores the effect of
dietary alkali

• OA production is
variable

Gastrointestinal (GI)
alkali absorption

Dietary intake Diet†:
GI alkali absorption
(mEq/d)= 0.95 × Na +
0.8 × K + 0.25 × Ca +
0.32 × Mg − 0.95 ×
Cl − 0.63 × P

• Can reflect long
term intake

• Dependent on accurate
nutrient composition
databases

• Assumes average rates
of nutrient absorption

Net Endogenous Acid
Production
(NEAP)

Dietary intake Direct:
NEAP (mEq/d)= EAP −
GI alkali
absorption
Indirect:
NEAP (mEq/d) = 54.5
[protein (g/day)/K
(mEq/d)] − 10.2

• Direct method
accounts for all
relevant dietary
factors

• Indirect method
requires only
limited dietary
intake data

• Both can reflect
long term intake

• Dependent on accurate
nutrient composition
databases

• Direct method
assumes average rates
of nutrient absorption

• Indirect method
assumes sulfur content
of all proteins is
similar

• Indirect method
assumes mineral
cations other than K
are negligible

Potential Renal Acid
Load
(PRAL)

Dietary intake PRAL (mEq/d) = 0.49 ×
protein (g/d) +
0.037 × P (mg/d) − 0.021
× K (mg/d) −
0.026 × Mg (mg/d) −

0.013 × Ca (mg/d)‡

• Can reflect long
term intake

• Dependent on accurate
nutrient composition
databases

• Assumes sulfur
content of all proteins
is similar

• Assumes average rates
of nutrient absorption

Net Acid Excretion
(NAE)

24 hour urine
collection

Direct†:
NAE (mEq/d) = NH4

+ +
TA − HCO3

−

Indirect†:
NAE (mEq/d) = (Cl + P

+ SO4 + OA§) −
(Na + K + Ca + Mg)

• Most direct
measurement

• Makes no
assumptions about
composition of
foods, nutrient
absorption and
sulfur content of
proteins

• Assumes acid-base
equilibrium

• Reflects short term
dietary intake

• Cumbersome to
perform

OA, organic anions; Na, sodium; K, potassium; Ca, calcium; Mg, magnesium; Cl, chloride; P, phosphate; NH4+, ammonium; TA, titratable

acidity; HCO3−, bicarbonate; SO4, sulfate

†
All ions expressed as mEq/d; valence of phosphate is assumed to be 1.8
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‡
Some investigators include sodium and chloride in this calculation, but here it is ignored because they are generally balanced in the diet. Calcium

is sometimes ignored due to variable GI absorption across individuals. Note dietary input variables here are expressed in different units than GI
alkali absorption to be consistent with reporting in the literature.

§
Organic anions can be estimated from body surface area if assumed to be diet independent: OA (mEq/d)=body surface area × 41/1.73; or based on

the GI alkali absorption to account for partial diet-dependence: OA (mEq/d)=32.9 + 0.15 × GI alkali absorption(2).
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Table 3

Estimated net endogenous acid production of diets in the Dietary Approaches to Stop Hypertension Trial
scaled to 2100 kilocalories

Control diet Fruits and vegetable diet Combination diet

Net endogenous acid production- Indirect (mEq/day)† 78.0 30.7 35.2

Potential renal acid load (mEq/day)‡ 31.8 −23.7 −25.4

Protein (% kilocalories) 13.8 15.1 17.9

Servings of fruits and vegetables (number/day) 3.6 8.5 9.6

†
Estimated NEAP (mEq/d) = 54.5 [protein (g/day)/K (mEq/d)] − 10.2(25)

‡
Estimated PRAL (mEq/d) = 0.49 × protein (g/d) + 0.037 × P (mg/d) − 0.021 × K (mg/d) − 0.026 × Mg (mg/d) − 0.013 × Ca (mg/d)(22).

Phosphate (P) intake was not provided for diets and was estimated from 24 hour urinary phosphate assuming average intestinal absorption of
63%(2)
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