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Abstract
Migraine is a common neurological disease with a complex genetic aetiology. The disease affects
~12% of the Caucasian population and females are three times more likely than males to be
diagnosed. In an effort to identify loci involved in migraine susceptibility, we performed a
pedigree-based genome-wide association study of the isolated population of Norfolk Island, which
has a high prevalence of migraine. This unique population originates from a small number of
British and Polynesian founders who are descendents of the Bounty mutiny and forms a very large
multigenerational pedigree (Bellis et al.; Human Genetics, 124(5):543–5542, 2008). These
population genetic features may facilitate disease gene mapping strategies (Peltonen et al.; Nat
Rev Genet, 1(3):182–90, 2000. In this study, we identified a high heritability of migraine in the
Norfolk Island population (h2=0.53, P=0.016). We performed a pedigree-based GWAS and
utilised a statistical and pathological prioritisation approach to implicate a number of variants in
migraine. An SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347) showed
evidence of statistical association in our Norfolk Island pedigree (P=9.6×10−6) as well as
replication in a large independent and unrelated cohort with >500 migraineurs. In addition, we
utilised a biological prioritisation to implicate four SNPs, in within the ADARB2 gene, two SNPs
within the GRM7 gene and a single SNP in close proximity to a HTR7 gene. Association of SNPs
within these neurotransmitter-related genes suggests a disrupted serotoninergic system that is
perhaps specific to the Norfolk Island pedigree, but that might provide clues to understanding
migraine more generally.
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Introduction
Migraine is a chronic and debilitating neurological disease characterised by recurrent attacks
of severe headache that is usually accompanied by nausea, vomiting, photophobia and
phonophobia. Clinical diagnosis is established by fulfilment of symptom-based criteria
defined by the International Headache Society (IHS) [3]. Migraine prevalence is ~12% in
Caucasian populations and females are approximately three times more likely than males to
be affected. Ethnic, geographic, lifestyle and socioeconomic factors are also associated with
variable risk of migraine [4].

The disorder displays strong familial aggregation with first degree relatives of migraine
probands having a two- to four-fold increased risk of developing the disorder compared to
the general population [5, 6]. Population-based twin studies report heritability estimates that
range from 0.34 to 0.57 [7, 8]. The complex molecular genetic nature of migraine is evident
from the large number of different loci discovered so far via linkage and candidate gene
association studies.

Ion channel and ion transport genes are implicated in the rare, autosomal dominant MA
subtype, FHM [9–11] and more recently in an extended pedigree with autosomal dominant
MA [12]. Functional analyses indicate mutations in these genes alter normal neural activity
and promote cortical hyperexcitability [12, 13]. In addition to these rare, familial genetic
variants, a population level migraine risk variant has recently been discovered on
chromosome 8 [14]. The minor allele frequency (MAF=0.206) by meta-analysis indicates
the variant is extremely common and conveys mild genetic risk (OR=1.18). At this stage,
there does not seem to be a single major locus that confers an effect on migraine risk across
all affected pedigrees and populations.

One method for addressing complex genetic models is to study isolated, founder
populations. The geographic isolation of such populations means there is limited opportunity
for intermarriage, which leads to elevated levels of endogamy and consanguineous unions.
The resulting founder effect may increase the frequency of genetically influenced diseases
compared to ‘outbred’ populations with the reduction in genetic diversity possibly serving to
decrease the overall number of disease susceptibility genes [2]. Extreme isolation also
exposes individuals to a similar environment and promotes a more homogenous lifestyle,
which minimises non-genetic variation. Overall, it is expected that the genetic models will
be simplified improving the likelihood of detecting susceptibility genes.

Norfolk Island is a small volcanic island in the South Pacific located almost 1,600 km
northeast of Sydney, Australia. The Norfolk Island population is descendent from 11 British
‘Bounty’ Mutineers and 6 Tahitian women, who colonised nearby Pitcairn Island in 1790
[15]. In 1856, the small community of 193 relocated to Norfolk Island (then uninhabited)
when population growth became unsustainable on Pitcairn [16]. The present day Norfolk
Islanders have maintained a relatively homogeneous lifestyle due to geographic isolation,
strict quarantine and immigration laws, and community-centred culture. Detailed
genealogical databases on Norfolk Island allow family histories to be traced back to the
original founders. The Island’s current population is approximately 2,000 (excluding visitors
and tourists) [17].

We have previously used genealogical information to estimate the structure of the entire
Norfolk Island pedigree which is comprised of ~6,500 individuals spanning 12 generations
back to the 17 founders [1]. Subsequent pedigree reconstruction analysis incorporating
genetic data has identified a 377-member pedigree that has the statistical power for gene
mapping studies [1, 15] and was available for phenotyping. We have also quantified
Polynesian admixture and inbreeding in the Norfolk pedigree and shown these effects to be
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associated to several cardiovascular disease traits [15]. Analysis of a 10-cM density
microsatellite scan revealed moderate evidence of linkage to regions on chromosomes 9 and
13 [18]. These loci were nominally replicated in unrelated Norfolk Island Cohort members
and also provided support and replication of known migraine and epilepsy loci [19, 20].
These findings may benefit from reevaluation with high-density SNP panels as traditional
genome-wide microsatellite maps leave broad areas of the genome uncovered [21, 22]. On
this premise, genome-wide SNP genotyping at a mean density of 4.7 kb was undertaken in
core members of the Norfolk Island pedigree.

The aim of the current study was to map genes associated with migraine risk in the Norfolk
Island isolate, especially given migraine prevalence estimates for Norfolk Island (25.5%) are
approximately twice as high as the established prevalence of 12% in outbred Caucasian
populations [18, 23]. We estimated the prevalence and heritability of migraine in the
Norfolk Island population and then perform a pedigree-based genome-wide association
study (pGWAS) of the core pedigree using the Illumina 610-quad genotyping BeadChip and
a linkage-based association testing algorithm implemented in the SOLAR program [24].

Results
In total, we analysed migraine phenotype information from a 377-member pedigree
previously described [1, 15]. Of this pedigree, 96 individuals are positive for migraine
according to the IHS criteria. This strong familial clustering (relative risk=2.1) is consistent
with the notion that inherited factors play a role in disease risk and establishes the Norfolk
Island population as “high risk” for migraine. The remaining 281 individuals were not
affected with migraine at the time of recruitment. Heritability of the migraine phenotype was
estimated by SOLAR using an age- and sex-adjusted model assuming additive genetic
factors. This analysis produced an h2 of 0.53 (P=0.016), which is consistent with other
studies and warrants a pGWAS to map susceptibility genes.

Illumina 610-quad genotype data was collected for n=285 individuals who were selected
from the core 377-member pedigree as being highly informative individuals in terms of
linkage. A high proportion of affected females were observed (74%), which is consistent
with the female–male ratio of approximately 3 to 1 (P=0.0012). Migraineurs were slightly
younger (46 years) on average compared to non-migraineurs (50 years; P=0.035).
Admixture and inbreeding coefficients were not associated with migraine (P>0.2). A
pGWAS was performed by testing SNPs for association within a linkage-based probit
regression model adjusted for sex, age, admixture and inbreeding (i.e. population structure).
A Manhattan plot of P values is depicted in Supplementary Fig. 1.

Given the uniqueness of this pedigree-based population, we used a combination of statistical
and functional prioritisation to investigate our results. Focussing on the top 0.05% of SNPs
yielding the lowest P value from the pGWAS, we also prioritised SNPs based on their
functional plausibility in terms of disease pathology. To do this, we implemented a similar
approach to Igl et al. (2010), which prioritised SNPs based on P value as well as plausibility
for a functional role in disease pathology [25].

Results indicated 172 SNPs fell within the top 0.05% region of the probability distribution
(see Supplementary Table 1). The most strongly associated SNP occurred in the intronic
region of the ADAMTSL1 gene (MIM 609198) on chromosome 9p22.2–p22.1 (rs4977338;
P=1.96×10−6). Given many of the 172 top ranking SNPs were not associated with migraine
candidate genes we then assessed the SNP panel according to whether they were physically
near genes with known annotation placing more value on genes with a putative role in
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migraine neuropathology, i.e. genes that are known to (a) be expressed in the brain or central
nervous system (b) regulate neurological pathways (e.g. neurotransmitters).

Using this strategy to assess only the top 172 SNPs, we prioritised 13 SNPs in 9 genes
(Table 1). There were four SNPs within ADARB2 that made the top 0.05% cutoff and that
were statistically significant at the Meff-adjusted genewide level (P<1×10−4). HAPLOVIEW
analysis showed that the four SNPs were in strong linkage disequilibrium and formed a
single haplotype block spanning 22 kb within ADARB2. Interestingly, one of the ADARB2
SNPs (rs2271275) confers an amino acid change (Thr–Ala) providing a compelling
candidate variant for involvement in disease causation. In addition, two SNPs in a glutamate
receptor gene, GRM7 (P=2.7×10−5 and 7.26×10−5) and a single SNP in close proximity to a
serotonin receptor gene, HTR7 (P=1.67×10−4) were also implicated in disease risk using our
approach. The relationship between the three key genes—ADARB2, GRM7 and HTR7—
was explored in silico using the online Gene Multiple Association Network Integration
Algorithm software (GeneMANIA) [26]. Results supported co-localisation and co-
expression of these genes via intermediates (see Supplementary Fig. 2).

The uniqueness of the study population and design may prohibit conventional replication in
independent cohorts [27]. Despite this limitation, the 13 biologically prioritised SNPs (Table
1) along with the top 10 statistically significant SNPs originally detected were assessed in an
independent replication cohort—the Women’s Genome Health Study (WGHS). The WGHS
cohort includes 23,294 unrelated women of European ancestry who are derived from the
approximately 72% of Women’s Health Study (WHS) participants providing samples and
consent for blood-based analysis. Greater than 5,000 individuals from the WGHS were
diagnosed with migraine [28–30]. SNP rs2800143 was unavailable in the WGHS cohort. Of
the top SNPs ranked based on P value and/or biological significance, evidence of replication
was detected for rs4807347, intronically located in the zinc finger protein 555 (ZNF555)
gene (P=0.019; beta=−0.074; SE=0.03) in the WGHS cohort [31].

Discussion
Despite the restriction our unique study design placed on the ability to validate these
associations, we did find some evidence of replication for an intronic SNP (rs4807347) in
ZNF555 and for rs2800143. It should be noted that the association effect occurred in
opposite directions in the two tested populations. If this is a true positive association at this
locus, this counter effect may be explained by the very different ancestral history of Norfolk
Island compared to the general population. Perhaps extreme selective effects acting on this
locus due to different environmental circumstance, particularly from Polynesian founders,
has switched a beneficial allele into a risk allele over time. Zinc finger proteins are highly
abundant in eukaryotic genomes and possess diverse functions including but not restricted to
DNA recognition, RNA packaging, transcriptional activation, regulation of apoptosis,
protein folding and assembly and lipid binding [32]. Interestingly, a study of spreading
depression (SP) in rat cerebral cortex detected significant fold changes (>2.0 or<−2) in gene
expression for a number of zinc-finger proteins 3 h after SP, suggestive of a role in stress
response and DNA repair after a migraine attack [33]. Estrogen treatment of rat trigeminal
ganglia in vitro to assess hormonal effects on migraine has revealed downregulation of zinc
finger protein 36 (ZKSCAN1) gene expression [34], ZKSCAN1 was postulated to have an
anti-inflammatory function achieved by binding mRNAs encoding tumour necrosis factor,
which accelerated mRNA degradation [34]. Although ZNF555 is yet to be functionally
characterized, it may be of potential interest in terms of post-migraine attack recovery, given
functional evidence for other zinc family protein members.
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This study also showed several neurotransmitter-related genes (ADARB2, GRM7 and
HTR7) to be associated with the migraine phenotype in the Norfolk Island pedigree. A
pGWAS utilising a combination of statistical significance and biological prioritisation of
SNPs suggested in particular, that a non-synonymous variant of the ADARB2 gene might be
involved in disease susceptibility in this unique population. RNA-editing genes have been
suggested as candidates for complex neurological disorders such as epilepsy, depression and
schizophrenia [35]. The ADARB2, SNP rs2271275 has previously been associated with
early-onset obsessive–compulsive disorder in some American families [36]. The ADARB2
locus on chromosome 10p15.3 has not previously been implicated in migraine susceptibility.
However, a recent migraine GWAS conducted in European populations did provide
evidence supporting a link between a locus on 8q22.1 (rs1835740) and glutamate regulation
[14]. We did not find any trend toward a statistical association of rs1835740 (P=0.54), which
is more likely to be explained by differences in the unique Norfolk Island isolate.

We also implicated SNPs in two serotonergic genes (HTR7 and GRM7). These genes are
widely and predominantly expressed throughout the brain [37] and function by positively
activating adenylate cyclase via g-protein coupling and may have roles in circadian rhythm
function, neuroendocrine function and affective behaviour disorders [38]. These genes are
strong biologically plausible candidates, especially given the amounting evidence of altered
serotonergic neurotransmission during and between migraine attacks [39]. A role for
serotonergic system disruption during migraine attacks is further supported by the effect of
triptans, a class of serotonin receptor agonist used to treat migraine. Triptans modulate
trigeminovascular responses in neurons in the ventroposteromedial nucleus, which are likely
involved in the transmission of pain [40]. Interestingly evidence of association is reported
for HRT7 variant, rs1298056 (genotypic P value=0.0058) in a study of 122 SNPs of the
serotoninergic system in a Spanish population of 528 migraine and 528 control individuals
[41].

There was no evidence of replication of loci between the previous linkage investigation and
the current association method in the Norfolk pedigree. This result is not unexpected, due to
the different genotyping platforms, marker densities, statistical methods and cohort sizes.
Overall the current study had limited power, which could be aided by on-going recruitment
of pedigree members. Future studies of migraine using the Norfolk population isolate may
also consider identifying migraine probands and recruiting complete, individual
subpedigrees for genetic studies.

This study identified a high prevalence and heritability of migraine in the genetically
isolated population of Norfolk Island. A pGWAS utilising a combination of statistical
significance and biological prioritisation implicated a number of SNPs in migraine risk
including a SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347), which
showed some evidence of replication in an independent migraine cohort. Association of the
SNPs in neurotransmittor genes ADARB2, GRM7 and HTR7 suggests a common
neurological pathway perhaps peculiar to Norfolk Island and may help explain the long
hypothesis of serotoninergic system disruption in migraine pathophysiology in some
populations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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