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Abstract
Nuclear magnetic resonance assays allow for measurement of a wide range of metabolic
phenotypes. We report here the results of a GWAS on 8,330 Finnish individuals genotyped and
imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of
serum samples. We identified significant associations (P < 2.31 × 10−10) at 31 loci, including 11
for which there have not been previous reports of associations to a metabolic trait or disorder.
Analyses of Finnish twin pairs suggested that the metabolic measures reported here show higher
heritability than comparable conventional metabolic phenotypes. In accordance with our
expectations, SNPs at the 31 loci associated with individual metabolites account for a greater
proportion of the genetic component of trait variance (up to 40%) than is typically observed for
conventional serum metabolic phenotypes. The identification of such associations may provide
substantial insight into cardiometabolic disorders.

Circulating metabolites have key roles in numerous biological pathways and consequently
contribute to risk for many diseases, particularly disorders of the metabolic and
cardiovascular systems1,2. Such metabolites have long been used for clinical risk
assessment, diagnosis, prognosis and evaluation of treatment efficacy. Genome-wide
association studies (GWAS) have discovered numerous genomic regions associated with
clinically relevant metabolites, with recent large-scale meta-analyses having identified, in
total, over 100 loci associated with serum concentrations of individual metabolites, such as
glucose, insulin, lipids and uric acid3–5. Nevertheless, our understanding of the genetic basis
and pathophysiological impact of variations in metabolite levels remains far from complete,
and recent studies suggest the importance of investigating metabolite phenotypes beyond
those used in traditional genetic studies. For example, in a recent longitudinal study, amino
acids identified by metabolite profiling were shown to be associated with the risk for
developing type 2 diabetes (T2D) in cohorts of apparently healthy individuals6.

Until recently, the search for metabolic risk variants had focused on only a few metabolites
at a time, but recent technological developments in NMR and mass spectrometry have made
possible the quantification of over 100 metabolites in a single analytical procedure, allowing
both broader and deeper molecular profiling of large cohorts7. Previous genome-wide
studies of high-throughput blood metabolites have identified over 40 loci associated with
such measures8–10. We present here the results of the largest genetic investigation of
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metabolomic phenotypes reported to date, including 8,330 unrelated individuals and 561
twin pairs sampled from the Finnish population who were analyzed for both genome-wide
SNP genotypes and for 216 phenotypic measures obtained from an NMR-based
metabolomic screen of fasting serum samples. We identify 31 loci associated with one or
more phenotypes at a genome-wide significance level, including 6 newly identified loci for
serum amino acids, 1 for citrate and 4 for serum lipoprotein and lipid metabolites. Using the
twin samples, we estimate the heritability of each of the 216 metabolic measures and
determine the proportions of overall and genetic variance that can be explained by the
significantly associated loci.

RESULTS
We present genome-wide association results for 117 directly measured metabolites and 99
variables derived from these measures (Supplementary Table 1). The 117 metabolites
consist of 80 lipoproteins, 15 lipids and 22 low-molecular-weight metabolites (with the latter
including pyruvic acid, amino acids and other small molecules participating in glycolysis,
the citric acid cycle or the urea cycle). The derived variables (mainly ratios of directly
measured metabolites) were selected on the basis of their prior utility in characterizing
metabolic function in either normal or disease states. For example, an increase in the ratio of
branched-chain amino acids (valine, leucine and isoleucine) to aromatic amino acids
(phenylalanine and tyrosine) in the serum, termed Fischer’s ratio, is characteristic of liver
fibrosis and is hypothesized to contribute to hepatic encephalopathy11. The rationale for the
specific ratios that we analyzed is presented (Supplementary Table 2). The ratios selected in
this study involve metabolites implicated in lipolysis, proteolysis, ketogenesis and
glycolysis, as well as reagents and products of enzymatic reactions.

Heritability of metabolic measures
To assess the heritability of each measure, we estimated intrapair metabolite correlations for
221 monozygotic and 340 dizygotic twin sets, aged 22–25, from the Finnish Twin Cohort.
For amino acids and other small-molecule metabolites, the heritability estimates ranged
between 0.23–0.55. Heritability estimates were higher for both lipids (range of 0.48–0.62)
and lipoproteins (range of 0.50–0.76) (Fig. 1 and Supplementary Table 3).

Because of the high heritability estimated for many of the lipoprotein subclasses, we also
compared the heritability of composite lipid phenotypes derived from NMR measures with
that determined using conventional lipid measures (enzymatically measured lipid levels),
using data from a subset of the twins (n = 256) for whom data from both types of assays
were available. The NMR-based and enzymatic measures gave similar heritability estimates,
except for triglycerides, for which estimated heritability was 0.68 for the NMR-based
measure and 0.55 for the enzymatic measure (Supplementary Note and Supplementary
Tables 4 and 5).

Genome-wide association analysis identifies 31 metabolite loci
We used stochastic imputation methods to augment the directly genotyped SNPs in the
various cohorts (see Table 1 for a complete list of the cohorts) to generate a marker set for
association analyses consisting of 7.7 million SNPs. The genotype imputation panel that we
employed incorporated phased haplotypes from the 1000 Genomes Project12, HapMap 3
(ref. 13) and the Finnish extension to HapMap 3 (ref. 14). Using an additive genetic model,
we tested for univariate associations between these 7.7 million genetic markers and 216
metabolic measures. To correct for multiple testing, genome-wide statistical significance
was set to P < 2.31 × 10−10 (standard univariate genome-wide significance threshold of 5 ×
10−8 / 216 phenotypes tested). Genome-wide inflation factors ranged from 0.99 to 1.06 (all
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are listed in Supplementary Table 6). Thirty-one loci were significantly associated with at
least one metabolic measure (Tables 2 and 3); all SNPs that reached the genome-wide level
of significance are presented in Supplementary Table 7). The associations for these SNPs
are shown in 2-Mb windows surrounding the SNP with the lowest P value to provide a
graphical view of the associated regions (Supplementary Fig. 1), and quantile-quantile plots
were created for the lead traits in Tables 2 and 3 and Supplementary Fig. 2) to graphically
present the overall inflation of the test statistics. For each cohort, box plots of raw phenotype
values for each genotype class of the SNP with the lowest P value are provided
(Supplementary Fig. 3) to show the effects of the SNPs per genotype class per cohort. Four
of the 11 newly associated loci presented here (1-159807481, rs17610395, 17-7083575 and
rs6917603; indicated in Tables 2 and 3) would not have been identified using only the
HapMap 2 imputation panel instead of the expanded panel that we employed for our
association testing (see Online Methods).

The 31 loci for which we detected association to NMR-based measures are shown in relation
to the relevant metabolic pathways (Fig. 2). Multiple loci had not previously been observed
to be associated with metabolic measures, either in the National Human Genome Research
Institute (NHGRI) catalog of published GWAS15 or in previous blood metabolomics
genome-wide screens8–10. Thirteen of these loci, seven of which were newly identified here,
were associated with amino acids and other small molecules (Table 2). The remaining 18
loci were associated with NMR-based measures of lipid metabolites (Table 3). Fourteen of
these loci, three of which were newly identified here, were most strongly associated with
lipoprotein measures, and four loci, including one newly identified locus, showed the
strongest associations to other lipid-related measures. Below, we categorize the loci reaching
genome-wide significance by phenotype and present potential candidate genes from the
associated regions.

Associations with amino acids and other small molecules
For the metabolites involved in processes such as glycolysis, the citric acid cycle and amino
acid metabolism, we identified, in total, seven new and six previously described loci (Table
2). Five of these associations (to valine, phenylalanine, tyrosine, isoleucine and leucine or
their composite measure, Fischer’s ratio) involve amino acids previously shown to be
associated with the risk for T2D6. In addition, we identified one new locus associated with
serum citrate levels and one new locus associated with serum glutamine levels.

The strongest associations at chromosome 2p14 (rs2160387) were with the ratio of alanine
to valine (P = 2.6 × 10−22) and with circulating valine levels (P = 8.4 × 10−11). The
associated SNP is located in the first intron of SLC1A4 (encoding solute carrier family 1
member 4), a neutral amino acid transporter. A marker (rs1440581) at 4q22 was associated
with both Fischer’s ratio (P = 2.0 × 10−16) and valine (P = 6.4 × 10−14), and a SNP
(rs2545801) at 5q35 was associated with phenylalanine (P = 8.7 × 10−11). The rs4788815
SNP at 16q22 was associated with both tyrosine levels (P = 1.2 × 10−10) and the ratio of
phenylalanine to tyrosine (P = 1.5 × 10−17). This marker is located 25 kb upstream of TAT
(encoding tyrosine aminotransferase), an enzyme that catalyzes the conversion of tyrosine to
hydroxyphenylpyruvate. Mutations in TAT have been shown to cause type 2 tyrosinemia
(MIM 276600), whose symptoms include keratitis, painful palmoplantar hyperkeratosis,
intellectual disability and elevated serum tyrosine levels16. Two additional markers at this
locus (rs34042070 and rs3213423) were independently associated with the ratio of
glycoproteins and total cholesterol and remained significantly associated (P = 2.4 × 10−14

and 3.2 × 10−12, respectively) after conditioning on rs4788815. These associations with the
ratio of glycoproteins to total cholesterol may reflect a known association with total
cholesterol at this locus5. At 17p13, a SNP located 45 kb from SLC2A4, encoding a
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facilitated glucose transporter, was associated with Fischer’s ratio (17-7083575;
rs117616209; P = 2.6 × 10−14).

Two additional loci were associated with amino acid levels, small molecules or measures
derived from these metabolite levels. The rs807669 SNP near SLC25A1 was associated with
serum citrate concentration (P = 3.3 × 10−16), and rs2297644 in the first intron of DHDPSL
(encoding DHDPS-like protein isoform 1) was associated with the ratio of glutamine to
histidine (P = 1.2 × 10−12), as well as with serum glutamine levels (P = 4.7 × 10−11).

Six of the 13 loci determined by this study to be associated with small molecules have
previously been reported. At chromosome 6q21, rs6900341 showed association with the
ratio of alanine to tyrosine (P = 3.7 × 10−15), and, in a previous study, the rs7760535 SNP in
the same locus associated with the ratio of isoleucine to tyrosine8. rs6900341 is located
within an intron of REV3L (encoding the REV3-like catalytic subunit of DNA polymerase
ζ) and is 250 kb from a possible functional candidate gene, SLC16A10 (encoding solute
carrier family 16 member 10), which transports aromatic amino acids across the plasma
membrane. In addition, in line with previous findings8, we found that rs2638315 in the 3′
UTR of GLS2 (encoding mitochondrial phosphate-activated glutaminase) was associated
with serum glutamine levels (P = 8.6 × 10−28), as well as with the ratio of glutamine to
glucose (P = 2.4 × 10−35). Moreover, we extend a previous finding of an association on
chromosome 4 between a SNP in KLKB1 and bradykinin. In our study, the rs4241816 SNP
in the same locus was associated with both serum histidine levels (P = 2.2 × 10−11) and the
ratio of histidine to valine (P = 5.6 × 10−13). The decarboxylation of histidine by the HDC
enzyme leads to the formation of histamine, a central proinflammatory mediator. A possible
functional candidate gene, TLR3 (encoding Toll-like receptor 3), lies 145 kb from the
associated SNP. TLR3 encodes a receptor that regulates the release of histamine-rich
granules from mast cells17,18. A previous study provided further support for the potential
involvement of TLR3, having shown that bradykinin regulates histamine release from mast
cells through a mechanism that remains unclear19.

The SNPs in G6PC2 and MTNR1B that showed associations with serum glucose in previous
GWAS20,21 were also associated with NMR-measured glucose levels in this study. Previous
studies have shown association between SNPs in GCKR (encoding glucokinase regulator)
and a variety of metabolic traits, including triglycerides5, glucose3 and the glucose to
mannose ratio8. In our study, a SNP in GCKR (rs1260326) was associated with the ratio of
alanine to glutamine and other amino acids measures, in addition to measures of very-low-
density lipoprotein (VLDL) and total triglycerides.

Associations with NMR-based measures of lipid metabolism
Previous investigations have identified nearly 100 genetic loci associated with measures of
serum lipid concentrations that are typically used in clinical practice5. These measures (total
cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and
triglycerides), however, are heterogeneous aggregates that reflect multiple biological
processes. We assessed here association to a much wider range of lipoprotein and lipid
measures (n = 95) hypothesized to quantify more homogenous phenotypes. We identified a
total of 18 such associations, 4 of which have not previously been reported (Table 3). These
four loci include one associated with a cholesterol measure, one associated with a VLDL
measure, one associated with the ratio of linoleic acid to other polyunsaturated fatty acids
(LA/PUFA) and one associated with serum albumin levels as well as lipoprotein measures.

The dosage of the C allele at the 4-73541429 SNP (rs115136538) was associated with
decreased concentration of serum albumin (P = 4.8 × 10−18) and with elevated concentration
of 37 other metabolites, including apoB-containing lipoprotein particles, several cholesterol-

Kettunen et al. Page 5

Nat Genet. Author manuscript; available in PMC 2013 March 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



related measures and sphingomyelin (Supplementary Table 7). This SNP was also positively
associated with the levels of enzymatically measured total cholesterol (P = 1.5 × 10−19) and
LDL cholesterol (P = 2.64 × 10−13). These observations are in contrast to the mostly positive
correlations observed in the metabolic phenotype data between albumin and apoB-
containing lipoprotein measures (range for correlations of −0.03 to 0.5; mean = 0.31; median
= 0.37). Rare variants in the albumin gene have previously been associated with
analbuminemia, hypercholesterolemia and hyperlipidemia22–24; however, to our knowledge,
this is the first report of a common genetic variant at ALB being associated with any
lipoprotein or lipid measure or albumin levels.

The cholesterol ester content of extra large HDL (XL-HDL-CE) particles was associated (P
= 1.2 × 10−10) with a single SNP (1-159807481; rs67418890). In a subset of the samples (n
= 585) with leukocyte expression data and genome-wide genotype data available, we
identified a cis expression quantitative trait locus (eQTL) for this SNP in the FCGR2A and
FCGR2B genes that encode the α and β subunits of the Fc fragment of the IgG low-affinity
II receptor, respectively (linear regression P = 3.9 × 10−10 and 1.3 × 10−20, respectively;
Online Methods and Supplementary Table 8). There were several SNPs that acted as eQTLs
in the FCGR2B locus, including our lead SNP (rs67418890). All of the best associated SNPs
with eQTL activity are in tight correlation with each other (r > 0.87), suggesting that they
represent the same possibly functional variant in this shared haplotype. FCGR2A and
FCGR2B encode the components of the CD32 cell surface receptor, an IgG-mediated B-cell
coreceptor that represses antibody production in the presence of IgG; however, CD32 also
has a role in cardiovascular disease, with FCGR2B having been shown to modify the size of
atherosclerotic plaques in mice25,26. Our findings suggest a role for CD32 in the cholesterol
balance in peripheral tissue and potentially in reverse cholesterol transport.

A class I major histocompatibility (MHC) locus HLA-A also harbored metabolite signals,
with the top SNP, rs6917603, being strongly associated with the concentration of
chylomicrons and extremely large VLDL particles (XXL-VLDL-P) (P = 2.8 × 10−29). The
associated variant is upstream of PPP1R11, an inhibitor of PP1, a highly conserved serine/
threonine phosphatase with a central role in glycogen metabolism and blood glucose
levels27. The association of rs6917603 with VLDL was also independent of the two other
SNPs in the human leukocyte antigen (HLA) locus that have been shown to be associated
with triglycerides, total cholesterol and LDL cholesterol5.

A SNP at 11q13.2 was found to be associated with the LA/PUFA ratio (rs17610395; P = 7.6
× 10−12). The associated SNP is within 6 Mb of the FADS gene cluster (encoding fatty acid
desaturase), a known lipoprotein locus, and it is likely to be independent of the previously
identified SNP in FADS (rs174547). In our study, the association remained significant after
conditioning on the earlier marker (P = 7.6 × 10−12) (Supplementary Note)9,28,29.
rs17610395 is a nonsynonymous SNP (encoding a p.Ala275Thr amino acid change) located
in CPT1A, a gene encoding carnitine palmitoyltransferase IA, a liver-expressed enzyme
involved in long-chain fatty acid oxidation30. Rare mutations in CPT1A cause CPT IA
deficiency in an autosomal recessive metabolic disorder of long-chain fatty acid oxidation
(MIM 255120).

Fourteen loci that were reported in previous GWAS to be associated with lipid measures
were also associated with NMR-based lipid measures in this study. FADS1 was originally
associated with a range of glycero-phosphatidylcholines10. The authors in the previous study
also found that a SNP in FADS1 was associated with several lipid and phosphatidylcholine
measures, whereas we showed association with measures of fatty acid saturation and with
omega-3 fatty acids and several omega-3 fatty acid ratios. PDXDC1 (encoding pyridoxal-
dependent decarboxylase domain–containing protein 1) was recently shown to associate
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with the ratio of eicosatrienoylglycerophospholipids8, indicating a role for it in the
metabolism of 20:2 and 20:3 fatty acids. In our study, the same locus was associated with
the LA/PUFA ratio, with linoleic acid being one of the metabolites involved in eicosanoid
synthesis. Four loci previously reported to be associated with serum triglycerides
(ANGPTL3, MLXIPL, LPL and PLTP)31,32 were associated with VLDL measures in our
study. The PLTP locus was also associated with a large number of HDL measures. Four loci
have previously been associated with total LDL cholesterol (LDL-C) (PCSK9, the APOA1
region, LDLR and the APOE region)31,33. In our study, the APOA1 region showed
association with a large number of VLDL and triglyceride measures, whereas the other three
loci showed association with LDL and cholesterol measures. Finally, associations to four
loci previously determined to be involved in total HDL cholesterol (HDL-C) levels
(ABCA1, LIPC, CETP and LIPG) are replicated in our data31,32.

Proportion of variance explained
For each phenotype, we estimated the proportion of variance explained by the 33
significantly associated SNPs in an independent sample of 436 individuals from the Finnish
twin cohort (Supplementary Table 3). For the direct metabolite measures, the proportion of
variance explained by the SNPs ranged between 0.2–9.1% for HDL subclasses, 5.0–8.0%
for LDL subclasses, 0.5–8.2% for VLDL subclasses, 4.8–9.5% for intermediate-density
lipoprotein (IDL) subclasses and up to 7.6% for the other lipids and molecules. When
comparing the proportion of variance explained in the lipoprotein subclasses and the
composite measures for the corresponding lipids, associated SNPs explained much more of
the variance for the larger size lipoprotein subclasses than for the corresponding composite
measures (Fig. 1 and Supplementary Table 3).

For derived measures, the SNPs explained up to 25% (18–32%, 95% confidence interval
(CI)) of the total variance in the LA/ PUFA ratio, corresponding to 40% of the heritability.
This particularly high proportion of explained variance is driven by the association in the
FADS1-FADS2-FADS3 locus, where each risk allele was accompanied by an increase of
0.57 s.d. in the fatty acid ratio in a common variant (coded allele frequency (CAF) = 42%).
This strong association shows that a few variants in specific metabolite measures can
explain a high proportion of variation, as has been shown previously for the FADS gene
cluster9,10.

DISCUSSION
In this study, we report the heritability of metabolite measures assayed by NMR and identify
11 new genetic associations for these measures through genome-wide analysis of five
population-based cohorts comprising >8,000 individuals. We further show that, compared to
the associations typically observed for complex traits in comparably sized samples, the
associations identified in this study explain a greater proportion of trait variance.

The results support several conclusions. First, almost 40% of the metabolites assayed in this
study showed an estimated heritability of >0.6, a figure higher on average than that typically
reported for clinically used measures (heritability estimates of plasma lipids have been
reported to range from 0.39 to 0.62 for total cholesterol (TC), 0.39 to 0.83 for HDL-C, 0.24
to 0.50 for LDL-C, 0.20 to 0.55 for triglycerides and 0.07 to 0.28 for fasting plasma
glucose)34,35. This observation supports the hypothesis that the more detailed metabolite
measures obtained by NMR are more reflective of underlying biology than are the
composite measures used in clinical practice. This idea is in line with the heritability
estimates of composite measures being similar between enzymatic- and NMR-based
measures of HDL-C and LDL-C. For triglycerides, the higher heritability estimate for NMR-
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based measures may reflect its smaller variance compared to enzymatic triglyceride
measures. Smaller variance for the NMR-based measure has also been shown previously28.

Second, we have identified newly associated loci that may help to characterize the
biochemical pathways by which serum amino acids influence risk for T2D. Five newly
identified loci were associated with metabolic measures of tyrosine, phenylalanine and
valine, three of the five amino acids recently shown to be associated with the risk for
developing T2D6.

Third, by employing NMR-based metabolite measures for GWAS, we were able to identify
new loci associated with lipid metabolism using a much smaller sample size than has been
required to identify most such loci for composite lipid traits. There are several potential
explanations for why these signals have not previously been detected by large GWAS
consortia. For example, the loci containing FCGR2B and PPP1R11 showed association
patterns in the lipoprotein spectrum that likely confounded composite measures, and the
CPT1A locus was associated with a specific metabolic measure (the LA/PUFA ratio) that is
not usually considered in the analyses of lipid phenotypes. These observations suggest that
further enhancing the range of measures of lipid metabolism used in genetic association
analyses will likely provide a more complete picture of the loci modifying lipids and
lipoproteins.

The results reported here represent only the first step in the genetic dissection of high-
resolution metabolic phenotypes. The metabolome contains many more types of molecules
and particles than those measured in the 216 phenotypes assessed here. The phenotypes
assessed here were assayed in a high-throughput and cost-effective manner in order to attain
the large sample numbers required for genome-wide association analyses. Measurements
using mass spectrometry methods broaden the range of metabolites beyond those
identifiable using NMR methods, and both approaches are required to obtain a more
comprehensive view of the metabolome9. NMR, which is less expensive and more
automatable than mass spectrometry, is therefore more suitable for large-scale genetic
investigations. It can also extract information from a range of lipoprotein particles not
assayable using mass spectrometry. On the other hand, mass spectrometry provides
analytical opportunities that are outside the reach of NMR spectroscopy. Mass spectrometry
is several fold more sensitive and can be used as a discovery tool to identify new compounds
as well as assay a wider spectrum of known molecules.

The use in this study of the most comprehensive available imputation panel increased the
opportunities for identifying new loci, as evidenced by the fact that 4 of the 11 newly
associated loci reported here would not have been detected with the commonly used
HapMap 2 panel. On the other hand, imputation on this scale can also enhance the chances
of identifying false positive loci. For this reason, we applied particularly stringent quality
control filters to prevent false positives caused by imputation errors. For example, we
restricted our search to only variants that had a minor allele frequency (MAF) of >0.01,
good imputation quality and similar effect sizes in all cohorts. Although 9 of the 11 newly
identified loci showed the strongest association with an imputed marker, all but two loci also
showed association to directly genotyped SNPs in three or more cohorts. The two remaining
loci showed high accuracy of imputation in sequencing undertaken to validate the imputed
genotypes. Thus, we used highly conservative procedures to diminish the risk of false
positive associations, and these strict filters may have abolished some true positive signals.

In conclusion, the study highlights the value of enhancing the specificity of metabolic
phenotyping for genetic association analyses. The availability of 216 metabolite measures
by NMR provides a substantial enhancement over the measures obtained by classical
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clinical chemistry methods that are typically available in large population cohorts. Using
these phenotypes with the higher-resolution genetic analysis now possible using the 1000
Genomes Project variant catalog, we identified several new loci associated with serum
metabolites, some of which may be important in risk for T2D.

URLs
1000 Genomes Project imputation reference panel, http://mathgen.stats.ox.ac.uk/impute/
data_download_1000G_pilot_plus_hapmap3.html.

ONLINE METHODS
We performed a GWAS for metabolites and metabolite ratios in five cohorts from Finland
totaling 8,330 individuals (cohorts are described in Table 1 and the Supplementary Note).
Written informed consent was obtained from all participants. Studies were approved by the
following ethical committees: Ethical Committee of Oulu University Faculty of Medicine
for NFBC 1966, Ethics Committee of the National Public Health Institute for Health2000
and HBCS, Helsinki University Hospital Coordinating Ethical Committee for DILGOM and
Twins and Ethics Committee of the Hospital District of Southwest Finland for YF. The
genomic positions indicated throughout this study are based on NCBI human genome build
36. Some of the markers from the 1000 Genomes imputation reference set highlighted in this
manuscript have since been assigned rs numbers (1-55889093, rs72669744; 1-159807481,
rs67418890; 4-73541429, rs115136538; 8-19956650, rs115849089; and 17-7083575,
rs117616209).

Genotyping and imputation
All cohorts were genotyped using commercially available Illumina genotyping arrays.
NFBC1966 was genotyped using the HumanHap CNV 370k array. DILGOM and GenMets
were genotyped with the Illumina HumanHap 610k array. YF and HBCS were genotyped
using a custom-generated HumanHap 670k array that largely overlapped with the
HumanHap 610k array but had additional copy-number probes. Quality control analysis was
performed independently for each study before imputation. Poor quality markers (for which
genotyping failed in >5% of samples) and poor quality DNA samples (for which genotyping
failed at >5% of markers) were removed from further analysis. In addition, individuals with
excessive genome-wide heterozygosity (indicating sample contamination) or gender
discrepancies as well, as closely related individuals, were removed from the data. Imputation
was performed on the cleaned data using IMPUTE36. Imputation included a 1000 Genomes
imputation reference and a HapMap 3 imputation reference, which included an additional
Finnish imputation reference in HapMap 3 depth. The reference used included HapMap3
and 1000 Genomes in NCBI build 36, where the HapMap 3 files were from release 2
(February 2009) and the 1000 Genomes files were from the low-coverage pilot genotypes
released in March 2010 (see URLs). The benefit of the additional Finnish reference set has
previously been discussed in detail14. The regional plots of the associated loci and
genotyping status or imputation reference are presented (Supplementary Fig. 1). The SNPs
reported in Tables 2 and 3, other than those directly genotyped, have imputation quality of
>0.7. The quantile-quantile plots for phenotypes that show the strongest association with
newly identified loci are presented (Supplementary Fig. 2), as are the box plots of the
associations (Supplementary Fig. 3).

To assess the accuracy of imputation, we compared imputed genotypes for 316 markers
showing genome-wide significance with directly genotyped Cardiometabochip SNPs
available for the DILGOM study sample (Supplementary Fig. 4). The concordance between
genotyped SNPs on the Cardiometabochip and imputed genotypes in DILGOM was high
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(94% of the SNPs had r2 > 0.8), indicating imputation was accurate for the reported SNPs.
Imputation accuracy was also relatively similar across the whole region of MAFs ranging
from 1% to 50% (Supplementary Fig. 4).

We tested the effect of using the comprehensive imputation reference panel described above
by analyzing the same 31 loci reported in this study using the HapMap 2 release 22 Utah
residents of Northern and Western European ancestry (CEU) imputation reference panel
with the lead trait for each locus reported in Tables 2 and 3. Individual cohorts were imputed
with the HapMap 2 reference panel using MACH37 and analyzed using ProbABEL38, and
the results from individual cohorts were combined with an inverse variance meta-analysis
using GWAMA39.

Serum metabolomics
All cohorts were analyzed using the same high-throughput serum NMR metabolomics
platform in the same analysis laboratory as described previously40. This methodology
provided information on 117 serum measures, including lipoprotein subclass distribution
and lipoprotein particle concentration, low molecular weight metabolites, such as amino
acids, 3-hydroxybutyrate and creatinine, and detailed molecular information on serum lipids,
including free and esterified cholesterol, sphingomyelin and fatty acid saturation. Further
details for the NMR spectroscopy and data analyses are provided in the Supplementary
Note.

Genome-wide association analyses and meta-analysis
Data from individuals using lipid-lowering medication or pregnant individuals were
removed before analysis. In all of the studies, metabolomic phenotypes were measured from
fasting serum samples. Within each study, residual metabolomic concentrations or residuals
of ratios were determined after regression adjustment using R software41. The selected ratios
of metabolites were calculated by taking a ratio of particular metabolite measures. Outliers
(≥4 s.d. from the mean) were removed from resulting ratio values before covariate
adjustment, as the calculation is sensitive to very strong outliers, and strong outliers hamper
the covariate correction. To calculate residuals for all metabolites and ratios, each study
included as covariates age (except in NFBC66, where all individuals were examined at the
age of 31 years), the first ten principal components from genetic data to correct for possible
population stratification and sex. Residuals were normalized to have a mean of 0 and s.d. of
1 using inverse normal transformation. The resulting normal distributions of all 216
phenotypes were correlated against genotypes, assuming an additive genetic model using the
SNPTEST program36. To combine the effect estimates from five distinct studies, we
conducted a fixed-effects inverse variance meta-analysis using META36 for each phenotype.
Only good-quality SNPs were included in further evaluations on the basis of the following
criteria: imputation informativeness was >0.4, there was no heterogeneity in the effect sizes
for the SNP between cohorts (Cochran’s Q statistic P value < 1 × 10−5), and the SNP had to
have a result in all five cohorts. For SNPs successfully analyzed in each cohort, the number
excluded as a result of heterogeneity in effect size ranged between 28 and 720 for different
traits. The genome-wide inflation factors were calculated from each meta-analysis
(Supplementary Table 4). All meta-analysis test statistics were corrected by using a genomic
inflation factor for each trait. A stringent genome-wide significance level of 2.31 × 10−10

was set to correct for multiple testing of the 216 phenotypes.

P-gain values were calculated for the ratios by taking the minimum of the two P values for
the individual metabolite associations divided by the P value of the ratio between both. If the
P-gain value was >1, then the ratio had better power for the association than did either of the
direct metabolite measures. For all ratios for which an association was presented or

Kettunen et al. Page 10

Nat Genet. Author manuscript; available in PMC 2013 March 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



discussed in the manuscript, the P-gain value was >1. P-gain values are presented in
Supplementary Table 7.

Cis EQTL analysis
We had whole-blood expression data available in the DILGOM cohort for 585 individuals.
The expression data have been described previously42. In brief, to obtain stabilized total
RNA in study III, the PAXgene Blood RNA System (PreAnalytiX) was used. Biotinylated
cDNA (750 ng) was hybridized to Illumina HumanHT-12 Expression BeadChips according
to the manufacturer’s protocol. The correlation of SNPs, which had significant association
with metabolites, was tested for correlation with expression. All expression probes within 1
Mb of the SNP were tested for correlation with the SNP allele dosage using Spearman rank
correlation in R. All eQTL associations reaching a genome-wide level of significance (P < 9
× 10−7) with a 1% genome-wide false discovery rate43 are presented (Supplementary Table
8).

Heritability estimates
Briefly, we used 561 twin pairs (221 monozygotic pairs and 340 dizygotic pairs, aged 22–
25) from the Finnish population to estimate intrapair metabolite correlation for monozygotic
and dizygotic pairs. For each phenotype, models estimating the hypothetical combinations of
the different genetic and environmental sources of influence (including, additive genetic
influences (A), shared environmental influences (C), dominance genetic influences (D) and
unique environmental influences (E)) were built and tested against a saturated model, where
no inference on the underlying architecture of the phenotype was assumed. The estimation
of heritability is presented in detail in the Supplementary Note, as is the comparison between
clinical and NMR-based lipid measures.

Proportion of variance explained
A subset of the twin cohort used for the heritability estimates also had genome-wide SNP
data available. The genotyping was performed using Illumina HumanHap 670k custom
arrays, and genotypes were clustered using the Illuminus algorithm44. The part of the twin
cohort that was used for heritability estimation was stratified for alcohol drinking. To match
the population-level alcohol consumption distribution, we randomly chose one member of
the twin pair from this subset of twins. This resulted in a random population sample of 436
individuals with both metabolite data and genotypes. We assessed the proportion of variance
explained in this independent population sample of 436 individuals by the 33 SNPs (31 from
the GWAS and 2 from fine mapping) by creating a genetic risk score for each trait for which
the significant SNP associated with a nominal genome-wide level of significance (P < 5 ×
10−8).

Clinical lipid measures in population samples
The enzymatic lipoprotein measures were analyzed in the same study sample as the
metabolomic phenotypes, but additional individuals (n = 2,247) were also available, who
were not part of the metabolomic studies. The results from all these individuals were used to
test for the association of the ALB locus with enzymatic lipoprotein measures. The sample
cohorts were the same as those used in this study. Data from individuals who were pregnant
or using lipid-lowering medication were removed before analysis, and lipid measures were
adjusted for age, sex and the ten first principal components and transformed using inverse
normal transformation. Enzymatic lipoprotein measures have been described in an earlier
study5.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The heritability estimates and proportion of variance explained for all traits. Heritability
estimates are presented for lipids, small molecules, ratios used in this study and lipoproteins.
Labels in the lipoprotein subclasses describe the properties measured in each subfraction (P,
concentration of particles; L, total lipids; PL, phospholipids; C, total cholesterol; CE,
cholesterol esters; FC, free cholesterol; TG, triglycerides). Abbreviations are explained in
detail in Supplementary Table 1.
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Figure 2.
Overall summary of basic metabolism, key constituents of the NMR-measurable serum
metabolome and associated genetic loci. The green shapes represent various dietary
ingredients and systemic metabolic measures reflecting human body functions. A key
selection of metabolites quantified in each metabolic category is given. Red rectangles
represent the newly identified genetic loci found in this work, and blue rectangles indicate
loci that were previously identified. The genes are categorized by the lead trait associations
given in Tables 2 and 3. In particular, ALB and FCGR2B were associated with serum
cholesterol, PPP1R11 with very high VLDL measures, CPT1A with the LA/PUFA ratio,
SLC25A1 with citrate, F12 with phenylalanine, TAT with tyrosine, DHDPSL with
glutamine, SLC1A4 with valine and PPM1K and SLC2A4 with Fischer’s ratio.
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