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Introduction

Diabetes mellitus is a severe chronic disease characterized by 
hyperglycemia and risk of late diabetic complications includ-
ing neuropathy, blindness and accelerated macroangiopa-
thy. Both major forms of diabetes mellitus, type 1 and type 
2 diabetes, are caused by absolute or relative failure, respec-
tively, of the insulin-producing pancreatic β-cells to meet 
insulin demands. Pro-inflammatory cytokines such as IL-1β 
and IFNγ are believed to contribute to β-cell malfunction 
and apoptosis in type 1 diabetes mellitus, and there is clini-
cal proof of evidence that IL-1β mediates progressive β-cell 
failure in type 2 diabetes.1-5 IL-1β and IFNγ in synergy drive  
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the expression of inflammatory genes via NFκB, MAPK and 
STAT1 signaling pathways.1,2

The IFN-inducible chemokine CXCL10 is produced by 
β-cells in recent onset type 1 diabetics,6-9 and also in type 2 dia-
betic patients.10 CXCR3, the receptor for CXCL10, is expressed 
on Th1 cells infiltrating CXCL10 expressing islets of type 1 
diabetics,8 mediating the migration of Th1 cell to the β-cells. 
Serum levels of CXCL10 in NOD mice correlate with the level of 
CXCR3 mRNA in pancreatic lymph nodes.11 However, CXCL10 
may contribute to the pathogenesis of diabetes in an auto- and 
paracrine manner by suppressing β-cell function, viability and 
proliferation via CXCR3 or Toll-like receptor (TLR) 4 signaling 
pathways shared with IL-1.9,10,12 In support of this notion, DNA 



©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

418 Islets Volume 4 Issue 6

24 h, IL-1+IFNγ in combination with givinostat slightly but sig-
nificantly reduced H4 acetylation compared with control.

Lysine deacetylase inhibition reduces IL-1β-induced Il1b 
expression and IL-1β processing. We next exposed INS-1 cells 
to IL-1β alone for 1, 3 or 6 h, in the absence or presence of givi-
nostat. As seen in Figure 2A, givinostat significantly reduced 
IL-1β-induced transcription of Il1b in a time-dependent manner, 
indicating that KDACs regulate IL-1β-induced Il1b transcrip-
tion. To confirm the biological significance in primary cells of 
this finding, we also exposed rat islets to IL-1β in the presence 
or absence of givinostat, and observed a significant reduction in 
IL-1β induced Il1b mRNA by givinostat (Fig. 2B). IL-1α and 
IL-1β bind and signal through the same receptor although with 
different potencies.18 Therefore, to examine if givinostat reduced 
IL-1β processing we exposed INS-1 to IFNγ and IL-1α followed 
by exposure to ATP to activate the inflammasome for 15 min 
in the presence or absence of givinostat. Givinostat significantly 
reduced IL-1β processing compared with control determined 
as the amount of mature 17.4 kDa IL-1β protein normalized to 
actin in INS-1 cell lysates (Fig. 2C).

We next exposed INS-1 cells to IFNγ alone or CXCL10  
(0.1 ng/mL) alone for 1, 3 or 6 h in the absence or presence of 
givinostat to examine if these inflammatory molecules individu-
ally could induce Il1b transcription and if so, whether KDACs 
mediate such a regulation. Il1b was undetectable after IFNγ 
or CXCL10 exposure, indicating that the role of IFNγ and 
CXCL10 in β-cell decay is unrelated to β-cell Il1b expression 
(data not shown).

Lysine deacetylase inhibition differentially regulates IL-1β- 
or IFNγ-induced Cxcl10 mRNA in INS-1 and rat islets. Finally, 
we wished to investigate the regulation of Cxcl10 by IFNγ or 
IL-1β alone and the possible effect of givinostat thereupon. In 
INS-1 cells IL-1β or IFNγ individually induced Cxcl10 tran-
scription in a dose-dependent manner within 6 h (Fig. 3A and 
B), and givinostat significantly inhibited Cxcl10 induction by 
IL-1β or IFNγ (Fig. 3A and B). However, when we exposed rat 
islets to these cytokines, givinostat did not significantly inhibit 
Cxcl10 induction (Fig. 3C and D).

Discussion

Here we show that KDACs regulate cytokine-induced β-cell 
transcription of Il1b and Cxcl10, and that neither IFNγ nor 
CXCL10 induce Il1b mRNA transcription. We find that KDACs 
regulate Il1b transcription in the β-cell line INS-1 and in isolated 
rat islets of Langerhans and IL-1β processing in INS-1 cells.

While givinostat as expected induced acetylation of histone 
H4 in INS-1 cells, the acetylation levels were unaffected by 
cytokines. Thus, induction of IL-1β and CXCL10 mRNA by 
IL-1β and IFNγ exposure as well as the inhibitory effects by 
givinostat are not likely to be explained by effects on histone 
acetylation. Since we have recently shown that knockdown of 
HDAC3 reduces NFκB transcriptional activity by reducing p65 
DNA binding in β-cells,17 this could explain the KDACi medi-
ated reduction in cytokine induced IL-1β mRNA expression in 
β-cells. A similar mechanism of action may explain the inhibitory 

vaccination-induced CXCL10 antibody production prevented 
diabetes in NOD mice without altering islet inflammation.13

Lysine deacetylases (KDACs) are a family of enzymes that, 
together with lysine acetyltransferases, determine the acetyla-
tion balance of histones, transcription factors and many cyto-
solic, mitochondrial and nuclear proteins14 and thereby regulate 
not only gene transcription but also many other cellular pro-
cesses. We have recently shown that all 11 classical KDACs are 
expressed and regulated by cytokines in β-cells.15 KDAC inhibi-
tors (KDACi) prevent cytokine-induced β-cell dysfunction and 
destruction and cytokine production by inflammatory cells, pre-
dominantly by reducing the transcriptional activity of NFκB.16,17 
Thus, knock down of HDAC1 and 2 significantly inhibits tran-
scription of the directly β cell-toxic inflammatory molecule IL-1β 
induced by IL-1β and IFNγ in synergy,17 but it is unknown if 
KDAC inhibition differentially prevents β-cell transcription of 
IL-1 induced by single cytokines or processing of IL-1, thereby 
selectively breaking individual autoinflammatory circuits.

Results

Givinostat induces hyperacetylation of histone H4. We first 
investigated the hyperacetylating activity of givinostat on his-
tone H4 in INS-1 cells (Fig. 1). Givinostat in a concentration of 
125 nM, shown earlier to reduce IL-1+IFNγ-induced INS-1-cell 
NO production and apoptosis, robustly hyperacetylated histone 
H4 after 1–6 h. IL-1+IFNγ did not affect H4 acetylation. After  

Figure 1. Givinostat induces hyperacetylation of histone 4. 5 × 105 INS-1 
cells were cultured for 1, 3, 6, 12 and 24 h in the presence or absence of 
IL-1β (150 pg/ml) + IFNγ (5 ng/ml). Givinostat (Giv) was added (125 nM)  
1 h prior to cytokine exposure or as a control without cytokine expo-
sure. Cells were lysed and total protein was isolated and subjected to 
SDS-PAGE and western blot analysis with anti-H4 specific antibody and 
normalized to β-actin. Data from four independent experiments are 
presented as fold change compared with controls. Results are shown as 
means +SEM *p < 0.05, **p < 0.01 and ***p < 0.001 vs. control (ANOVA 
with Tukey’s correction for multiple comparisons).
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in the INS-1 cell. Considering the synergistic effects of the com-
bination of these cytokines in the β-cell, this finding illustrates 
that the protective effects of KDAC inhibition is independent on 
converging IL-1 and IFNγ signaling.

We show here that CXCL10 mediated β-cell toxicity is not 
conveyed through induction of Il1b. Other groups have shown 

effect of givinostat on IL-1β processing, since the expression of 
the NLPR3 inflammasome is also controlled by NFκB.19

Previous studies of the protective roles of KDAC inhibition 
in vitro and in vivo have been conducted using a combination 
of IL-1 and IFN.16,17 Here we show that inhibition of KDACs 
affects the signaling of the cytokines IL-1 and IFNγ individually 

Figure 2. Il1b mRNA is induced by IL-1β exposure and abrogated by givinostat in INS-1 cells and rat islets, and IL-1β processing is inhibited by givino-
stat in INS-1 cells. (A) Il1b mRNA expression. INS-1 cells (2.5 × 106 per well) were preincubated with 125 nM givinostat for 1 h and then exposed to  
150 pg/mL or 2 ng/mL IL-1β. Total RNA was isolated and cDNA generated by reverse transcription, followed by real time PCR quantification. Il1b expres-
sion was normalized to Hprt1. Data are presented as relative expression. n = 6, means +SEM. Kruskal-Wallis ANOVA on ranks followed by Student-
Newman-Keuls multiple comparison test. Significance levels: **p < 0.01 (cytokines vs. control); ##p < 0.01 (cytokines vs. cytokines + givinostat). (B) 
Il1b mRNA expression. Rat islets (150 per well) were preincubated with 500 nM givinostat for 1 h and then exposed to 2 ng/mL IL-1β for 3 h. Total RNA 
was isolated and cDNA generated by reverse transcription, followed by real time PCR quantification. Il1b expression was normalized to Hprt1. Data are 
presented as relative expression. n = 6, means +SEM. Kruskal-Wallis ANOVA on ranks followed by Student-Newman-Keuls multiple comparison test **p 
< 0.01 (cytokines vs. control), #p < 0.05 (cytokines vs. cytokines + givinostat). (C) IL-1β processing. INS-1 cells (2.5 × 106 per well) were preincubated with 
or without 125 nM givinostat for 1 h before exposure to 1500 pg/mL IL-1α + 0.1 ng/mL IFNγ for 6 h and exposed to 1 mM ATP for 15 min. Mature 17.4 
kDa IL-1β protein was quantified, normalized to β-actin. n = 4, means + SEM. Student’s two-way t-test. #p < 0.05 (cytokines vs. cytokines + givinostat).
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mRNA production in rat islets as compared with INS-1 cells, 
while KDAC inhibition is known to protect β-cells against 
cytokine mediated demise, further strengthens this conclusion.

KDAC inhibition significantly reduced Cxcl10 induced by 
INS-1 cell exposure to IFNγ or IL-1β, consistent with the role 

that TLR4 signaling is dispensable for CXCL10 actions in 
β-cells,20 which may then signal via CXCR3. From this evi-
dence we propose that Il1b expression is dispensable for the 
β-cell proapoptotic action of CXCL10. The fact that KDAC 
inhibition had no significant effect on cytokine induced Cxcl10 

Figure 3. IFNγ and IL-1β both induce Cxcl10 mRNA in INS-1 cells and rat islets, and KDAC inhibition decreases Cxcl10 mRNA production in INS-1 cells. 
(A) INS-1 cells (2.5 × 106 per well) were preincubated with 125 nM givinostat or vehicle for 1 h and then exposed to 150 pg/mL or 2 ng/mL IL-1 β for  
1–6 h, (B) INS-1 cells (2.5 × 106 /mL per well) were preincubated with 125 nM givinostat or vehicle for 1 h and then exposed to 0.1 ng/mL or 1.33 ng/mL  
IFNγ for 1–6 h, (C) Rat islets (150 per well) were preincubated with 500 nM givinostat for 1 h and then exposed to 2 ng/mL IL-1β for 3 h (D) Rat islets 
(150 per well) were preincubated with 500 nM givinostat for 1 h and then exposed to 1.33 ng/mL IFNγ for 3 h. Total RNA was isolated and cDNA 
generated by reverse transcription, followed by real time PCR quantification using the 2-ΔΔct method. n = 6, means +SEM. ANOVA with Tukey’s post hoc 
correction (A and B) Kruskal-Wallis ANOVA on ranks followed by Student-Newman-Keuls multiple comparison test (C and D). Significance levels: *p < 
0.05; **p < 0.01; ***p < 0.001 (cytokines vs. control); #p < 0.05; ##p < 0.01; ###p < 0.001 (cytokines vs. cytokines + givinostat).
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rrIFNγ or rmCXCL10 in concentrations and for the time peri-
ods indicated in the figure legends. Total RNA was harvested 
and extracted using the Nucleo-Spin kit (Macheray-Nagel, 
740933.250) according to the manufacturer’s instructions. 
Quality and quantity of the extracted RNA was assessed using 
a NanoDrop 1000 (Thermo Scientific, ND-1000). RNA was 
converted to cDNA with the iScript™ cDNA Synthesis Kit 
(BioRad, 170-8891). Real-time qPCR was performed using 
TaqMan Master Mix (Applied Biosystems, 4369016) TaqMan 
probes (Il1b: Rn99999009_m1; Cxcl10: Rn00594648_m1; 
Hprt1: Rn1428093_m1; iNos: Rn00561646_m1, all from 
Applied Biosystems) on an Applied Biosystems 7900HT Real-
Time PCR System (Applied Biosystems, 7900HT) and data ana-
lyzed using SDS 2.3 (Applied Biosystems). PCR products were 
quantified using the 2-ΔΔct method27 compared with the house-
keeping gene hypoxanthine-guanine phosphoribosyltransferase 
(Hprt1), which we have previously validated to be unaffected by 
the experimental conditions in our system.15 A standard dilution 
curve was used as control for amplification efficiency; when effi-
ciency failed to reach 90% or exceeded 110% experiments were 
discarded. Expression relative to a standard curve, was reported 
when mRNA expression in control conditions was below detec-
tion threshold, as the 2-ΔΔct-method is invalid for quantification 
when there is no expression of the gene of interest in the control 
condition.

Immunoblotting. Histone acetylation: 5 × 105 INS-1 cells 
were seeded in 12-well plates in complete medium. Mouse IL-1β 
and rat IFNγ were added for the indicated time periods. Cells 
were lysed, protein content measured by the Bradford method, 
and lysates adjusted for protein concentration and prepared for 
gel electrophoresis as previously described.28 A minimum of 
8 μg protein was loaded and separated by gel electrophoresis. 
Fluorescence based Q-Dot technology (Invitrogen) was used 
for detection of anti-acetylated histone H4 antibody (Millipore, 
06-866). Light emission was captured digitally with the 
Flourchem Q BioImager System (Kem-En-Tec). Q-dot 605 and 
705 were detected using 605 ± 30 nm and 705 ± 30 nm band 
width filters (Kem-En-Tec).

IL-1β processing: 2.5 × 106/mL cells per condition were 
seeded in 6 cm Petri dishes (Nunc) 48 h prior to experiments 
and precultured for 1 h with/without givinostat and exposed 
to IL-1β and IFNγ or vehicle for 6 h, washed and exposed to 
Na

2
ATP (Sigma-Aldrich, A3377) for the time periods indi-

cated before cells were lysed. A minimum of 15 μg of protein 
was loaded. Primary antibodies were from eBioscience against 
IL-1β (16-7012) and Santa Cruz against β-actin (sc-5274). 
Only mature 17.4 kDa IL-1β was quantified and normalized to 
actin. Secondary antibodies: biotin goat anti-Armenian ham-
ster was from Abcam (ab5744) and biotin-XX goat anti-mouse 
was from Invitrogen (B-2763).

Statistical analysis. Comparisons between groups were by 
ANOVA followed by paired two-way t-test with Tukey’s cor-
rection using SAS® 9.1.3 for normally distributed data, and 
by Kruskal-Wallis ANOVA on ranks followed by Student-
Newman-Keuls multiple comparison test for non-normally 
distributed data using SigmaPlot 11.0® (Systat Software). 

of KDACs in Cxcl10 transcription upon IFNγ exposure in HeLa 
cells.21 Interestingly, while TLR4 activation leads to induction of 
expression of inflammatory cytokines through MyD88 recruit-
ment, a MyD88-independent pathway also exists that signals 
through IRF3, and STAT1 activation induces a subset of TLR4 
dependent genes, among which is Cxcl10.22 Indeed, the KDAC 
inhibitor SAHA inhibits LPS induced STAT1 phosphorylation 
and Cxcl10 expression in graft-vs.-host disease.23 Acetylated 
STAT1 acts as a suppressor of NFκB subunit p65 activity,24 
enabling a shift from the default synergistic action of NFκB 
and JAK/STAT signaling in the β-cell to an inhibitory cross-
talk between these signaling pathways. This would provide an 
explanation for the inhibitory effect of KDACi on NFκB activity. 
Similarly, activating phosphorylation of STAT1 as well as nuclear 
translocation of STAT1 after IFNα stimulation are inhibited by 
STAT1 acetylation.25

Thus, it is possible that KDAC regulation of Cxcl10 in INS-1 
cells can be attributed to non-MyD88 dependent TLR4 signal-
ing, but this remains to be shown.

In conclusion, although Cxcl10 was upregulated by IL-1β or 
IFNγ in INS-1 cells, neither IFNγ nor CXCL10 induced Il1b 
production alone. We thus suggest that the deleterious effects of 
CXCL10 on β-cells are not secondary to IL-1β production. We 
found that KDACi inhibited cytokine induced β-cell transcrip-
tion and processing of IL-1β. The protective effects of KDACi 
on β-cell dysfunction and loss in vivo and in vitro may thus be 
due to inhibition of a deleterious feed forward loop of cytokine 
production. Our findings further strengthen the rationale for 
considering trials of KDAC inhibitors in T1 and T2DM.

Materials and Methods

Cytokines and KDACi. Recombinant rat (rr) interferon (IFN) 
γ was from R&D Systems (#585-IF), recombinant mouse (rm) 
IL-1β from BD PharMingen (554577), rmIL-1α was from 
Abcam (ab9725) rmCXCL10 from R&D Systems (266IP/CF)  
and the KDAC inhibitor givinostat (ITF2357) a gift from 
Italfarmaco.

Cells. INS-1 cells were a gift from C. Wollheim, Department 
of Cell Physiology and Metabolism, University Medical Center, 
Geneva, Switzerland. Cells were maintained in RPMI 1640 
medium with glutamax (GIBCO, 153732), supplemented with 
10% (heat-inactivated) fetal calf serum (GIBCO, 26140-079), 100 
U/mL penicillin, 100 μg/mL streptomycin (GIBCO, 15140-122)  
and 50 μM β-mercaptoethanol (Sigma, M7522) and cultured 
at 37°C in a humidified atmosphere containing 5% CO

2
. Once 

weekly, cells were passaged and precultured for 2 d before  
experiments. Experiments were initiated with change of medium 
and addition of givinostat or vehicle 1 h prior to cytokine 
exposure.

RT qPCR. INS-1 cells (2.5 × 106 per condition) were seeded 
in 6-cm Petri dishes 48 h prior to experiments and precultured 
for 1 h in the presence or absence of givinostat. Primary neo-
natal rat islets were isolated from 3- to 6-d-old outbred Wistar 
Rats (Taconic) as previously described26 and cultured as pre-
viously reported.15 Cells and islets were exposed to rmIL-1β, 
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