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SUMMARY

Leishmania donovani causes visceral leishmaniasis
(VL) where the parasite infects and resides inside
liver and spleen tissue macrophages. Given the
abnormal lipid profile observed in VL patients, we
examined the status of serum lipids in an experi-
mental murine model of VL. The murine VL liver dis-
played altered expression of lipid metabolic genes,
many of which are direct or indirect targets of the
liver-specific microRNA-122. Concomitant reduction
of miR-122 expression was observed in VL liver. High
serum cholesterol caused resistance to L. donovani
infection, while downregulation of miR-122 is
coupled with low serum cholesterol in VL mice.
Exosomes secreted by the infective parasites
caused reduction in miR-122 activity in hepatic cells.
Leishmania surface glycoprotein gp63, a Zn-metallo-
protease, targets pre-miRNA processor Dicer1 to
prevent miRNP formation in L. donovani-interacting
hepatic cells. Conversely, restoration of miR-122 or
Dicer1 levels in VL mouse liver increased serum
cholesterol and reduced liver parasite burden.

INTRODUCTION

Visceral leishmaniasis (VL) is caused by the protozoan parasite

Leishmania donovani or Leishmania infantum and is the most

fatal form of this parasitic disorder (Murray et al., 2005). The

parasite infects the spleen and liver of infected individuals and

resides within the macrophages to escape host immune

response (Olivier et al., 2005) It shows a dimorphic life cycle,

residing as flagellate promastigotes in the midgut of the sand

fly vector and as aflagellate amastigotes in the mammalian

host (Desjardins and Descoteaux, 1998; Engwerda et al.,

2004). Liver is the primary organ that gets infected in the early

phase of infection where the parasites survive within the tissue

macrophage Küpffer cells, while the liver parenchyma remains

noninfected (Beattie et al., 2010).

VL patients show hypolipidemia characterized by reduced

serum total cholesterol and lipoproteins (Lal et al., 2007). Inter-
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estingly, hyperlipidemia is associated with resistance to VL

(Ghosh et al., 2012). In experimental VL, reduced membrane

cholesterol in infected macrophages leads to increased

membrane fluidity affecting its antigen-presenting ability

(Chakraborty et al., 2005). Liposomal formulation of cholesterol

is known to offer protection in infected hamsters (Banerjee

et al., 2009). Although the involvement of cholesterol in control-

ling VL is evident from these studies, little is known about the

influence of Leishmania on host lipid metabolism.

MicroRNAs (miRNAs), the 20–22 nt long posttranscriptional

regulators, mediate gene repression primarily by inducing

translational repression or degradation of target mRNAs to

affect almost all physiological processes including metabolic

processes in higher eukaryotes (Filipowicz et al., 2008;

Krützfeldt and Stoffel, 2006). Precursors to miRNAs, primary

miRNA transcripts (pri-miRNAs) are processed by micropro-

cessor Drosha-DGCR8 in the nucleus to generate precursor

miRNAs (pre-miRNAs), which are subsequently processed to

the mature form by RNase III endonuclease Dicer1 in the cyto-

plasm (Filipowicz et al., 2008). The miRNA encoding strand of

miRNA duplex gets loaded to Argonaute proteins by DICER1

and TAR RNA-binding proteins (TRBPs) to form active micro-

RNA ribonucleoprotein complexes (miRNPs). miR-122, a miRNA

expressed abundantly in liver, modulates a wide range of liver

functions. miR-122 comprises more than 70% of the liver

miRNA pool and is largely responsible for liver homeostasis

and lipid metabolism (Chang et al., 2004; Girard et al., 2008).

Antisense oligonucleotides against miR-122 confirmed its role

in fatty acid and cholesterol metabolism (Elmén et al., 2008;

Esau et al., 2006). Therefore, it is an interesting possibility

that parasite infection controls liver miR-122 in order to modu-

late serum cholesterol.

L. donovani interacts with its target cell either by cell-cell

contact or by secreting exosomes containing virulence factors

(Silverman et al., 2010). The surface metalloprotease gp63, a

membrane-bound glycosylphosphatidylinositol (GPI)-anchored

glycoprotein of 63 kDa, is a known virulence factor present in

Leishmania exosomes that serves as a ligand for the macro-

phage complement receptor (Brittingham et al., 1995). This

Leishmania surface protease cleaves multiple intracellular

proteins and participates in p38 mitogen-activated protein

(MAP) kinase inactivation (Hallé et al., 2009). gp63 is also respon-

sible for selective degradation of eIF4E in L. donovani-infected

macrophages (Jaramillo et al., 2011).
st & Microbe 13, 277–288, March 13, 2013 ª2013 Elsevier Inc. 277
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Figure 1. Reduction in Serum Lipids with

Progress of L. donovani Infection in Mouse

Liver

(A) Level of total serum cholesterol in L. donovani-

infected BALB/c mice. Serum cholesterol levels in

mice infected for 8, 15, 30, or 60 days were

measured and plotted individually.

(B–D) Levels of HDL (B), LDL (C), and triglyceride

(D) in the blood serum of 8, 15, 30, or 60 days of

infected or age-matched normal animals.

(E) Liver parasite load in individual animals from

different experimental groups estimated and

plotted as LDU against infection time.

(F) Level of serum glucose in L. donovani-infected

(1 or 2 months) and normal animals. Data repre-

sent mean ± SEM. For each experiment n = 8.

Significance levels: ns (not significant), p > 0.05,

*p < 0.05, **p < 0.001, ***p < 0.0001. See also

Table S1 and Figure S1.
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We have shown in this study that L. donovani infection

downregulates miR-122 and genes involved in cholesterol

biosynthesis in infected mouse livers to reduce serum choles-

terol. We have also found that restoration of miR-122 induces

revival of serum cholesterol and reduction in liver parasite count.

Leishmania metalloprotease gp63, a component of Leishmania

exosomes, gets internalized to degrade Dicer1 in hepatic

cells. It inhibits Dicer1-mediated pre-miR-122 processing

to restrict miRNP formation and prevents miR-122 activity in

L. donovani-interacting hepatocytes.

RESULTS

L. donovani Alters Serum Lipid Profiles of Infected
Animals
Abnormal lipid profiles identified in VL patients (Ghosh et al.,

2011; Liberopoulos et al., 2002) made us interested to look at

the status of serum lipids in L. donovani-infectedmice. Measure-

ment of total cholesterol showed a gradual lowering in serum
278 Cell Host & Microbe 13, 277–288, March 13, 2013 ª2013 Elsevier Inc.
cholesterol with almost 50% reduction

at 60 days postinfection (p.i.) in

L.donovani-infected BALB/c mice. Major

serum lipoproteins like high-density lipo-

protein (HDL) and low-density lipoprotein

(LDL) also showed similar trends (Fig-

ures 1A–1C). Serum triglyceride dropped

up to 65% until 30 days p.i. with a partial

recovery at 60 days p.i. (Figure 1D). An

inverse correlation between serum

cholesterol level and parasite load was

evident (Figure 1E and Table S1). Histo-

logical examination of the infected liver

section also revealed a gradual increase

in both number and size of granuloma,

with progress of infection where para-

sites were also visible (Figures S1A and

S1B). Overall, we observed a substantial

difference in serum lipid profiles in

L.donovani-infected animals, whereas
serum glucose level remained unaffected (Figure 1F). Similar

changes in serum cholesterol were also documented in L.dono-

vani amastigote-infected mouse livers (Figures S1C and S1D).

Altered Expression of Lipid Metabolic Genes in
Leishmania-Infected Mouse Liver
In order to dissect the cause of these abnormalities in the lipid

profile of L. donovani-infected animals, we checked the expres-

sion levels of lipid metabolic genes in infected mouse liver. A

whole-genome microarray analysis was done using an Illumina

Mouse WG-6 v2 BeadChip gene expression array. Of 45,200

total transcripts analyzed, 9,659 showed a differential expres-

sion (5,501 were downregulated, and 4,148 were upregulated)

with more than or equal to 2-fold changes in their expression in

infected livers (Figure 2A). The whole microarray data have

been uploaded to the Gene Expression Omnibus database

(accession number GSE38985).

Scrutiny of differentially expressed gene clusters revealed that

a large number of genes showing reduced expression in infected
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Figure 2. Altered Expression of Lipid Metabo-

lizing Genes in the Livers of L. donovani-

Infected Animals

(A–C) Whole-genome microarray analysis revealed

differentially expressed genes in L.donovani-infected

liver. A pie chart representation of number of genes

that showed altered expression in mouse livers after

60 days p.i. is shown. RNA was isolated from normal

(n = 3) or infected (n = 2) livers, and whole genome

microarray analysis was done (A). Heatmap of lipid

metabolic genes (B). Fold changes obtained from

both real-time quantification and microarray analysis

were plotted for the key lipid metabolizing genes that

showed either an increased or decreased expression

in infected livers (C).

(D) Decreased expression of cholesterol anabolic

proteins HMGCR or ACAT2 in infected mouse liver.

Liver tissue extracts were western blotted for

HMGCR or ACAT2 detection. b-actin was used as

loading control. n = 4 for noninfected control and

60 days p.i.

(E) Changes in expression of important lipid meta-

bolic genes in infected animal livers with progress of

infection. Respective fold changes in expression

were quantified by real-time PCR. For all real-time

estimations, n R 3. SD was from three independent

measurements. Data represented as ±SEM. See also

Table S2.

Cell Host & Microbe

Leishmania donovani Reduces miR-122 in Mouse Liver
livers are related to lipid metabolism (83 showed more than or

equal to 2-fold changes among 476 genes considered). A heat-

map was generated showing differences in expression of lipid

metabolizing genes between normal (n = 3) and infected (n = 2)

groups (Figure 2B). A list comprising lipid metabolizing genes

with fold change (upregulated or downregulated) greater than

or equal to two are provided as a table (Table S2). In summary,

the gene expression data suggest that a major alteration in lipid

metabolism occurs in L. donovani-infected mouse liver. Among

the genes listed, HMGCR (hydroxyl-3-methylglutaryl coenzyme

A reductase), the rate-limiting enzyme for de novo cholesterol
Cell Host & Microbe 13, 277–
biosynthesis (fold downregulation = 2.9),

and CYP7B1 (25-hydroxycholesterol-

7alpha-hydroxylase), a member of the

monooxygenase cytochrome P450 super-

family that catalyzes the first step of catab-

olism of cholesterol to bile acid (fold upre-

gulation = 12.71), are of key importance in

cholesterol metabolism. The validation of

the microarray data was performed by

real-time quantification of seven (five

showed downregulation and two showed

upregulation in microarray analysis) of

these genes. All of them showed propor-

tional changes in their expression in in-

fected mouse livers (Figure 2C). Changes

in protein levels for HMGCR and ACAT2

were also confirmed by western blot anal-

ysis (Figure 2D). Interestingly, these genes

showed altered expression even during

the early stage of infection when the serum

cholesterol level also starts to decrease
(Figure 2E). Themicroarray data suggested an overall downregu-

lation in cholesterol-synthesizing genes and selective upregula-

tion of cholesterol catabolic genes that result in the lowering of

serum cholesterol in Leishmania-infected mice.

Leishmania Infection ReducesmiR-122 Levels in Mouse
Liver
A more detailed analysis of the microarray data highlighted an

interesting finding: several lipid-metabolizing genes showing

differential expression in the livers of infected animals are direct

or indirect targets of miR-122 (Table S3). Among them, HMGCR,
288, March 13, 2013 ª2013 Elsevier Inc. 279
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Figure 3. miR-122 Acts as a Modulator of Parasitic Infection in L. donovani-Infected Mouse Liver

(A and B) Downregulation of miR-122 in L. donovani-infected mouse liver. Liver miR-122 levels in L. donovani-infected BALB/c mice were quantified by real-time

quantification. U6 small nuclear RNA (snRNA) was used for normalization. miR-122 content in age-matched noninfected animals were used as reference value (A).

Northern blot to detect miR-122 changes in infected mouse livers (B). Ethidium bromide (EtBr)-stained gel was used for loading control. For real-time quanti-

fication n = 8 for each time point.

(C) Levels of AGO2 and RCK/p54 protein in L. donovani-infected mice. Western blot analysis for AGO2 and RCK/p54 proteins in liver extracts from normal and

infected animals. b-actin was used as loading control.

(D) Changes in expression ofmiR-122 and the serum cholesterol level inmice after introduction of miR-122 expression plasmid pmir122 through tail vein injection.

Animals were sacrificed after indicated time; liver miR-122 and serum cholesterol levels were measured.

(E) A schematic representation of the time course of exogenous miR-122 expression in infected mouse liver. Infection time is marked by a white arrow, and the

black arrow defines the time of sacrifice 30 days p.i. The black arrowheads mark the injection time of miR-122 expression plasmids.

(F–H) Effect of upregulation of miR-122 on infection level in mouse livers. Infected animals were treated as per the schedule described in (E) and were sacrificed

after a month. Relative miR-122 expression (F), serum cholesterol level (G), and hepatic parasite load (H) were compared in pmiR-122-treated versus sham-

treated groups. Data represent mean ± SEM. For all experiments, n = 8. ***p < 0.0001, **p < 0.001. L.d, L.donovani. See also Table S3 and Figure S2.
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a rate-determining enzyme in cholesterol biosynthesis (fold

downregulation = 2.9), and FASN (fatty acid synthase), control-

ling fatty acid synthesis (fold downregulation = 2.7), are known

to be reciprocally regulated by miR-122 (Esau et al., 2006).

Connection between miR-122 and lipid metabolism is well

documented in mammals (Girard et al., 2008). Therefore, we
280 Cell Host & Microbe 13, 277–288, March 13, 2013 ª2013 Elsevie
may expect reduced miR-122 activity in L. donovani-infected

livers. Levels of miR-122 in the total RNA isolated from the

livers of normal and infected animals were determined. Real-

time quantification revealed a gradual downregulation of

miR-122 in mouse livers with progressive infection (Figure 3A).

Northern blot analysis corroborated this finding (Figure 3B). A
r Inc.
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similar decrease in the miR-122 level was also observed in

animals infected with L.donovani amastigotes (Figure S2A).

Reduced miR-122 activity could not be due to lower expres-

sion of miRNP components, as we did not find any reduction

in miRNP-interacting protein RCK/p54 in infected livers (Fig-

ure 3C). Interestingly, AGO2, the key miRNP component,

showed an increased expression in infected liver. Therefore,

L. donovani infection reduces liver miR-122 to control the

serum cholesterol level.

Exogenous Expression of miR-122 Can Rescue Serum
Cholesterol and Clear Hepatic Parasite Load
In order to understand the significance of miR-122 downregula-

tion during the L. donovani infection process, we aimed to

complement the reduced miR-122 level in the livers of infected

animals. To that end, we injected pmir122, amiR-122 expression

plasmid with a constitutive U6 promoter, in noninfected mouse

via tail vein and monitored miR-122 levels in its liver until

7 days postinjection. The miR-122 level was increased and

was at a maximum after 3 days, whereas the serum cholesterol

level started to show changes at 3 days and reached amaximum

at 5 days p.i.(Figure 3D). To highlight the protective role of miR-

122, we injected miR-122 expression plasmid in animals after

15 days p.i. when initial infection was already established.

Animals received three doses of pmir122 injection, and the

parasite load was monitored at 30 days p.i. (Figure 3E). We

documented an increase in miR-122 level with a concomitant

elevation in serum cholesterol (Figures 3F and 3G). This also

induced reversal of expression of key cholesterol metabolic

genes (data not shown). Interestingly, the hepatic parasite load

was reduced significantly compared to sham-treated control

animals (Figure 3H) showing the protective action of miR-122

against L. donovani infection.

L. donovani Interacts with Human Hepatocytes and
Impairs miRNA-Mediated Repression
The in vivo experiments described above confirmed the lowering

of miR-122 in L. donovani-infected mouse liver. In liver,

L. donovani infects the tissue macrophage Küpffer cells, but

how the infection of Küpffer cells induces miR-122 downregula-

tion in hepatocytes is not known. To understand the mechanism

of hepatic miR-122 downregulation in infected animals, we

used human Huh7 hepatoma cells that express miR-122. Huh7

cells were transfected with a Renilla luciferase reporter either

with no miRNA binding sites (RL-con) or with three imperfect

miR-122 binding sites (RL-3xbulge-miR-122; Figure 4A) to

assess the miR-122 activity in Huh7 cells before and after inter-

action with L. donovani.

To imitate the liver microenvironment, we cocultured Huh7

cells (expressing RL reporters) with isolated human peripheral

blood mononuclear cells (PBMC) in the presence and absence

of Leishmania parasites at different cell-to-parasite ratios; the

monocyte in PBMC served as the parasite host and Huh7 cells

as hepatocytes. There was essentially no change in miR-122

activity when Huh7 and PBMC were cultured in the absence of

the parasite (data not shown). For a fixed number of Huh7 cells,

with an increase in PBMC-to-parasite ratio, there was a

moderate change in miR-122-mediated repression in Huh7 cells

(Figure 4C). It is possible that a host secretory factor, probably
Cell Ho
a pro- or anti-inflammatory cytokine, secreted by the infected

macrophage/monocyte cells changes the hepatic microenvi-

ronment that leads to compromised miR-122 activity. To test

this hypothesis, we cultured Huh7 cells with Leishmania-

infected whole PBMC supernatant. No significant changes

were observed, even at the highest PBMC-to-parasite ratio

(Figure 4B).

From the above experiments it was evident that the parasite

itself is the probable candidate to cause the effect on hepatic

miR-122. In order to ascertain the importance of direct interac-

tion between Huh7 and Leishmania for impairment of miR-122

activity in hepatocytes, we used isolated amastigotes or trans-

formed promastigotes of L. donovani to test their effect, if any,

on miR-122 activity in human hepatoma cells. Huh7 cells were

incubated with L. donovani promastigotes at different cell-to-

parasite ratios for 24 hr. There was a gradual reduction in repres-

sion level with an increasing parasite number per Huh7 cell

(Figure 4D). A similar result was obtained when the amastigote

form of the parasite was used (Figure 4E). Although upon interac-

tion with the parasite no appreciable change in cellular transcrip-

tion machineries was observed, a drastic reduction in protein

translation was evident in L. donovani-treated Huh7with an over-

all decrease in proliferation of L. donovani-interacting Huh7 cells

(Figures S3A–S3C).

Is a parasite-derived secretory factor required for downregula-

tion of miR-122 activity in target cells? Huh7 cells were treated

with cell-free L. donovani culture supernatant grown at 22�C,
the temperature of leishmanial growth at the gut of the sandfly

vector. The supernatant could not show any effect on miR-122

activity in Huh7 cells (Figure 4F), but supernatant of the

Leishmania culture grown at 37�C, the temperature the parasite

encounters in mammalian hosts, can reduce miR-122 activity in

Huh7 cells (Figure 4F). Thus, Leishmania-free culture media at

37�C should contain a factor(s) that can mediate the anti-miR-

122 activity in hepatocytes.

Leishmania Glycoprotein gp63 Is Responsible for
Reversal of miR-122-Mediated Repression in Huh7
Leishmania exosomes, the secretory vesicles released by the

parasite, have been documented previously as the carrier of

the virulence factors for cellular communication. It is also known

that high temperature and low pH increase the rate of exosome

secretion by Leishmania (Silverman et al., 2010). Hence, we

speculate that the exosomes released by the parasites grown

at 37�C may contain the key component(s) required for the

lowering of miR-122 activity in Huh7 cells. In order to investigate

this possibility, we purified exosomes from cell-free Leishmania

culture supernatant grown at 37�C.
Isolated L. donovani exosomes showed reduced miR-122-

mediated repression, whereas control exosomes isolated

from the culture media kept at 37�Cwithout the parasite showed

no difference in miR-122-mediated fold repression compared

to untreated cells (Figures 4G and 4H). Previous exploration of

the Leishmania exosomal cargo proteins revealed that one

of the virulence factors, gp63 (a Zn2+ dependent metallopro-

tease), is an abundant protein in Leishmania exosomes (Silver-

man et al., 2010). Preincubation of Leishmania exosomes with

o-Phenanthroline, a Zn2+ chelator and an inhibitor of Zn2+ metal-

loproteases, had an inhibitory effect on the ability of Leishmania
st & Microbe 13, 277–288, March 13, 2013 ª2013 Elsevier Inc. 281
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Figure 4. Inhibition of miR-122 in Huh7 Cells by L. donovani

(A) Schematic picture of the miR-122 reporter used to measure the miR-122 activity in Huh7 cells. For relative fold repression, the calculation level of repression

for controls was always settled to 1.

(B–E) Modulation of miR-122 activity in Huh7 cells by L.donovani. Huh7 expressing either the RL-con or RL-3 3 bulge-miR-122 Renilla luciferase reporter along

with firefly luciferase encoding control mRNA were grown and treated differently (as described below) before the luciferase activities were measured and relative

fold repression values calculated. (B) Huh7 cultured with Leishmania-infected human PBMC supernatant. (C) Huh7 cocultured with human PBMC and with

increasing numbers of L. donovani parasite. Huh7 cultured with L. donovani promastigotes (1:1, 1:10, 1:100) (D) or amastigotes (1:1, 1:10, 1:100) (E).

(F–J) Exosomes released by L.donovani affects miR-122 activity in Huh7 cells. As described above, Huh7 cells expressing miR-122 reporter or control mRNAs

were treated with L.donovani culture supernatant (grown at either 22�C or 37�C) or control medium used for parasite growth (M199), and fold repression values

were calculated (F). Exosomes isolated from the L. donovani promastigote-grown (G) or amastigote-grown (H) medium or control medium were also used to test

its effect on miR-122-mediated repression. In similar experiments, L.donovani exosomes either pretreated with the Zn-chelator o-Phenantholine (I) or anti-gp63

antibody (J) were used to score their effect on exosome-dependent inhibition of miRNA-mediated repression. Normal IgG was used as a control. Data represent

mean ± SEM. Significance level, *p < 0.05, **p < 0.001, ***p < 0.0001). Ld, Leishmania donovani. See also Figure S3 and Movie S1.
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exosomes to reverse miRNA action in Huh7 cells (Figure 4I). A

rabbit polyclonal antibody raised against L. donovani gp63 was

used to block its activity in vitro (Bhowmick et al., 2008). Exo-

somes preblocked with this anti-gp63 antibody could not
282 Cell Host & Microbe 13, 277–288, March 13, 2013 ª2013 Elsevie
prevent the miRNA repression, whereas pretreatment with

normal rabbit immunoglobulin G (IgG) failed to reverse the inhib-

itory role of leishmanial exosomes on miR-122 activity in Huh7

cells (Figure 4J). Overall, these experiments suggest that gp63
r Inc.
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glycoprotein, a Leishmania exosomal component, is responsible

for the anti-miR122 activity observed in Huh7 cells.

Internalization of Leishmania Exosomes Is Essential for
miR-122 Downregulation in Hepatocytes
Entry of L. donovani or parasite-derived exosomes into host cells

is well documented (Silverman et al., 2010). No such direct

evidence is reported for cellular entry of either intact Leishmania

or L. donovani exosomes in liver parenchymal cells. From the

previous experiments it was evident that the exosomes caused

downregulation of miR-122 activity in human hepatoma cells,

but it was not clear whether the internalization of the exosomes

in heptocytes is required or if its interactionwith themembrane of

Huh7 cells is sufficient for lowering miR-122 activity. Immunoflu-

orescence analysis showed internalization of gp63 in Endo-GFP-

expressing Huh7 cells that were treated with L. donovani exo-

somes. In exosome-treated Huh7 cells, the Endo-GFP-tagged

early endosomes were either colocalized or showed proximal

localization with gp63 (Figure S3D). Three-dimensional reconsti-

tution of the z-stacked images obtained with a spinning disc

confocal microscope was used to confirm the colocalization of

the gp63 signal with early endosomes (Figure S3E; Movie S1).

Therefore, the entry pathway of Leishmania gp63 to Huh7 cells

is possibly endosomal. In subsequent experiments with Endo-

GFP-expressing Huh7 cells treated with siRNA against dynamin

2, a GTPase involved in membrane trafficking of vesicles

(Durieux et al., 2010) showed no internalization or co- or proximal

localization of gp63 with Endo-GFP inside the hepatocytes.

GFP-tagged endosomes in cells treated with control siRNA

showed dynamin 2 colocalization with Endo-GFP and gp63

(Figures S3F and S3G). Downregulation of gp63 internalization

in dynamin 2-compromised cells also reduced the effect of exo-

somes on miR-122-mediated repression in Huh7 (Figure S3H).

Do intact parasites internalize inside the hepatocytes? When

incubated with live L. donovani, parasitic nuclear DNA stained

with DAPI and proximally localized with gp63 signals in intact

parasites was absent in Huh7 cells but visible in murine perito-

neal macrophages. This suggests an absence of intracellular

parasites in infected hepatic cells (Figure S4A and S4B).

In infectedmouse liver, immunofluorescence staining for gp63

identified infected regions with elevated gp63 signal that faded

out with distance from the zone of infection. Interestingly, apart

from the intracellular signals of gp63 inside the hepatocytes

surrounding the infected region, strong signals from gp63-

positive vesicles/bodies along the intercellular space between

hepatocytes were evident (Figure S4C).

Accumulation of Pre-miR-122 and Failed miRNP-122
Formation Accounts for the ReducedmiR-122 Activity in
L. donovani-Treated Huh7 Cells
Interestingly, unlike the mature form, the pre-miR-122 increased

in both parasite-infected mouse livers and L. donovani-treated

Huh7. Real-time quantification of pre-miR-122 confirmed accu-

mulation of the precursor form with progressive infection, which

augmented to 3-fold higher than its normal level at 60 days p.i.

(Figure 5A). The pre-miR-122 also increased 2.5-fold in Huh7

cells after its interaction with L. donovani (Figure 5B).

Why should the precursor accumulate in L. donovani-interact-

ing hepatic cells? In eukaryotes, pre-miRNAs are cleaved and
Cell Ho
processed by an RNase III enzyme, DICER1. This protein

processes the pre-miRNAs and loads the processed mature

miRNA to AGO proteins to form active miRNPs (Bartel, 2004).

When the AGO2 protein was immunoprecipitated from normal

and infected Huh7 cell lysates, we documented a 6-fold reduc-

tion of miR-122 association with immunoprecipitated AGO2 in

L. donovani-treated Huh7 (Figure 5C). The observation was

similar when miR-16 association with AGO2 was measured

(data not shown). These results signify an impaired processing

of precursor miRNAs as a mechanism that leads to reduced

miRNP formation, which accounts for lowered miRNP activity

in L. donovani-interacting hepatic cells.

gp63 Cleaves DICER1 to Prevent Effective miRNP
Formation and Inhibits miR-122 Activity in Human
Hepatocytes
From the previous experiments it was evident that AGO2 failed

to get loaded with miR-122 and form active miRNP in

L. donovani-exposed hepatic cells. Hence, it was essential to

look at the status of Dicer1 in infected tissue samples. We de-

tected a low level of Dicer1 in infected livers after 60 days p.i.

as well as in Huh7 treated with L. donovani (Figure 5D). Over-

expressed DICER1 in Huh7 cells inhibited the derepression of

miR-122 activity by L. donovani (Figure 5E). Interestingly,

when a miR-122 mimic that does not require the DICER1 pro-

cessing step was transfected in Huh7 cells, the inhibition of

miRNA activity by Leishmania was lost. However, in Huh7 cells

expressing exogenous pre-miR-122 that required DICER1 pro-

cessing to generate miRNP-122, L. donovani-mediated

reversal of miR-122 activity was unaffected (Figure 5F). These

results further confirm Dicer1 as the primary target of

Leishmania to downregulate miR-122 activity in mammalian

liver. We anticipate degradation of DICER1 by a Leishmania-

derived factor in target hepatic cells. We observed that HA-

tagged DICER1 expressed in Huh7 cells was cleaved in the

presence of Leishmania lysate when incubated in vitro

(Figure 5G). The cleavage of DICER1 was primarily by a Zn-

metalloprotease, as the DICER1 degradation was prevented

in the presence of o-Phenanthroline (Figure 5G). This experi-

ment indicates that gp63, the most abundant Zn-metallopro-

tease present in leishmanial exosomes, is responsible for

DICER1 cleavage. That was further tested when purified

gp63 was incubated with DICER1 in an in vitro reaction. Puri-

fied gp63 cleaved DICER1 and generated the same fragments

obtained with the leishmanial extract. A cleaved N-terminal

fragment of 180 kDa was generated along with a shorter

C-terminal half (Figure 5H). The specificity of gp63 in Dicer1

cleavage reaction was further confirmed in experiments in

which blocking with a polyclonal antibody reduced the activity

of purified gp63. Interestingly, the monoclonal antibody treat-

ment augmented the activity of gp63 (Figure 5I), possibly due

to a change in its conformation upon antibody binding as re-

ported earlier for few other enzymes (Benito et al., 1996;

Cooper and King, 1986). DICER1 associates and transfers

the processed mature miRNA to AGO2 to form miRNPs. In

cell extract treated with gp63, we also found reduced associa-

tion of AGO2 with full-length DICER1, resulting in decreased

pre-miR-122 processing (Figure 5J). Therefore, L. donovani

targets DICER1 to prevent active miRNP formation.
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Figure 5. L. donovani Downregulates DICER1 and Prevents miRNP Formation in Huh7 Cells

(A) L. donovani increases pre-miR-122 levels in livers of L donovani-infected animals. RNA isolated from the livers of BALB/c mice after 15, 30, or 60 days infected

were subjected to real-time analysis, and b-actin mRNA levels were used for normalization. n = 6 for each group.

(B) pre-miR-122 levels in Huh7 cells before and after treatment with L. donovani promastigotes for 24 hr. Real-time quantification for pre-miR-122was performed.

SDs were from three independent measurements.

(C) Association of miR-122 with AGO2 in Huh7 cells interacted with L. donovani. RNA was isolated from immunoprecipitated (IP) materials from normal and

infected cell lysates, and miR-122 levels were quantified by real-time quantification and normalized against immunoprecipitated AGO2. Quantification data are

the mean values obtained from three IP reactions. Western blot was used to detect AGO2 in immunoprecipitated materials.

(D) Dicer1 levels in Leishmania-infected animal livers. Protein extracts were prepared from normal and infected mouse livers (15 or 60 days p.i.) and western

blotted for Dicer1. Huh7 cells treated with L. donovani also showed reduction in DICER1 levels.

(E) Exogenous expression of DICER1 inhibits L. donovani-mediated inhibition of miR-122 activity in Huh7 cells. Cells expressing RL reporters were transfected

with plasmids encoding FLAG-DICER1, FLAG-HA-AGO2, or GFP, and the effects of L. donovani on miR-122 activity was scored. DICER1 overexpression was

confirmed by western blot.

(F) Unlike pmiR-122 overexpressed cells, cells transfected with miR-122 mimics can escape L. donovani-mediated repression of miR-122 activity. miR-122

repressive activity was measured in normal and L.donovani-interacting Huh7 cells expressing pre-miR-122 or miR-122 mimic.

(G) DICER1 can be specifically cleaved by the Zn-metalloprotease present in the SLAs. Huh7 extracts were incubated with SLA in the presence and absence of

Zn-chelator for 30 or 60 min at 37�C and were western blotted for HA-DICER1, AGO2, and DGCR8. b-actin was used as loading control.

(H) L. donovani surface protease gp63 cleaves DICER1 and generates two fragments in vitro. Lysates of HEK293T cells expressing NHA-DICER1 were incubated

with an increasing concentration of purified gp63 in the absence and presence of Zn-chelator, and cleaved product was visualized by western blot using an

HA-specific antibody. It detected a shortened DICER1 band that was �180 KDa after cleavage of full-length protein by gp63. Digestion of FLAG-DICER1 also

generated a 180 KDa fragment (marked by *). The N-terminal and short C-terminal half (marked by an arrowhead) of DICER1 were both detected with a DICER1-

specific antibody.

(I) Treatment with specific polyclonal and/or monoclonal antibody modify gp63 activity in vitro. Blocking of gp63 with a polyclonal antibody raised against the

recombinant protein reduces DICER1 cleavage activity. Anti-GRP78 antibody was used as control (upper panel). Pretreatment of gp63 against a monoclonal

(legend continued on next page)
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Restoration of Dicer1 Expression in Parasite-Infected
Livers Rescues miR-122 Expression and Reduces Liver
Parasite Burden
When expressed exogenously, NHA-DICER1 expression was

found to be low in L. donovani-infected mouse livers (Figure 6A).

This observation was consistent with the prediction of Dicer1 as

a target that L.donovani degrades to downregulate miR-122 in

infected mouse liver. With infection, the level of gp63 was

increased in mouse livers (Figure 6B). To confirm that gp63 can

downregulate Dicer1 in vivo, purified gp63 from L. donovani

extract was entrapped in liposomes before being delivered to

Huh7 cells. Interestingly, a substantial decrease in miR-122

activity was noted in cells receiving gp63-containing liposomes

(Figure 6C). These liposomes were found to be more enriched

in mouse livers 24 hr after in vivo delivery (Figure S5A) and were

subsequently used for in vivo administration of gp63 in BALB/c

mice expressing NHA-DICER1. Delivery of gp63 to liver was

confirmed by western blot (Figure 6D). Interestingly, the level of

NHA-DICER1was significantly low in the livers of animals treated

with gp63-containing liposomes (Figure 6E). During infection,

exosomes may be the vehicles for gp63 transfer to hepatocytes

(Figures S3 and S4C). Delivery of purified L. donovani exosomes

downregulated DICER1 in animal livers (Figure 6F).

To see whether DICER1 overexpression can clear L. donovani

from infected mouse liver, we administered NHA-DICER1-

expressing plasmids (Figure 6G). Excess Dicer1 in liver

increased liver miR-122 expression and restored the serum

cholesterol level (Figures 6H and 6I). This was accompanied

with a drastic reduction in liver parasite load (Figure 6J). Impor-

tantly, no apparent change in liver cell morphology, tissue integ-

rity, or production of serum albumin was documented (Figures

S5B and S5C).

DISCUSSION

In L. donovani-infected mouse liver, almost 20% of the total

genes showed an altered expression. Several genes of choles-

terol metabolism that are indirect targets and reciprocally regu-

lated by miR-122 (Elmén et al., 2008) were downregulated along

with miR-122 in L. donovani-infected liver. Animals manipulated

to have excess miR-122 levels in their livers showed resistance

to L. donovani infection (Figures S2B–S2E). This observation

further supports the existence of a balance of liver miR-122

and serum cholesterol that get influenced and exploited by

Leishmania parasites in infected mammals. Therapy against VL

is still a big challenge, and recently, the emergence of drug

resistance has added to the problem (Croft et al., 2006). Overex-

pressing miR-122 in infected liver tissue showed appreciable

clearance of hepatic parasite burden with a recovery of serum

cholesterol. Therefore, the therapeutic potential of miR-122

alone and in combination with cholesterol can open up avenues

to combat this deadly disease.
antibody augments its activity in DICER1 cleavage assay (lower panel). Anti-GFP

product increased in the presence of anti-gp63 monoclonal antibody.

(J) The cleavage of AGO2-associated NHA-DICER1 by gp63 and its effect on pr

and transfected with NHA-DICER1 were digested with purified gp63 and subsequ

DICER1 was detected by western blot, and pre-miR-122 processing activities a

pre-miR-122 substrate; # denotes the mature miR-122 formed; WB, western blo
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L. donovani infection inmice shows a decrease in liver DICER1

expression accompanied by a concomitant increase of its

substrate pre-miR-122. Pre-let-7a RNA also showed similar

accumulation in infected mouse livers (data not shown). There-

fore, this might be a general mechanism for Leishmania to lower

the activities of miRNAs in the host cell. Interestingly, L. donovani

infection also leads to the lowering of Dicer1 and let-7a miRNA in

infected mouse macrophages (J.G., Y. Chakraborty, and S.N.B.,

unpublished data).

Inactivation of specific miRNA by virus-encoded target RNAs

or virus-encoded miRNA binding proteins in virus infected cells

has been reported previously (Belair et al., 2011; Cazalla et al.,

2010; Libri et al., 2012). Here, we report a leishmanial protease

gp63 that targets Dicer1 to reduce miRNA activity in hepatic

cells. But how the gp63, produced by the Küpffer cell resident

parasites, gets transferred to the neighboring target hepato-

cytes is an unsolved issue. The Leishmania exosomes may

act as the vehicles for transport of gp63 cargo to the hepato-

cytes in mouse liver. This idea was supported by downregula-

tion of DICER1 expression in liver upon exposure to Leishmania

exosomes (Figure 6F). Interestingly, mammalian macrophages

are also known to secrete exosomes and microvesicles that

are used for intracellular transport and signal communication

(Bhatnagar et al., 2007). Therefore, it may be possible that

parasite-released gp63 get trapped within the exosomes

secreted by the host cells and get delivered to hepatocytes

to target Dicer1 and reduce miRNA activity. Immunofluores-

cence detection of gp63 in infected livers was suggestive of

propagation of this protease through the intercellular spaces

in L.donovani-infected livers.

Overall, the present study deals with an interesting connection

between altered lipid metabolism during L. donovani infection

and liver miR-122 levels. We report an alteration of a miRNA in

a parasite-infected tissue that can account for an important

metabolic change necessary for pathogenesis. This also docu-

ments a unique strategy that the parasite evolved to combat

regulatory RNA function in host cells. With human hepatic cells,

we have shown that leishmanial metalloprotease gp63 targets

DICER1 in human hepatic cells to reduce miR-122 activity.

A similar mechanism is operative for downregulation of miRNA

activity in L. donovani-infected mouse liver. It will be interesting

to investigate whether other members of the Trypanosomatidae

family have evolved a similar mechanism for their survival in in-

fected host.

EXPERIMENTAL PROCEDURES

Infection Delivery and Postinfection Analysis

L. donovani strain AG83 (MAOM/IN/1083/AG83) was used to infect 4- to

6-week old BALB/c mice with 2nd passage promastigotes or amastigotes

(107 parasites/animal) by the intracardiac route. After stipulated days of

infection, blood serum was collected and liver extract was used for RNA

or protein analysis. Liver sections were used for histological examination,
antibody was used as control. The arrowhead denotes a secondary cleaved

e-miRNA processing. Extracts of HEK293 stably expressing FLAG-HA-AGO2

ently FLAG-HA-AGO2 was immunoprecipitated. FLAG-HA-AGO2-associated

ssociated with immunoprecipitated materials were quantified. ** denotes the

t. Data represent mean ± SEM. See also Figure S4.
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Figure 6. Restoration of Dicer1 Expression Rescues Serum Cholesterol Levels and Lowers Hepatic Parasite Load in L.donovani-Infected

Mouse Livers

(A) Dicer1 expression in L. donovani-infected mouse liver. Expression of NHA-DICER1 in the livers of control or infected (30 days p.i.) L. donovani BALB/c mice

three days postinjection of NHA-DICER1 expression plasmid through tail vein.

(B) Increase of gp63 in infected mouse liver extracts western blotted for gp63.

(C) Effects of liposomal delivery of gp63 onmiR-122 activity in Huh7 cells. Liposomal formulations with or without purified gp63 were delivered to cells expressing

miR-122 reporter, and fold repression was calculated.

(D) Treatment with gp63-containing liposomes delivers the protein to animal liver. Western blot detection of gp63 was done in liver lysates from control and

liposome-treated animals using an anti-gp63 antisera.

(E)Effectofgp63-containing liposomeson liverDICER1.AdultBALB/cmicewere injectedfirstwithNHA-DICER1-expressingplasmidsand thenwith liposomes (100ml

liposome suspension with or without 100 mg of purified gp63). Liver lysates were prepared after 24 hr of liposome injection and western blotted for NHA-DICER1.

(F) Effect of L. donovani exosome treatment on the mouse liver DICER1 level. Adult BALB/c mice expressing NHA-DICER1 protein were injected through the

intracardiac path with L. donovani exosomes secreted by 53 107 parasites. After 24 hr of exosome treatment, liver lysates were prepared and western blotted for

the NHA-DICER1.

(G) Expression of NHA-DICER1 increases cellular Dicer levels in mouse livers. Schematic representation of protocol of NHA-DICER1 expression in BALB/c mice

livers (upper panel). Endogeneous Dicer1 levels in both normal and NHA-DICER1 expression-plasmid-injected mouse livers after 3 days of plasmid injection

(Lower panel).

(H–J) NHA-DICER1 can prevent infection progression in mice. L. donovani-infected animals were injected with NHA-DICER1 expression plasmids and sacrificed

as per the schedule in (G). Relative miR-122 expression (H), serum cholesterol level (I), and hepatic parasite load (J) were compared between NHA-DICER1

plasmids injected and control groups. For all experiments, n was either 4 or 6, and representative western blots were shown. For all western blot experiments

b-actin was used as loading control. Data represent mean ± SEM. ***p < 0.0001, **p < 0.001, *p < 0.01. See also Figure S5.
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and parasite count was accomplished by microscopic evaluation of Giemsa-

stained tissue imprints. Leishman-Donovan unit (LDU) = number of amasti-

gotes/1,000 nucleated cells 3 weight of spleen or liver (g).

All animal experiments approved by the institutional animal ethics

committee were carried out following the national guidelines set by the

government of India.
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Parasite Transformation, Amastigote Isolation, Culture Supernatant

Collection, and Soluble Leishmanial Antigen Preparation

Amastigotes were isolated from L. donovani-infected golden hamsters. They

were either used directly or transformed to promastigotes and maintained

until the second to fourth passage cultures before the promastigotes were

used. Culture supernatants used for in vitro assays were collected from
r Inc.
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cultures grown at 22�C and 37�C. Soluble leishmanial antigen (SLA) was

prepared after sonication of the promastigotes as described elsewhere

(Saha et al., 1991).

Whole-Genome Microarray Analysis

Microarray analysis was done on an Illumina Sentrix Chip (Mouse WG-6 v2.0

Beadchip) using total RNA isolated from normal mouse livers and L.donovani-

infected mouse liver after 60 days. TCGA Catalyzing Genomics (New Delhi,

India) performed the analysis, and the data were analyzed after background

noise correction and normalization. Differential expression analysis was

done using Illumina custom algorithm. All the data have been filtered based

on detection; differential p value % 0.05. The whole microarray data have

been uploaded in Gene Expression Omnibus database (accession number

GSE38985).

Exogenous Expression of miR-122 and Dicer in Mouse Liver

Exogenous expression studies were conducted according to a published

hydrodynamic injection strategy (Tada et al., 2006; Andrianaivo et al., 2004).

To overexpress miR-122 or NHA-DICER1 in mouse livers, pmiR-122, the

pre-miR-122 expression plasmid, or the pCIneoNHA-DICER1 plasmid was in-

jected through the tail vein of mice at a dose of 25 mg plasmid DNA dissolved in

100 ml saline. Animals weighing 20–25 gwere used and sacrificed at 1, 3, 5, and

7 days postinjection to determine liver miR-122 levels. For NHA-DICER1

expression examination, animals were sacrificed after 3 days. In experimental

animals, injections were delivered to L. donovani-infected mice in three indi-

vidual doses starting from 15 days p.i. at intervals of 6 days. Mock plasmid-

treated (100 ml each) animals were kept as sham-treated controls. Animals

were sacrificed at 30 days p.i. along with the control group of animals, and

serum lipid profile, liver parasite burden, and miR-122 expression levels

were determined.

Cell Culture, Transfection, Treatment, and Luciferase Assays

Huh7 cells were cultured, and all transfections were performed using

Lipofectamine 2000 (Invitrogen) following manufacturer’s instructions. Renilla

luciferase (RL) and firefly luciferase (FL) activities were measured using a Dual-

Luciferase Assay Kit (Promega) measured on a VICTOR X3 Plate Reader

system (PerkinElmer), and fold repression was calculated.

Northern and Western Blot Analyses

Total RNA isolated from mouse liver was electrophoresed in 15% denaturing

TBE-Urea polyacrylamide gel and transferred to Immobilon-NY+ transfer

membrane. It was probed with 50 end 32P-labeled oligonucleotide probes

against hsa-miR-122 at 37�C for 16 hr in a hybridization oven. Phosphoimag-

ing was performed with a Cyclone Plus Storage Phosphor System

(PerkinElmer). Liver tissue proteins were extracted in RIPA buffer, separated

using SDS-PAGE, transferred to polyvinylidene fluoride (PVDF) membrane,

and western blotted for different proteins using specific antibodies. b-actin

was used as a loading control. gp63 was detected in liposome-treated mouse

livers by western blot against antisera to gp63.

Real-Time Quantitative RT-PCR

The miR-122, miR-16, and U6 levels were quantified with a real-time RT-PCR

detection assay kit (Applied Biosystems) from total RNA following the manu-

facturer’s instructions. mRNA and pre-miRNA quantifications were done using

the SYBR Green Real-Time PCR Assay Kit (Invitrogen). The results were

normalized against 18S ribosomal RNA (rRNA) for mRNAs and against b-actin

for pre-miR-122.

Exosome Isolation and Treatment

Stationary-phaseL. donovanipromastigote or amastigote (�5.03107 cells/ml)

culture was kept at 37�C overnight. As a control, M199 medium supplemented

with 10% fetal calf serum (FCS), but without the parasites, was used.

Exosomes were isolated as described earlier (Raposo et al., 1996) with minor

modifications. For further treatment, exosomes (100 mg protein per assay)

were incubated for 1 hr at room temperature with o-Phenanthrolin or 4�C over-

night with anti-gp63 antibody before the exosomes (treated or untreated) were

used in subsequent assays with Huh7 cells.
Cell Ho
Immunoprecipitation

For immunoprecipitation (IP) reactions, HA-AGO2-transfected cells were lysed

and incubated with anti-HA (Roche) bound protein G agarose beads overnight

at 4�C. As control, anti-GFP bound protein G agarose beads (Invitrogen) were

used. After that, the beads were washed thrice with IP buffer, and the bound

proteins were analyzed by western blot. Half of the beads separated during

washing steps were used for RNA extraction.

In Vitro DICER1 Cleavage Assay

For in vitro cleavage assay, NHA-DICER1 expressing Huh7 cell extract was

incubated with L. donovani SLA or purified gp63 in buffer containing 10 mM

Tris-HCl (pH 7.5), 1mM DTT, 100 mM KCl, and 13 protease inhibitor cocktail.

Incubation was done at 37�C for 30 or 60 min. The reactions were stopped

with SDS sample buffer. For the o-Phenanthrolin treatment, SLA was

preincubated with 10 mM o-Phenanthrolin for 30 min on ice before being

used for the assay. For testing the purity of isolated gp63, a mouse mono-

clonal and a polyclonal anti-gp63 antibody were used to block gp63 activity

at 1:10 and 1:25 dilutions overnight. Anti-GFP and anti-GRP78 were used at

the same dilutions as the control. The samples were run in 8% SDS-PAGE,

and western blot was performed using anti-HA antibody to detect NHA-

DICER1.

In Vitro Pre-miRNA Processing Assay

The NHA-DICER1 expressing HEK293 cell lysate was incubated with purified

gp63 followed by immunoprecipitation with anti-FLAGM2 affinity gel. Washed

beads were used for pre-miR122 processing assay with 10 nM pre-miR122,

and the products were analyzed on a 12% denaturing (8 M Urea) polyacryl-

amide gel and visualized in a phosphoimager.

Introduction of Liposomes and L. donovani Exosomes in BALB/c

Mice

Adult BALB/c mice were injected with NHA-DICER1-expressing plasmids via

tail vein. After 2 days, liposomal formulations or leishmanial exosomes were in-

jected through the intracardiac route. After 24 hr, mice were sacrificed, liver

lysates were prepared, and exogenous DICER1 levels were detected by

western blot analysis using anti-HA antibody. For liposome treatment of

Huh7 cells, luciferase reporter transfected cells were treated with 200 ml lipo-

some suspension.

Other Experimental Procedures and Details

Additional experimental procedures and other essential details on plasmids,

oligos, and antibodies used have been provided as Supplemental Experi-

mental Procedures.
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