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Diffusion tensor imaging (DTI) provides information about the microstructure in the brain and spinal cord. While
new neuroimaging techniques have significantly advanced the accuracy and sensitivity of DTI of the brain, the qual-
ity of spinal cord DTI data has improved less. This is in part due to the small size of the spinal cord (ca. 1 cm diam-
eter) and more severe instrumental (e.g. eddy current) and physiological (e.g. cardiac pulsation) artefacts present in
spinal cord DTI. So far, the improvements in image quality and resolution have resulted from cardiac gating and new
acquisition approaches (e.g. reduced field-of-view techniques). The use of retrospective correction methods is not
well established for spinal cord DTI. The aim of this paper is to develop an improved post-processing pipeline tai-
lored for DTI data of the spinal cord with increased quality. For this purpose, we compared two eddy current and
motion correction approaches using three-dimensional affine (3D-affine) and slice-wise registrations. We also in-
troduced a new robust-tensor-fitting method that controls for whole-volume outliers. Although in general
3D-affine registration improves data quality, occasionally it can lead to misregistrations and biassed tensor esti-
mates. The proposed robust tensor fitting reduced misregistration-related bias and yielded more reliable tensor es-
timates. Overall, the combination of slice-wise motion correction, eddy current correction, and robust tensor fitting
yielded the best results. It increased the contrast-to-noise ratio (CNR) in FA maps by about 30% and reduced
intra-subject variation in fractional anisotropy (FA) maps by 18%. The higher quality of FA maps allows for a better
distinction between grey and white matter without increasing scan time and is compatible with any

multi-directional DTI acquisition scheme.

© 2013 Elsevier Inc. Open access under CC BY license.

Introduction

In the past years, more sophisticated imaging techniques such as
functional (Eippert et al., 2009; Lotze et al., 2006; Sprenger et al.,
2012; Wietek et al., 2008) and diffusion magnetic resonance imaging
(MRI) (Agosta et al., 2007; Budde et al., 2007; Ciccarelli et al., 2007;
Mulcahey et al., 2012) have become available for imaging the spinal
cord. Diffusion MRI allows for non-invasive tracking of water diffu-
sion (Le Bihan et al., 1986; Turner et al., 1990) and can be used to
map brain anatomy (Bach et al., 2011; Basser et al., 1994; Draganski
et al, 2011; Mohammadi et al, 2012b; Mueller et al., 2011;
Pierpaoli and Basser, 1996). In clinical research diffusion tensor imag-
ing (DTI), a particular implementation of diffusion MRI, has become a
wide-spread and successful imaging method (Duning et al., 2009;
Keller et al., 2011; Meinzer et al., 2010; Warnecke et al., 2010). For ex-
ample, the scalar DTI-index denoted as fractional anisotropy (FA) has
been reported to be sensitive to white matter integrity in health and
disease in the brain (Deppe et al., 2007; Freund et al., 2012b; Pierpaoli
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et al.,, 2001) and spinal cord (Agosta et al., 2007; Budde et al., 2007;
Ciccarelli et al., 2007; Freund et al.,, 2012¢; Mulcahey et al., 2012).
The spinal cord is a small structure (ca. 1 cm in total diameter) and
specific localization of injuries in the spinal cord requires a robust distinc-
tion between grey matter (GM) and white matter (WM) (Freund et al.,,
2012a). Up to now, most diagnostic studies in the spinal cord were limit-
ed by the quality and resolution of the DTI reconstruction (e.g. equal to or
more than 1 mm? in-plane resolution (Agosta et al,, 2007; Budde et al,,
2007; Ciccarelli et al., 2007; Freund et al., 2011; Mulcahey et al,, 2012;
Roser et al.,, 2010)). Due to the cylindrical symmetry of the spinal cord,
usually thick slices (about 5 mm) with maximal in-plane resolution are
acquired leading to particularly long EPI readout times (Finsterbusch,
2009b, 2012; Rossi et al,, 2008; Wilm et al., 2007, 2009) and making the
signal susceptible to physiological and instrumental artefacts. Physiologi-
cal artefacts caused by bulk motion of the cord and cerebrospinal fluid
(CSF) pulsation can result in slice-to-slice displacement, deformation,
and signal-loss due to a shift of the echo centre in k-space (Chung et al.,
2010; Mohammadi et al., 2012a; Skare and Andersson, 2001). Instrumen-
tal artefacts caused by eddy currents (Haselgrove and Moore, 1996;
Jezzard et al., 1998; Mohammadi et al., 2010), gradient inhomogeneities
(Bammer et al,, 2003; Mohammadi et al,, 2012d; Nagy et al., 2007), vibra-
tion artefacts (Gallichan et al., 2010; Mohammadi et al., 2012c), and RF
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transmit field inhomogeneities (Lutti et al., 2010, 2012) can lead to image
distortions (Mohammadi et al., 2010), affect the diffusion weighting
(Mohammadi et al.,, 2012d), and perturb the signal intensity (Gallichan
et al, 2010; Lutti et al, 2010, 2012; Mohammadi et al., 2012c). Up to
now, the improvements in image quality and resolution were based on
cardiac gating (Rossi et al., 2008; Wheeler-Kingshott et al., 2002a,b) and
new acquisition technology, such as reduced field-of-view techniques
(Finsterbusch, 2009b, 2012; Rossi et al., 2008; Wheeler-Kingshott et al,,
2002a,b; Wilm et al., 2007, 2009), stronger diffusion weighting gradients
(Wilm et al., 2009), increased number of averages (Rossi et al., 2008), and
time-efficient monopolar diffusion-weighting schemes (Finsterbusch,
2009a; Morelli et al., 2010).

Surprisingly, the use of post-processing correction methods was
rarely reported in spinal cord DTI (Barakat et al., 2012; Cohen-Adad et
al., 2011; Freund et al., 2012c; Lundell et al., 2013; Wilm et al., 2009).
However, using post-processing correction methods could potentially
reduce remaining artefacts and even compensate for some of the draw-
backs of the reported new acquisition approaches. For example, the
methods that are related to improved diffusion weighting (stronger dif-
fusion gradients or monopolar diffusion schemes) usually increase in-
strumental artefacts such as eddy currents (Haselgrove and Moore,
1996; Jezzard et al,, 1998) and could benefit from retrospective eddy
current correction (see, e.g., Wilm et al., 2009). Physiological artefacts
in DTI affect data quality and can be reduced retrospectively using ro-
bust tensor fitting (Mangin et al., 2002; Walker et al., 2011; Zwiers,
2010) and linear modelling of artefacts (Mohammadi et al., 2012a). In-
creasing the number of averages might lead to more subject motion ar-
tefacts, which can be corrected using three-dimensional (3D) affine
(e.g. Cohen-Adad et al., 2011; Mohammadi et al, 2010; Mufoz
Maniega et al, 2007) or slice-wise (e.g. Mohammadi et al., 2010;
Speck et al., 2006) registration methods.

The aim of this paper is to provide an improved processing pipe-
line for robust DTI in the spinal cord, which is compatible with previ-
ously suggested acquisition methods. To this end, we determine the
effect of pre-processing (none, 3D-affine, and slice-wise eddy current
and motion correction) and tensor estimation (ordinary least squares
vs. robust tensor fitting) methods on the image quality and
contrast-to-noise ratio (CNR) between GM and WM.

Methods
Subjects

Nine healthy adult volunteers (1 female, 8 males, age: 35 4+ 8) par-
ticipated in the study approved by the local ethics committee after
giving written informed consent.

Data acquisition

Experiments were performed on a MAGNETOM Trio, a Tim System,
3T scanner (Siemens Healthcare, Erlangen, Germany) operated with
an RF body transmit coil and a 12-channel (12-ch) receive-only head,
4-ch neck and 24-ch spine coil. Only the 4 neck channels and the 6 pos-
terior head channels were used, since they provided full coverage of the
scanned area. DTI data were acquired with a cardiac-gated monopolar
diffusion sequence (Morelli et al., 2010) using the following parame-
ters: 30 diffusion-weighted (DW) images (b=500 s/mm?), 5T2-
weighted images without diffusion weighting (b=0 images), 5 mm
slice thickness, with 10% inter-slice gap, 10 slices perpendicularly ori-
ented to the spine, 5/8 Partial-Fourier Imaging in phase-encoding direc-
tion, phase oversampling 50%, and a cardiac trigger delay of 200 ms.
Two slightly different in-plane resolutions, field-of-view (FoV), and
echo times (TEs) were used in this study: 176 x40/176 x 60 acquisition
matrix, 123 x 28/128 x43 mm? FoV, 0.7 x 0.7/0.73 x 0.73 mm? in-plane,
echo time of TE=73/75 ms, slice repetition time of TR=290/350 ms.
The gated data were acquired in blocks of two slices per cardiac cycle.

The minimal time between successive triggers was 1800 ms. The re-
duced FoV was achieved using two saturation pulses (Heidemann et
al., 2009) (see Fig. 1). Subjects S1-S6 and S8 were measured with the
first set of parameters, and subjects S7 and S9 with the second set of pa-
rameters. The difference between the two protocols was small and we
did not observe any difference in the resulting image quality. Each DTI
dataset was acquired four times, resulting in 140 images for each sub-
ject. Altogether, this resulted in a total acquisition time of about
5.8 min (as estimated by the sequence simulator), but could be longer
depending on the participant's heart rate. Subsequently, the abbrevia-
tions x, y, and z are used for the directions right-left (frequency
encoding), anterior-posterior (phase encoding), and head-feed (slice
selection), respectively.

Pre-processing and tensor estimation

First, the in-plane field-of-view was chopped to 28x28 mm? for
each DTI dataset to exclude non-spine tissue. Next, the images were in-
terpolated to a higher in-plane resolution of 0.35x0.35 mm?. Finally,
the data were corrected for motion and eddy current artefacts using
three different registration methods: (a) none, (b) 3D-affine, and (c)
combination of rigid-body and slice-wise motion correction (details
are summarised in Table 1). The 3D-affine registration corrects for
rigid-body subject motion and linear eddy current effects (see
(Mohammadi et al,, 2010)). Before applying the slice-wise registration,
a 3D-affine registration was performed to reduce 3D translation in x-
and y-direction as well as scaling effects in y-direction. We restricted
the slice-wise registration to correct only for in-plane x- and
y-translation as well as for in-plane scaling in y-direction, because we
observed most variation in those directions. We did not correct for
in-plane rotation and shearing effects, which were less pronounced
and more difficult to estimate robustly.

After pre-processing, the FA was estimated using two different
tensor-fitting methods: (a) ordinary least squares (Koay et al., 2006)
and (b) a new robust-fitting method based on (Mohammadi et al.,
2012a; Zwiers, 2010). We extended the robust-fitting method of Zwiers
to account also for whole-volume outliers (e.g. due to 3D-affine

Fig. 1. Positioning of the field of view (small central solid green/yellow) covering cer-
vical segments C2 and C4 (sagittal view). Reduced field of view was achieved by min-
imizing the phase-encoding steps in the anterior-posterior direction and avoiding
consequential fold-over by two spatial saturation pulses (shaded regions). The slice
positions of the grey and white matter region of interest (ROI) in the upper part of
C2 (C2 ROI, cyan and orange horizontal lines) and in the lower part of C4 (C4 ROI,
two cyan horizontal lines) are depicted. The grey and white matter ROIs at the position
of the orange line are shown in Fig. 2.
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Table 1

The 3D-affine registration corrects for rigid-body subject motion and 3D eddy currents (see Mohammadi et al., 2010). The slice-wise registration was preceded by a rigid-body reg-

istration to reduce 3D shifts in the x- and y-direction, and 3D scaling in the y-direction.

Registration method Translation Rotation Scaling Shearing Number of parameters
3D-affine X-, y-, and z- direction X-, y-, and z- axis x- and y- direction x-y plane and z-y plane 9

Rigid-body x- and y-direction None y-direction None 3

Slice-wise x- and y-direction None y-direction None 24

¢ Due to poor data quality and edge effects, the first and last slices were not included in the slice-wise registration method, yielding 8 x 3 parameters.

misregistrations) by introducing an extra Gaussian weighting term that
scales with the average of the residuals over the whole volume. The
pre-processing and tensor fitting methods are summarised in Table 2.
All analysis steps were performed using SPM8 (http://www.fil.ion.ucl.
ac.uk/spm (Friston et al., 2006)), the “Artefact Correction in Diffusion
MRI (ACID)” SPM toolbox (http://www. fil.ion.ucl.ac.uk/spm/ext), and
in-house software written in MATLAB (version 7.11.0; Mathworks, Na-
tick, MA, USA).

Analysis: comparing different tensor processing techniques

The performance of the pre-processing and tensor estimation
methods (see Tables 1 and 2) was assessed by using visual inspection
of DW and FA images and quantitative analyses. The quantitative anal-
yses consisted of a modified jackknife approach, and a region-of-
interest (ROI) analysis of GM and WM mean FA values, and the CNR be-
tween the GM and WM FA ROIs.

Visual inspection of DW and FA maps using different tensor processing
methods

Maps of the estimated DW image in z-direction (along the spinal
cord) and FA were calculated for each pre-processing and tensor estima-
tion method. To obtain the estimated z-direction-DW image, the diffusion
tensor was fitted and for each DW direction the forward model was ap-
plied, i.e. the DW images were calculated based on the estimated diffusion
tensor. The DW signal, S5, acquired with the diffusion gradient, Gs, that
had the greatest absolute value in z-direction (G,s = (0.01, 0.19,—0.98))
was chosen for visual inspection, because it showed the best contrast be-
tween GM and WM due to the cords' special anatomy.

Finally, the root-mean-square (rms) of the tensor-fit errors and the
outliers were visualised for one example DTI dataset. To compare the
rms-tensor-fit error from the ordinary least square and robust tensor
fitting we adjusted these by the degrees of freedom (Mohammadi et
al,, 2012a), since they varied between the two methods. To quantify
the outliers, the robust-tensor-fitting weights within a manually de-
fined FA-based mask were calculated.

A Jackknife-based assessment of the variance of the FA map for each
post-processing method

To calculate a Jackknife-based variance measure of the FA maps for
each post-processing method m (definition of m can be found in
Table 2), four additional FA maps (FAJ),, j=1....,4) were estimated
on the basis of a subset of only three out of four DTI datasets, where
the j-th dataset was left out. In total, for each post-processing method

Table 2
Six different combinations of post-processing methods.

Method Eddy current and motion correction Tensor estimation

(i) None Ordinary least squares
(ii) 3D-affine Ordinary least squares
(iii) Slice-wise Ordinary least squares
(iv) None Robust fitting

(v) 3D-brain Robust fitting

(vi) Slice-wise Robust fitting

m five FA maps were calculated: the so-called reference FA map
(FAL,) based on all four DTI datasets and four FA maps based on a
subset of only three DTI dataset (FAé’,%),j =1,...,4). To assess the per-
formance of the post-processing method m the variance map was cal-
culated with respect to the reference FA map:

2

o? (FA(m)(r)) - %i (FAfm(r)—FA(U;) (r)) . 1)
=

Next, the spatial average of each variance map, 0*(FA(m)(r)), within
the spinal cord was calculated and its square root was taken. This yielded
a single variance estimate OFA;, for each post-processing method m
and subject. To facilitate comparison between the post-processing
methods, the relative change of 0FA,,) with respect to the method (vi)
was calculated:

OFA iy —OFA
8FA ) = 100 x OFA L (2)
with m= (i),...,(v). Note that we chose the method (vi) as the reference
method, but in principle any of the methods could have been chosen.

Finally, the 6FA ;) for each subject was used to calculate group av-
erages (based on the median) and inter-individual variations (based
on the standard error of the mean).

Note that the jackknife-based assessment of the post-processing
methods is unbiased and does not favour any of the post-processing
methods, since it does not require manual definition of ROIs or prior
information.

Group comparison of GM and WM FA-values and FA-based CNR using
different tensor processing methods

In these analyses, we used the FA map obtained from method (vi)
(slice-wise motion and eddy current correction with robust tensor fitting)
as reference. The FA maps obtained from the methods (i)-(v) were regis-
tered to the FA map of the reference method (vi) using a rigid-body trans-
formation. First, the mean FA was calculated in the GM ﬁGM,(m) and
WM (FAwm m) ) ROIs using the processing method m (see Table 2 for
method definition). The GM and WM ROIs were manually defined for
each subject based on the FA images obtained from method (vi) (see
Fig. 2). Then, the ﬁGM_(m) and ﬁWM_(m) values for each subject were
used to calculate group averages (based on the median) and
inter-individual variations (based on the standard error of the mean).

Next, the CNR was calculated for each subject within the GM and
WM ROlIs:

CNR() = (ﬁWM.(m)_ﬁGM.(m))/< O_\ZNM,(m) + U%M,(m))v 3)

with O%ywm (m), O&m,(m) being the variances of the FA across all voxels in
the GM and WM RO], respectively. Moreover, we calculated the rela-
tive reduction of the CNR when using the methods m =(i)-(v) rela-
tive to the method (vi) in percent:

SCNR ) = 100 x (CNR(Vi)—CNR(m)> JCNR ;. (4)
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Fig. 2. The grey matter (GM) and white matter (WM) region of interest (ROI) depicted in the schematic drawing of the cross-section of the spinal cord (a, GM and WM ROIs were
highlighted in blue and red, respectively). The WM ROI covers parts of the left (L) and right (R) lateral funiculus as well as dorsal (D) and anterior (V) columns. The GM ROI covers
parts of the butterfly-shaped GM structure. One example slice (slice position is shown in Fig. 1) of the individual WM and GM ROIs is overlaid on the corresponding FA maps for
each subject ((b): subject 1-9). The ROIs were manually defined based on the corresponding reference FA image, which was obtained after slice-wise eddy current and motion

correction with robust tensor fitting (method (vi), see Table 2).

Finally, the group median and standard error of the mean (sem) of
the CNRs and relative CNRs were calculated for each method m.

Results

Visual inspection of DW images and FA maps using different tensor processing
methods

Figs. 3 and 4 exemplify how the different pre-processing and
tensor-fitting methods affected the contrast of DW and FA maps in a sin-
gle subject. Using no pre-processing and ordinary least square tensor
fitting resulted in poor contrast between the butterfly-shaped GM and
surrounding WM (arrow, Figs. 3a and b) and localised artificial reductions
of WM FA (arrow, Fig. 4a), which can lead to a bias in the overall WM FA
towards lower values. The slice-wise registration counteracted the local-
ised FA reduction (Figs. 4c and f) and made the butterfly-shaped GM bet-
ter visible (Figs. 3c and f). Robust tensor fitting also compensated for the
artificial FA reduction even if no motion and eddy current correction were
employed (arrow, Fig. 3d). The 3D-affine registration, for which some

3D-affine

slice-wise

none

oLsQ

Robust

Fig. 3. Effect of motion and eddy current correction and tensor fitting methods on the
estimated diffusion-weighted (DW) image in z-direction (S,s) using (a)-(f) methods
(i)-(vi) as listed in Table 2. The effects are presented for subject 2 in the C2 ROI
(slice position is depicted in Fig. 1, see red horizontal line). The left wing of the
butterfly-shaped grey matter structure (highlighted) becomes more apparent after
motion and eddy current correction (c, e, and f). The 3D-affine motion and eddy cur-
rent correction (b) spuriously reduced the image intensity of the estimated S5 map
when used in combination with ordinary least square fitting.

volumes were drastically misregistered (data not shown), led to a signal
reduction in the DW images (Fig. 3b) and an artificial increase of the FA
over the whole spinal cord section (Fig. 4b). When the proposed
robust-fitting method was applied, the misregistration-related volume
outliers were down-weighted and the bias in the DW (Fig. 3e) and FA
(Fig. 4e) images was removed. Note that the 3D-affine registration did
not always lead to a deterioration of the DW and FA image quality, but
Figs. 3 and 4 illustrate that it may for some datasets.

Relating FA-bias to tensor-fit error and outliers

Fig. 5a shows an example-slice, where the WM FA appeared biassed
towards lower values. This apparent artefact was associated with a par-
ticularly high rms-tensor-fit error (arrow). Both, the bias in WM FA and
rms-tensor-fit error, appeared reduced when using robust fitting
(Fig. 5b). The rms-tensor-fit error showed that the corrected artefacts
were not only present in isolated voxels but also within a continuous re-
gion (arrows, Fig. 5). The artefact that was extended over a contiguous
region might be due to a misalignment between different DTI

slice-wise

()

none 3D-affine

(@) (b)

[#]®

(e)

() FQ .
S8 |

Fig. 4. Effect of motion and eddy current correction and tensor fitting methods on the
estimated FA maps using (a)-(f) method (i)-(vi). The spatially localised artificial re-
duction in white matter FA (arrow in (a)) was counteracted when robust tensor fitting
(d), motion and eddy current correction (c), or both methods (e and f) were used. The
3D-affine motion and eddy current correction following the use of ordinary least
square fitting (b) apparently led to an artificial increase in FA over the whole spinal
cord section.

oLsQ

Robust
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0.2 0

Fig. 5. Effect of robust fitting on the adjusted tensor-fit error. FA (left) and the adjusted
root-mean-square tensor-fit error (rms(€), right) maps were depicted using (a) meth-
od (i), i.e. ordinary least squares, (b) method (iii), i.e. robust tensor fitting. (a) The bias
in the FA map (arrow) was associated with a higher tensor-fit error. (b) Robust fitting
reduced the bias in the FA map and the associated tensor-fit error. Note that a severely
affected slice (z=2) for the subject S5 was used to visualise the effect of robust fitting
on the tensor-fit error.

images. Fig. 6b shows that from 140 DTI images more than 30 images
deviated from the expected value severely (i.e. more than ! of the
weights were below 0.5). The outliers in the DTI dataset in Fig. 6b
were clustered with respect to time, i.e. they appeared one after the
other early on in the scan, pointing towards a motion related artefact.

A jackknife-based assessment of the variance of the FA map for each
post-processing method

Fig. 7a depicts an example of five FA maps (FAR iy, FA®) ..., FA®) )
that were used in the jackknife analysis to assess the variance in FA
maps for the post-processing method (i). Regions with a high variance
coincided with regions suffering from a high bias in FA (Fig. 7a,
arrow). The spatially averaged variation in the FA map was higher (i.e.
negative 6FA(, in Fig. 7b) when using the post-processing methods
(i)-(v) compared to using the method (vi). The variance was increased
by about 18% when no post-processing was applied (i.e. method (i) was
used). The variance was greatest if the 3D-affine registration was used
(i.e. methods (ii) and (v)), which is most likely due to the additional
misregistration-related outliers.

(@)
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=, R
[) s
c 05 -
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50 100 150
image number in DT| dataset

Fig. 6. Visualising outliers for the example-slice shown in Fig. 5a: (a) a ROl was manu-
ally defined (yellow) within the affected region, (b) robust-tensor-fitting weights
within the ROI are depicted as a function of the number of the DTI images arranged
as a time-series (i.e. first acquired image =1, last acquired image = 140). Within the
ROI more than 30 (out of 140) DTI images were detected as outliers (i.e. having a
weight that is smaller than 0.5). The outliers appeared sequentially in time and thus
were probably related to subject motion.

Group comparison of GM and WM FA-values and FA-based CNR using
different tensor processing methods

Figs. 8 and 9 summarise the effect of different pre-processing and
tensor-fitting methods on the mean FA in the GM and WM, and the
CNR of FA maps. The WM FA was lowest if no registration (methods
(i) and (iv)) was applied (FAww ) and FAww i) below 0.75, Fig. 8a).
The WM FA was highest (FAw,vi) above 0.8, Fig. 8a) if slice-wise reg-
istration and robust fitting were employed (method (vi)). The GM FA
was minimal when slice-wise registration and robust fitting (method
(vi)) were applied (ﬁGin) about 0.5) and greatest when 3D-affine
registration and ordinary least square estimation (method (ii))
were applied ( ﬁGM.(ii) about 0.6, Fig. 8b). The CNR was worst
(CNR=~1.5) if the 3D-affine registration and ordinary least square es-
timation were used (method (ii)) and best (CNR= 3, Fig. 9a) for the
slice-wise registration (method (iii) and (vi)). The variation of the
CNR values across the group was smallest (sem~0.1, Fig. 9a) when
slice-wise registration was used (methods (iii)). It was maximal
(sem up to 0.2) when no registration (method (i)) or 3D-affine regis-
tration and the ordinary least squares estimation (methods (ii)) were
used. Relative to method (vi) the CNR was reduced by about 30%
when no pre-processing and the ordinary-least-squares tensor esti-
mation (i.e. method (i)) was used (Fig. 9b). The CNR was reduced
by up to 50% if the 3D-affine registration and ordinary least squares
were used (methods (ii), Fig. 9b). Using robust fitting without any
pre-processing resulted in a CNR reduction of about 25% (Fig. 9b,
(iv)). The smallest CNR reduction (less than 10%) was achieved
when the slice-wise registration and ordinary-least-squares tensor
estimation (method (iii)) were applied (Fig. 9b).

Discussion

We tested whether and to what extent different post-processing
methods affected the data quality of spinal cord DTI. We found that
post-processing can efficiently reduce the noise and increase the CNR
in FA maps. However, inappropriate post-processing methods (e.g.
3D-affine registration for spinal cord DTI) can occasionally fail and
even introduce additional bias into the diffusion tensor estimates. We
introduced a new robust fitting method specifically designed to
down-weight misregistration-related outliers. The combination of
slice-wise motion correction, eddy current correction, and robust fitting
yields the maximal CNR and minimal variation in FA maps. As a result of
this improved post-processing, GM and WM can be better distinguished
in FA maps and the power of group studies is increased.

The ability to clearly distinguish between GM and WM within the
spinal cord holds promise to improve our understanding of pathologies
that affect both substructures (e.g. multiple sclerosis (Ciccarelli et al.,
2007) or spinal cord injury (Dietz and Curt, 2006; Enck et al., 2006;
Lotze et al., 1999, 2006; Wietek et al., 2008)). The results suggest that
both types of proposed processing methods (i.e. eddy current and mo-
tion correction and robust tensor fitting) reduce potential bias in FA
maps (Figs. 4-6). This might be one reason for the increased WM FA
values and decreased GM FA values across the group (Fig. 8) when
using the proposed method, i.e., slice-wise registration and robust
fitting. The latter finding is in accordance with previous studies showing
that noise and instrumental artefacts increase the FA in GM (e.g.
Mohammadi et al., 2012c¢,d; Skare et al., 2000). Moreover, the DW signal
from the butterfly-shaped GM structure in the spinal cord became more
visible against the background noise when a slice-wise registration
method was applied (Fig. 3). The robust tensor fitting improved the
quality of the DW signal only if global bias was introduced as a result
of improper processing (i.e. 3D-affine misregistrations). However, ro-
bust fitting did not improve the DW signal locally in the GM. This
might be related to the fact that the performance of the robust fitting
method depends on the validity of the diffusion tensor model, which
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Fig. 7. Jackknife-based assessment of variance in FA maps: (a) five FA maps (FAR ;) and FAY;), i=1,...,4) and the corresponding variance maps (0*(FA;)) are depicted using the
post-processing method (i) (i.e. using ordinary least square fitting) for a severely affected slice (z=2) of the subject S5. The arrows highlight a region with high variance between
different FA maps. (b) The group median and standard error of the mean of the spatially averaged variance in the FA map (8FA(;;)) when using post-processing method m = (i),
...,(v) relative to method (vi). The variance in the FA maps was minimal for the post-processing method (vi). Note that the 6FA, is negative if the variation in the FA maps is higher

for the method m than for the method (vi).

imperfectly describes the DW signal in GM structures (Alexander et al.,
2006; Miller et al., 2012; Wedeen et al., 2005).

Very few publications have investigated the GM and WM proper-
ties of the spinal cord at 3T separately (Finsterbusch, 2012; Maier and
Mamata, 2005; Wilm et al., 2007, 2009) and reported DTI indices (e.g.
FA) (Wilm et al., 2009). Wilm et al. (2009) achieved CNRs of 1.7 to 2
using an outer-volume suppression method to increase the in-plane
resolution. (Note that the CNR was not reported in Wilm et al.
(2009), we calculated it using their reported mean and standard devi-
ation of the FA in the cervical spine's WM and GM). In our study, the
CNRs were about two if no correction was applied (and even smaller,
CNR<1.5, if 3D-affine registration and ordinary least squares were
used). The CNRs, however, clearly exceeded two (CNR>2.5, i.e.
about 30% improvement) if slice-wise motion and eddy current
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Fig. 8. Group level comparison of FA values in white (a) and grey (b) matter ROIs of
upper part of C2 (i.e. upper slice in C2 ROI) and lower part of C4 (i.e. lower slice in
C4 ROI) when using methods (i)-(vi). For both group comparisons the median and
standard error of the mean (sem) across subjects are depicted. Using method (vi)
leads to increased WM-FA and decreased GM-FA values.

correction together with robust tensor fitting were employed. This
finding demonstrates that unprecedented quality of spinal cord DTI
can be achieved when appropriate DTI-processing methods are
used. Note that the comparison of CNRs obtained from different scan-
ners and DTI sequences should be treated with caution, because devi-
ations in the details of the diffusion weighting (gradient duration 9,
diffusion time A, gradient amplitude), variation in instrumental arte-
facts (see e.g. Mohammadi et al., 2012c) as well as differences in the b
values, resolution, RF pulses etc. could have an influence on the FA
values and CNR estimates.

Spinal cord imaging is susceptible to instrumental artefacts due to
the high demands on the scanner hardware (i.e. very high in-plane
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Fig. 9. Quantitative assessment of the contrast-to-noise ratio (CNR) between grey and
white matter in FA maps of the upper part of C2 (i.e. upper slice in C2 ROI) and lower
part of C4 (i.e. lower slice in C4 ROI). (a) Group-level comparison of the CNR for the
methods (i)-(vi). (b) Group-level comparison of the relative CNR difference when
using method (vi) relative to using methods (i)-(v). For both group comparisons the
median and standard error of the mean (sem) across subjects are depicted. The CNR
was greater than 2.5 if the recommended post-processing and tensor estimation
were used (method (vi)).
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resolution and unilateral (dorsal) radio-frequency receive coil cover-
age) and to physiological artefacts due to a small structure of interest
with bone-CSF-GM-WM transitions that is subject to CSF pulsation,
swallowing, cardiac or respiratory motion. This makes the robust esti-
mation and reproducibility of DTI indices particularly difficult and com-
plicates clinical and high-end research application of spinal cord DTI. In
this study, we found that the inter-subject variance of the CNR was re-
duced by a factor of up to two and the intra-subject variance in FA maps
was reduced by about 18% if appropriate tensor processing was used.
This finding suggests that the proposed retrospective artefact correction
methods facilitate reliable high-resolution spinal cord DTI and thus
might be beneficial for clinical research.

To achieve improved eddy current and motion correction, different
pre-processing steps were necessary: (a) chopping the field-of-view to
eliminate non-spine tissue, (b) interpolation to higher in-plane spatial
resolution to increase effective resolution of the tensor estimates, and
(c) slice-wise correction of a minimum of affine spatial transformation
parameters which explained most of the distortion. Unlike the slice-
wise registration, the 3D-affine eddy current and motion correction that
worked successfully when applied on brain-DTI data (e.g. (Mohammadi
et al,, 2010; Mufioz Maniega et al., 2007)) could lead to misregistrations
and introduce a bias in the FA values on spinal cord DTI data. One reason
for a difference in the performance of 3D-affine vs. slice-wise registration
is image distortions due to physiology-related motion in the x-y plane
that can vary along the slice-select direction (z-axis; Yiannakas et al,
2012). Yiannakas et al. (2012) achieved significant improvement in
image quality by reducing the amount of non-rigid-body motion during
spinal cord MRI using a cervical collar. In spinal cord DTI, the acquisition
time from the first to the last slice is about 30 times longer (10xTR=
2900 ms) than the acquisition time for one single slice (about 100 ms),
leading to differential movement perpendicular to the z-axis direction
and non-rigid-body-like image distortions. These non-rigid-body-like dis-
tortions can be approximated piecewise by linear transformations along
the x- and y-direction (here we used translation and scaling) and thus ef-
fectively corrected using a slice-wise registration.

Despite the latter problem, 3D-affine registration is often applied
to spinal cord DTI data during post-processing. One approach to ad-
dress the misregistrations is to remove volume-outliers by manual
user intervention. However, this approach might affect the reproduc-
ibility and suffers from selection bias. Here we present an alternative
approach, which wuses the robust-tensor-fitting framework to
down-weight volume-outliers and thus to correct for bias in the esti-
mated DW and FA images.

Instead of correcting eddy current image distortions retrospec-
tively, an eddy current compensated diffusion sequence can be
used, e.g., the twice-refocusing spin-echo sequence (Reese et al.,
2003). We acquired one DTI pilot dataset using the twice-refocusing
spin-echo sequence and discarded this option for eddy current com-
pensation in this study, because it led to an increase in echo time by
about 22% and thus to a significant reduction of the signal to noise
ratio (data not shown).

The optimum between numbers of non-collinear and collinear (i.e.
averaged) diffusion directions is controversially discussed (Hasan,
2007; Jones and Basser, 2004; Santarelli et al., 2010). In spinal cord
DTI often the minimum of six non-collinear diffusion directions and
a maximum amount of averages are acquired (e.g. Finsterbusch,
2012; Rossi et al., 2008; Wilm et al., 2009). Here, we acquired four av-
erages and 30 different diffusion directions. Our approach is motivat-
ed by the fact that the robust fitting method works best for more than
30 diffusion directions (Chang et al., 2005).

While motion and eddy current correction methods only reduce geo-
metrical misalignment of the images (Mangin et al., 2002; Mohammadi et
al., 2010), the robust tensor fitting approach down-weights outliers in the
diffusion signal (Chang et al,, 2005; Mohammadi et al., 2012a; Zwiers,
2010) and thus corrects for both, image-intensity and geometrical-
misalignment-driven outliers (Figs. 5 and 6). Robust fitting might be of

particular interest for DTI data in the spinal cord, where physiological ef-
fects can lead to signal-modulations, which bias the diffusion signal, and
to local (non-linear) deformations that cannot be addressed by (affine)
image registration methods. Furthermore, robust fitting minimizes the
impact of error-prone processing step (e.g. 3D-affine registrations for
spinal cord DTI). However, robust fitting methods have to be treated
with caution, because they can lead to a less stable tensor fit (i.e. an
increased condition number in the matrix inversion) and thus to noise en-
hancement (see, e.g., Mohammadi et al,, 2012a; Skare et al., 2000), if
too many data points are down-weighted. Furthermore, if the
ordinary-least-square estimation of the diffusion tensor, which is used
as a baseline, is strongly biassed, the robust tensor fitting might fail.
Therefore, we recommend using first slice-wise registration to reduce
the misalignment within the DTI dataset and thus to improve the
ordinary-least-square tensor estimation, and afterwards robust fitting to
down-weight residual misalignment artefacts and outliers in the diffusion
signal.

While the CNR analysis was important to show the advantage of
the processing for the DTI data (e.g. to improve DTI data quality),
one might argue that the ROI definition on the basis of the FA images
using method (vi) may result in a somewhat circular CNR analyses
(Fig. 9). In particular, it may favour method (vi), which served as
the anatomical reference. To show, that the method (vi) most effec-
tively reduced the noise and bias in the data, we employed a jackknife
analysis, which does not favour any post-processing method and
yielded the same principal results.

We note that the image acquisition parameters for subject 7 and 9
were slightly different from the rest. It could be argued that the differ-
ent parameters may have led to small differences in data quality,
which in theory could bias our findings. However, we also performed
all group analyses excluding subject 7 and 9 (data not shown) and ob-
served the same fundamental results (i.e. best results were obtained
using slice-wise eddy current and motion correction and robust
fitting). Thus, we considered the effect of slightly different acquisition
parameters to be negligible.

Conclusion

Post-processing in spinal cord DTI is possible and should be applied,
because it allows for better distinction between grey and white matter
within the spinal cord, and reduces the intra- and inter-subject variance.
In clinical studies involving spinal cord pathologies and high-end re-
search, where reliable results are crucial and scan time is limited, the
use of the proposed robust tensor processing might be of particular
benefit.

Acknowledgment

The Wellcome Trust Centre for Neuroimaging is supported by core
funding from the Wellcome Trust 091593/Z/10/Z. This work was
supported by the Wellcome Trust and Swiss Paraplegic Research, Nottwil,
Switzerland. SM was supported by the Deutsche Forschungsgemeinschaft
(DFG, MO 2397/1-1). Open access to the publication was supported by
the Wellcome Trust.

References

Agosta, F., Absinta, M., Sormani, M.P., Ghezzi, A., Bertolotto, A., Montanari, E., Comi, G.,
Filippi, M., 2007. In vivo assessment of cervical cord damage in MS patients: a lon-
gitudinal diffusion tensor MRI study. Brain 130 (8), 2211-2219.

Alexander, A.L, Wu, Y.C,, Venkat, P.C., 2006. Hybrid diffusion imaging (HYDI). Confer-
ence Proceedings: IEEE Engineering in Medicine and Biology Society. Conference,
1, pp. 2245-2248.

Bach, D.R,, Behrens, T.E., Garrido, L., Weiskopf, N., Dolan, R.J., 2011. Deep and superficial
amygdala nuclei projections revealed in vivo by probabilistic tractography. J.
Neurosci. 31 (2), 618-623.

Bammer, R., Markl, M., Barnett, A., Acar, B., Alley, M.T., Pelc, N.J., Glover, G.H., Moseley,
M.E., 2003. Analysis and generalized correction of the effect of spatial gradient field
distortions in diffusion-weighted imaging. Magn. Reson. Med. 50 (3), 560-569.



384 S. Mohammadi et al. / Neurolmage 70 (2013) 377-385

Barakat, N., Mohamed, F.B., Hunter, L.N., Shah, P., Faro, S.H., Samdani, A.F., Finsterbusch,
J., Betz, R., Gaughan, J., Mulcahey, M ., 2012. Diffusion tensor imaging of the normal
pediatric spinal cord using an inner field of view echo-planar imaging sequence.
AJNR Am. J. Neuroradiol. 33 (6), 1127-1133.

Basser, P.J., Mattiello, J., LeBihan, D., 1994. Estimation of the effective self-diffusion ten-
sor from the NMR spin echo. J. Magn. Reson. B 103 (3), 247-254.

Budde, M.D., Kim, J.H,, Liang, H.F,, Schmidt, RE., Russell, ].H., Cross, AH., Song, SK.,
2007. Toward accurate diagnosis of white matter pathology using diffusion tensor
imaging. Magn. Reson. Med. 57 (4), 688-695.

Chang, L.C,, Jones, D.K., Pierpaoli, C., 2005. RESTORE: robust estimation of tensors by
outlier rejection. Magn. Reson. Med. 53 (5), 1088-1095.

Chung, S., Courcot, B., Sdika, M., Moffat, K., Rae, C., Henry, R.G., 2010. Bootstrap quanti-
fication of cardiac pulsation artifact in DTI. Neurolmage 49 (1), 631-640.

Ciccarelli, 0., Wheeler-Kingshott, C.A., McLean, M.A,, Cercignani, M., Wimpey, K., Miller, D.H.,
Thompson, AJ., 2007. Spinal cord spectroscopy and diffusion-based tractography to as-
sess acute disability in multiple sclerosis. Brain 130 (Pt 8), 2220-2231.

Cohen-Adad, J., Leblond, H., Delivet-Mongrain, H., Martinez, M., Benali, H., Rossignol, S.,
2011. Wallerian degeneration after spinal cord lesions in cats detected with diffu-
sion tensor imaging. Neurolmage 57 (3), 1068-1076.

Deppe, M., Duning, T., Mohammadi, S., Schwindt, W., Kugel, H., Knecht, S., Ringelstein, E.B.,
2007. Diffusion-tensor imaging at 3 T: detection of white matter alterations in neurolog-
ical patients on the basis of normal values. Investig. Radiol. 42 (6), 338-345.

Dietz, V., Curt, A., 2006. Neurological aspects of spinal-cord repair: promises and chal-
lenges. Lancet Neurol. 5 (8), 688-694.

Draganski, B., Ashburner, J., Hutton, C., Kherif, F., Frackowiak, R.S., Helms, G.,
Weiskopf, N., 2011. Regional specificity of MRI contrast parameter changes in
normal ageing revealed by voxel-based quantification (VBQ). Neurolmage 55
(4), 1423-1434.

Duning, T., Warnecke, T., Mohammadi, S., Lohmann, H., Schiffbauer, H., Kugel, H.,
Knecht, S., Ringelstein, E.B., Deppe, M., 2009. Pattern and progression of white-
matter changes in a case of posterior cortical atrophy using diffusion tensor imag-
ing. J. Neurol. Neurosurg. Psychiatry 80 (4), 432-436.

Eippert, F., Finsterbusch, J., Bingel, U., Biichel, C., 2009. Direct evidence for spinal cord
involvement in placebo analgesia. Science 326 (5951), 404.

Enck, P., Greving, L, Klosterhalfen, S., Wietek, B., 2006. Upper and lower gastrointestinal
motor and sensory dysfunction after human spinal cord injury. Prog. Brain Res.
152, 373-384.

Finsterbusch, J., 2009a. Eddy-current compensated diffusion weighting with a single
refocusing RF pulse. Magn. Reson. Med. 61 (3), 748-754.

Finsterbusch, J., 2009b. High-resolution diffusion tensor imaging with inner field-of-
view EPL ]. Magn. Reson. Imaging 29 (4), 987-993.

Finsterbusch, J., 2012. Improving the performance of diffusion-weighted inner field-of-
view echo-planar imaging based on 2D-selective radiofrequency excitations by
tilting the excitation plane. ]. Magn. Reson. Imaging 35 (4), 984-992.

Freund, P., Weiskopf, N., Ward, N.S., Hutton, C., Gall, A., Ciccarelli, O., Craggs, M., Friston,
K., Thompson, AJ., 2011. Disability, atrophy and cortical reorganization following
spinal cord injury. Brain 134 (6), 1610-1622.

Freund, P., Curt, A, Friston, K., Thompson, A., 2012a. Tracking changes following spinal
cord injury: insights from neuroimaging. Neuroscientist. http://dx.doi.org/
10.1177/1073858412449192.

Freund, P., Wheeler-Kingshott, C.A., Nagy, Z., Gorgoraptis, N., Weiskopf, N., Friston, K.,
Thompson, AJ., Hutton, C., 2012b. Axonal integrity predicts cortical reorganisation
following cervical injury. J. Neurol. Neurosurg. Psychiatry 83 (6), 629-637.

Freund, P., Schneider, T., Nagy, Z., Hutton, C,, Weiskopf, N., Friston, K., Wheeler-Kingshott,
CA., Thompson, AJ., 2012c. Degeneration of the injured cervical cord is associated
with remote changes in corticospinal tract integrity and upper limb impairment. PLoS
One (12), e51729. http://dx.doi.org/10.1371/journal.pone.0051729.

Friston, KJ., Ashburner, ].T., Kiebel, S.J., Nichols, T.E., Penny, W.D., 2006. Statistical Parametric
Mapping: The Analysis of Functional Brain Images, 1st ed. Academic Press, London.
Gallichan, D., Scholz, ]., Bartsch, A., Behrens, T.E., Robson, M.D., Miller, K.L., 2010. Ad-
dressing a systematic vibration artifact in diffusion-weighted MRI. Hum. Brain

Mapp. 31 (2), 193-202.

Hasan, K.M., 2007. A framework for quality control and parameter optimization in dif-
fusion tensor imaging: theoretical analysis and validation. Magn. Reson. Imaging
25 (8), 1196-1202.

Haselgrove, ].C.,, Moore, ].R., 1996. Correction for distortion of echo-planar images used
to calculate the apparent diffusion coefficient. Magn. Reson. Med. 36 (6), 960-964.

Heidemann, R, et al., 2009. High resolution single-shot diffusion weighted imaging
with a combination of zoomed EPI and parallel imaging. Proc. Intl. Soc. Magn.
Reson. Med. 17, 2736.

Jezzard, P., Barnett, A.S., Pierpaoli, C., 1998. Characterization of and correction for eddy cur-
rent artifacts in echo planar diffusion imaging. Magn. Reson. Med. 39 (5), 801-812.

Jones, D.K,, Basser, PJ., 2004. “Squashing peanuts and smashing pumpkins”: how noise
distorts diffusion-weighted MR data. Magn. Reson. Med. 52 (5), 979-993.

Keller, S.S., Ahrens, T., Mohammadi, S., Moddel, G., Kugel, H., Ringelstein, E.B., Deppe,
M., 2011. Microstructural and volumetric abnormalities of the putamen in juvenile
myoclonic epilepsy. Epilepsia 52 (9), 1715-1724.

Koay, C.G., Chang, L.C., Carew, J.D., Pierpaoli, C,, Basser, P.J., 2006. A unifying theoretical
and algorithmic framework for least squares methods of estimation in diffusion
tensor imaging. ]. Magn. Reson. 182 (1), 115-125.

Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., Laval-Jeantet, M., 1986.
MR imaging of intravoxel incoherent motions: application to diffusion and perfu-
sion in neurologic disorders. Radiology 161 (2), 401-407.

Lotze, M., Laubis-Herrmann, U., Topka, H., Erb, M., Grodd, W., 1999. Reorganization in
the primary motor cortex after spinal cord injury - A functional Magnetic Reso-
nance (fMRI) study. Restor. Neurol. Neurosci. 14 (2-3), 183-187.

Lotze, M., Laubis-Herrmann, U., Topka, H., 2006. Combination of TMS and fMRI reveals
a specific pattern of reorganization in M1 in patients after complete spinal cord in-
jury. Restor. Neurol. Neurosci. 24 (2), 97-107.

Lundell, H., Barthelemy, D., Biering-Sgrensen, F., Cohen-Adad, ]J., Nielsen, ].B., Dyrby,
T.B., 2013. Fast diffusion tensor imaging and tractography of the whole cervical spi-
nal cord using point spread function corrected echo planar imaging. Magn. Reson.
Med. 69 (1), 144-149.

Lutti, A., Hutton, C,, Finsterbusch, J., Helms, G., Weiskopf, N., 2010. Optimization and
validation of methods for mapping of the radiofrequency transmit field at 3T.
Magn. Reson. Med. 64 (1), 229-238.

Lutti, A., Stadler, ]., Josephs, O., Windischberger, C., Speck, O., Bernarding, J., Hutton, C.,
Weiskopf, N., 2012. Robust and fast whole brain mapping of the RF transmit field
B1 at 7T. PloS One 7 (3), e32379. http://dx.doi.org/10.1371/journal.pone.0032379.

Maier, S.E., Mamata, H., 2005. Diffusion tensor imaging of the spinal cord. Ann. N. Y.
Acad. Sci. 1064, 50-60.

Mangin, J.F., Poupon, C,, Clark, C, Le Bihan, D., Bloch, I, 2002. Distortion correction and robust
tensor estimation for MR diffusion imaging. Med. Image Anal. 6 (3), 191-198.

Meinzer, M., Mohammadi, S., Kugel, H., Schiffbauer, H., Floel, A., Albers, J., Kramer, K.,
Menke, R, Baumgdrtner, A., Knecht, S., Breitenstein, C., Deppe, M., 2010. Integrity
of the hippocampus and surrounding white matter is correlated with language
training success in aphasia. Neurolmage 53 (1), 283-290.

Miller, K.L., McNab, J.A., Jbabdi, S., Douaud, G., 2012. Diffusion tractography of post-
mortem human brains: optimization and comparison of spin echo and steady-
state free precession techniques. Neurolmage 59 (3), 2284-2297.

Mohammadi, S., Méller, H.E., Kugel, H., Miiller, D.K., Deppe, M., 2010. Correcting eddy
current and motion effects by affine whole-brain registrations: Evaluation of
three-dimensional distortions and comparison with slicewise correction. Magn.
Reson. Med. 64 (4), 1047-1056. http://dx.doi.org/10.1002/mrm.22501.

Mohammadi, S., Hutton, C., Nagy, Z., Josephs, 0., Weiskopf, N., 2012a. Retrospective
correction of physiological noise in DTI using an extended tensor model
and peripheral measurements. Magn. Reson. Med. http://dx.doi.org/10.1002/
mrm.24467.

Mohammadi, S., Keller, S.S., Glauche, V., Kugel, H., Jansen, A., Hutton, C., Fl6el, A., Deppe,
M., 2012b. The influence of spatial registration on detection of cerebral
asymmetries using voxel-based statistics of fractional anisotropy images and
TBSS. PLoS One 7 (6), e36851. http://dx.doi.org/10.1371/journal.pone.0036851.

Mohammadi, S., Nagy, Z., Hutton, C., Josephs, O., Weiskopf, N., 2012c. Correction of vi-
bration artifacts in DTI using phase-encoding reversal (COVIPER). Magn. Reson.
Med. 68 (3), 882-889. http://dx.doi.org/10.1002/mrm.23308.

Mohammadi, S., Nagy, Z., Moller, H.E., Symms, M.R., Carmichael, D.W., Josephs, O.,
Weiskopf, N., 2012d. The effect of local perturbation fields on human DTI: Charac-
terisation, measurement and correction. Neurolmage 60 (1), 562-570. http://
dx.doi.org/10.1016/j.neuroimage.2011.12.009.

Morelli, ].N., Runge, V.M., Feiweier, T., Kirsch, J.E., Williams, K.W., Attenberger, U.L,
2010. Evaluation of a modified Stejskal-Tanner diffusion encoding scheme, permit-
ting a marked reduction in TE, in diffusion-weighted imaging of stroke patients at
3 T. Investig. Radiol. 45 (1), 29-35.

Mueller, K., Anwander, A., Moller, H.E., Horstmann, A., Lepsien, J., Busse, F., Mohammadi, S.,
Schroeter, M.L, Stumvoll, M., Villringer, A., Pleger, B., 2011. Sex-dependent influences
of obesity on cerebral white matter investigated by Diffusion-Tensor Imaging. PLoS
One 6 (4). http://dx.doi.org/10.1371/journal.pone.0018544.

Mulcahey, M., Samdani, A., Gaughan, J., Barakat, N., Faro, S., Betz, RR, Finsterbusch, J.,
Mohamed, F.B., 2012. Diffusion tensor imaging in pediatric spinal cord injury: prelimi-
nary examination of reliability and clinical correlation. Spine 37 (13), E797-E803.

Muiioz Maniega, S., Bastin, M.E., Armitage, P.A., 2007. A quantitative comparison of two
methods to correct eddy current-induced distortions in DT-MRI. Magn. Reson. Im-
aging 25 (3), 341-349.

Nagy, Z., Weiskopf, N., Alexander, D.C., Deichmann, R., 2007. A method for improving
the performance of gradient systems for diffusion-weighted MRI. Magn. Reson.
Med. 58 (4), 763-768.

Pierpaoli, C., Basser, P.J., 1996. Toward a quantitative assessment of diffusion anisotro-
py. Magn. Reson. Med. 36 (6), 893-906.

Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R,, Penix, LR, Virta, A., Basser, P., 2001. Water
diffusion changes in Wallerian degeneration and their dependence on white mat-
ter architecture. Neurolmage 13 (6), 1174-1185.

Reese, T.G., Heid, O., Weisskoff, R.M., Wedeen, V.J., 2003. Reduction of eddy-current in-
duced distortion in diffusion MRI using a twice-refocused spin echo. Magn. Reson.
Med. 49 (1), 177-182.

Roser, F., Ebner, F.H., Maier, G., Tatagiba, M., Ndgele, T., Klose, U., 2010. Fractional an-
isotropy levels derived from diffusion tensor imaging in cervical syringomyelia.
Neurosurgery 67 (4), 901-905.

Rossi, C., Boss, A., Steidle, G., Martirosian, P., Klose, U., Capuani, S., Maraviglia, B.,
Claussen, C.D., Schick, F., 2008. Water diffusion anisotropy in white and gray mat-
ter of the human spinal cord. J. Magn. Reson. Imaging 27 (3), 476-482.

Santarelli, X., Garbin, G., Ukmar, M., Longo, R., 2010. Dependence of the fractional an-
isotropy in cervical spine from the number of diffusion gradients, repeated acqui-
sition and voxel size. Magn. Reson. Imaging 28 (1), 70-76.

Skare, S., Andersson, J.L., 2001. On the effects of gating in diffusion imaging of the brain
using single shot EPI. Magn. Reson. Imaging 19 (8), 1125-1128.

Skare, S., Hedehus, M., Moseley, M.E., Li, T.Q., 2000. Condition number as a measure of
noise performance of diffusion tensor data acquisition schemes with MRI. J. Magn.
Reson. Imaging 147 (2), 340-352.

Speck, O., Hennig, ]., Zaitsev, M., 2006. Prospective real-time slice-by-slice motion cor-
rection for fMRI in freely moving subjects. Magma 19 (2), 55-61.

Sprenger, C., Eippert, F., Finsterbusch, ]., Bingel, U., Rose, M., Biichel, C., 2012. Attention
modulates spinal cord responses to pain. Curr. Biol. 22 (11), 1019-1022.


http://dx.doi.org/10.1177/1073858412449192
http://dx.doi.org/10.1371/journal.pone.0051729
http://dx.doi.org/10.1371/journal.pone.0032379
http://dx.doi.org/10.1002/mrm.22501
http://dx.doi.org/10.1002/mrm.24467
http://dx.doi.org/10.1002/mrm.24467
http://dx.doi.org/10.1371/journal.pone.0036851
http://dx.doi.org/10.1002/mrm.23308
http://dx.doi.org/10.1016/j.neuroimage.2011.12.009
http://dx.doi.org/10.1371/journal.pone.0018544

S. Mohammadi et al. / Neurolmage 70 (2013) 377-385 385

Turner, R, Le Bihan, D., Maier, ]., Vavrek, R., Hedges, LK., Pekar, J., 1990. Echo-planar
imaging of intravoxel incoherent motion. Radiology 177 (2), 407-414.

Walker, L., Chang, L.C., Koay, C.G., Sharma, N., Cohen, L., Verma, R., Pierpaoli, C., 2011.
Effects of physiological noise in population analysis of diffusion tensor MRI data.
Neurolmage 54 (2), 1168-1177.

Warnecke, T., Duning, T., Schirmacher, A., Mohammadj, S., Schwindt, W., Lohmann, H.,
Dziewas, R., Deppe, M., Ringelstein, E.B., Young, P., 2010. A novel splice site muta-
tion in the SPG7 gene causing widespread fiber damage in homozygous and het-
erozygous subjects. Mov. Disord. 25 (4), 413-420.

Wedeen, VJ., Hagmann, P., Tseng, W.Y., Reese, T.G., Weisskoff, R.M., 2005. Mapping
complex tissue architecture with diffusion spectrum magnetic resonance imaging.
Magn. Reson. Med. 54 (6), 1377-1386.

Wheeler-Kingshott, C.A., Hickman, S.J., Parker, G.J., Ciccarelli, O., Symms, M.R., Miller,
D.H., Barker, G.J., 2002a. Investigating cervical spinal cord structure using axial dif-
fusion tensor imaging. Neurolmage 16 (1), 93-102.

Wheeler-Kingshott, C.A., Parker, G.J., Symms, M.R., Hickman, S.J., Tofts, P.S., Miller, D.H.,
Barker, GJ., 2002b. ADC mapping of the human optic nerve: increased resolution,

coverage, and reliability with CSF-suppressed ZOOM-EPL. Magn. Reson. Med. 47
(1), 24-31.

Wietek, B.M., Baron, C.H., Erb, M., Hinninghofen, H., Badtke, A., Kaps, H.P., Grodd, W.,
Enck, P., 2008. Cortical processing of residual ano-rectal sensation in patients
with spinal cord injury: an fMRI study. Neurogastroenterol. Motil. 20 (5), 488-497.

Wilm, BJ., Svensson, ]., Henning, A., Pruessmann, K.P., Boesiger, P., Kollias, S.S., 2007.
Reduced field-of-view MRI using outer volume suppression for spinal cord diffu-
sion imaging. Magn. Reson. Med. 57 (3), 625-630.

Wilm, BJ., Gamper, U., Henning, A., Pruessmann, K.P., Kollias, S.S., Boesiger, P., 2009.
Diffusion-weighted imaging of the entire spinal cord. NMR Biomed. 22 (2),
174-181.

Yiannakas, M.C,, Kearney, H., Samson, R.S., Chard, D.T., Ciccarelli, O., Miller, D.H,,
Wheeler-Kingshott, C.A., 2012. Feasibility of grey matter and white matter seg-
mentation of the upper cervical cord in vivo: a pilot study with application to
magnetisation transfer measurements. Neurolmage 63 (3), 1054-1059.

Zwiers, M.P., 2010. Patching cardiac and head motion artefacts in diffusion-weighted
images. Neurolmage 53 (2), 565-575.



	The impact of post-processing on spinal cord diffusion tensor imaging
	Introduction
	Methods
	Subjects
	Data acquisition
	Pre-processing and tensor estimation
	Analysis: comparing different tensor processing techniques
	Visual inspection of DW and FA maps using different tensor processing methods
	A Jackknife-based assessment of the variance of the FA map for each post-processing method
	Group comparison of GM and WM FA-values and FA-based CNR using different tensor processing methods

	Results
	Visual inspection of DW images and FA maps using different tensor processing methods
	Relating FA-bias to tensor-fit error and outliers
	A jackknife-based assessment of the variance of the FA map for each post-processing method
	Group comparison of GM and WM FA-values and FA-based CNR using different tensor processing methods

	Discussion
	Conclusion
	Acknowledgment
	References


