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ABSTRACT

Motivation: Much research effort has been devoted to the identifi-

cation of enriched gene sets for microarray experiments. However,

identified gene sets are often found to be inconsistent among

independent studies. This is probably owing to the noisy data of

microarray experiments coupled with small sample sizes of individual

studies. Therefore, combining information from multiple studies is

likely to improve the detection of truly enriched gene classes.

As more and more data become available, it calls for statistical

methods to integrate information from multiple studies, also known

as meta-analysis, to improve the power of identifying enriched gene

sets.

Results: We propose a Bayesian model that provides a coherent

framework for joint modeling of both gene set information and gene

expression data from multiple studies, to improve the detection of

enriched gene sets by leveraging information from different sources

available. One distinct feature of our method is that it directly models

the gene expression data, instead of using summary statistics, when

synthesizing studies. Besides, the proposed model is flexible and

offers an appropriate treatment of between-study heterogeneities

that frequently arise in the meta-analysis of microarray experiments.

We show that under our Bayesian model, the full posterior conditionals

all have known distributions, which greatly facilitates the MCMC com-

putation. Simulation results show that the proposed method can im-

prove the power of gene set enrichment meta-analysis, as opposed to

existing methods developed by Shen and Tseng (2010, Bioinformatics,

26, 1316–1323), and it is not sensitive to mild or moderate deviations

from the distributional assumption for gene expression data. We

illustrate the proposed method through an application of combining

eight lung cancer datasets for gene set enrichment analysis, which

demonstrates the usefulness of the method.
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1 INTRODUCTION

Although microarray analysis initially focused on identifying dif-

ferentially expressed (DE) genes, increased attention has been

paid to pathway or gene set analysis, which aims to detect altered

biological pathways or other pre-defined gene classes rather than

individual genes (e.g. Barry et al., 2008; Efron and Tibshirani,

2007; Hosack et al., 2003; Kim and Volsky, 2005; Subramaniana

et al., 2005; Tian et al., 2005). Gene sets are usually defined based

on gene functions, ontology information, chromosomal proxim-

ity or known regulatory relationships. Gene sets that are altered

in responding to changes in phenotypes or treatments may pro-

vide important insights into molecular functions and gene regu-

latory relationships underlying biological processes. Also, it has

been reported that gene set analysis tends to yield more repro-

ducible and interpretable results than single gene analysis

(Manoli et al., 2006; Subramaniana et al., 2005).
A major type of the gene set analysis is to determine whether a

pre-defined category of genes is enriched (i.e. over-represented)

by DE genes, often referred to as gene set (or pathway) enrich-

ment analysis. A gene set is claimed to be enriched if it contains

more DE genes than would be expected by chance. Many meth-

ods have been developed in gene set enrichment analysis for a

single genomic study. For recent reviews, see Ackermann and

Strimmer (2009), Hung et al. (2012) and the references therein.
Although plenty of gene expression data are publicly available

now, it is challenging to integrate information of gene set enrich-

ment analysis from multiple genomic studies targeting the same

biological problem. Often sample sizes of individual studies are

not large and microarray data are noisy, making estimation and

inference highly variable. This often leads to inconsistent conclu-

sions across studies. Integrative analysis of independent studies

may facilitate information sharing and improve the power of

detecting truly enriched gene classes, as well as increase reprodu-

cibility and interpretability. However, direct combination of mul-

tiple microarray datasets such as stacking them into one is

extremely difficult owing to the incompatibility of data generated

from various microarray platforms and different versions within

the same platform (Mah et al., 2004). Therefore, meta-analysis, a

systematic statistical synthesis of data from multiple studies, has

been widely used to aggregate evidence from related studies

(Manoli et al., 2006). Most meta-analyses currently target

gene-level analysis with the exception of Shen and Tseng

(2010) who, for the first time, systematically developed and eval-

uated meta-analysis for pathway enrichment analysis in
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microarray studies (Tseng et al., 2012). They proposed three

methods, namely, meta-analysis for pathway enrichment at

gene level (MAPE_G), meta-analysis for pathway enrichment

at pathway level (MAPE_P) and meta-analysis for pathway en-

richment integrated (MAPE_I), all based on the popular method

GSEA (Subramanian et al., 2005) for enrichment analysis. All

these methods consist of two key stages. The first is to conduct

differential expression analysis to obtain gene-level statistics for

each individual study. The second stage is to conduct pathway

enrichment analysis and meta-analysis in either order, where the

order distinguishes MAPE_G from MAPE_P: MAPE_G first

conducts meta-analysis to combine the gene-level results over

all the studies, and then conduct pathway enrichment analysis

just once using the combined gene-level statistics; by contrast,

MAPE_P conducts pathway enrichment analysis for each indi-

vidual study and then combines the gene-set level results to get

the overall gene-set statistics for a final conclusion. The third

method MAPE_I further combines the end results from

MAPE_G and MAPE_P for potential improvement in perform-

ance. See the top two panels of Figure 1 for the MAPE diagrams.

Undoubtedly, by formalizing these simple and natural ideas,

Shen and Tseng (2010) made an initial but important attempt

in meta-analysis of gene set enrichment. However, such sequen-

tial approaches in analysis might cause information loss by just

focusing on summary results from the previous steps without

using all the expression data available. Further, when there

exist various sources of heterogeneities among different datasets,

these methods may lack power in detection without explicitly

modeling the phenomena.
When data from component studies are available, using all

data in a fully integrated model-based framework is in general

more efficient than a sequential approach using summary statis-

tics only. Specifically, the model should be able to account for

between-study heterogeneities that are widely present in micro-

array data. Heterogeneities include, among others, varying

experiment designs that lead to non-uniform inclusion of

genes, unequal sample sizes and data qualities. Moreover, the

gene expression measures in component studies may have differ-

ent means and variances depending on platforms and pre-pro-

cessing procedures. In this article, we propose a flexible Bayesian

model that can offer an appropriate treatment of these problems

when aggregating multiple studies to identify enriched gene sets.

Our Bayesian method provides a natural way for data synthesis

by incorporating model and parameter uncertainties involved in

all studies. More importantly, it furnishes an integrated Bayesian

framework for jointly modeling gene expression data from mul-

tiple studies and gene set information. This will allow researchers

to conduct differential expression analysis, gene set enrichment

analysis and meta-analysis simultaneously, all based on objective

Bayesian posterior inference, which may yield more reliable sci-

entific findings than the existing sequential approaches. See

Figure 1 for comparison with the MAPE methods.

2 MODEL

Suppose there are K independent studies considered in a

meta-analysis and Ik samples in study k, where k ¼ 1, ::::::K.
Let J be the total number of distinct genes in the genome of

interest that appear in at least one of the K studies. Let Vjk be

an indicator variable for gene j being included in study k. Here,

different studies are allowed to have different genes from the

same genome, which offers great flexibility in the inclusion of

potential studies for meta-analysis. Further, we assume that a

gene can have different expression intensity measures but share

the same DE/EE status in all constituent studies. In other words,

a DE (EE) gene will always be differentially (equally) expressed

in all the studies but the measurements of its expression can have

different magnitudes across studies, which, again, permits more

studies to be considered in the analysis.
Given Vjk ¼ 1, let Yijk be the expression intensity (after

pre-processing procedures and possibly some transformation)

for gene j in sample i of study k, where

i ¼ 1, . . . , Ik, j ¼ 1, . . . , J and k ¼ 1, . . . ,K: A binary phenotype

label Xik is given to sample i of study k: Xik ¼ 0 represents a

control sample, and Xik ¼ 1 represents a case sample in study k.

The mean expression intensity of a gene is assumed to be the

same for all samples of each phenotype in a study, but in differ-

ent studies the mean intensity can be different for the given gene.

A common variance �2k of measurement errors is assumed for all

genes in study k. When the sample sizes are small or the

signal-to-noise ratios are low in one or more studies, as is typical

in many meta-analyses, this assumption would allow for infor-

mation pooling across genes under a hierarchical Bayes setup,

which is useful in stabilizing variance estimation. However, in

other situations, the common variance assumption might be

Fig. 1. Flow charts of the MAPE algorithms and the proposed method.

GE stands for gene expression; DE stands for differential expression and

GSEA stands for Gene Set Enrichment Analysis (Subramaniana et al.,

2005). Note that MAPEs are all based on GSEA for enrichment analysis

863

Bayesian meta-analysis of gene set enrichment studies



restrictive, and relaxing �2ks to gene-specific �2jks can be done

(see discussion in Section 6). The model is specified as follows:

YijkjVjk ¼ 1,�jk,�jk,Xik, �
2
k � N �jk þ �jkXik, �

2
k

� �
, ð1Þ

where �jk is the baseline expression level of gene j in study k (i.e.

the mean intensity for the control samples), and �jk is the change
in expression intensity between the different phenotypes. Let

nj � ðnj0, njþ, nj�Þ be a status indicator vector for gene j: if gene j

is down-regulated (DR)/up-regulated (UR)/equally expressed

(EE), then nj ¼ ð0, 0, 1Þ/(0,1,0)/(1,0,0). Because the expression

change �jk depends on gene j’s status, we assume that �jk follow

a normal mixture distribution with three modes, namely 0, bkþ
and bk�, which correspond toEE,URandDRgenes, respectively:

�jkjnjd ¼ 1 � N bkd, �
2
kd

� �
, where d 2 f0, þ ,�g, bk0 � 0 and

bk�505bkþ. Further, we assume that the baseline �jk follow a

normal distribution with study-specific mean and variance,

namely �jk � Nðak, �
2
kÞ. The indicator vector ðnj0, njþ, nj�Þ is

assumed to follow a multinomial distribution with the parameter

vector �: nj0, njþ, nj�
� �

j� �Multinom½1, �0, �þ, ��ð Þ�, where

� ¼ ð�0, �þ, ��Þ can be interpreted as the probability of EE, UR

and DR genes in the overall gene list.

To account for uncertainties in the parameters introduced by

the model and to avoid subjective inference, we specify

non-informative priors on �, bkþ, bk� and ak:

� � Dirichletð1, 1, 1Þ, bkþ � Unifð0,DÞ, bk� � Unifð�D, 0Þ,

ak � Unifð�L,LÞ, where D is chosen to be the maximum abso-

lute value of changes in gene expression between different pheno-

types in all K studies, and L is set to the maximum absolute value

of gene expression with phenotype 0 in all K studies. Further, all

variance components are given the Inverse-Gamma (w, v) prior.

Here, w and v are small numbers (e.g. w ¼ v ¼ 0:01) so that the

prior density reflects vague prior knowledge on those variance

parameters.
Now we proceed to model the gene set information. We

denote the class of all pre-defined gene sets considered in the

meta-analysis by Z, and let G be the total number of gene sets.

We represent Z by a G� J matrix in which all elements are

binary variables. Let Zgj ¼ 1, if gene j is in set g and Zgj ¼ 0

otherwise. Because we do not require
PG

g¼1 Zgj ¼ 1 for each gene

j, overlapping genes are allowed among different gene sets. Let

�gd ¼ PrðZgj ¼ 1jnjd ¼ 1Þ be the conditional probability that a

gene is in set g given that the gene status is d, where

d 2 0, þ ,�f g. Then, for each set g and each gene j, the binary

variable Zgj can be modeled by a Bernoulli distribution condi-

tional on the status of gene j: Zgjjnjd ¼ 1 � Bernoulli �gd
� �

, where

d 2 f0, þ ,�g. Here ðnj0, njþ, nj�Þ is the key vector that connects

the gene sets with the expression data. If �g0 ¼ �gþ ¼ �g� for set

g, then Zgj is independent of nj; that is, whether any gene belongs

to set g does not depend on whether the gene is EE/UR/DR.

Further, if �g0 ¼ �gþ ¼ �g� holds for all the gene sets, then the

gene expression data Y (the collection of all Yijks) become inde-

pendent of the gene set data Z. However, in many practical

situations, genes within certain pre-defined gene sets (e.g. func-

tional groups, biological pathways) are likely to be co-expressed,

which leads to positive correlation in their expression levels (Pan,

2006; Wei and Pan, 2008; Wang et al., 2012). These genes, if DE,

tend to be altered in the same direction. Thus, �g0 ¼ �gþ ¼ �g�
may not hold for some of the G gene sets so that Y and Z are

linked together because both are conditional on n (the collection

of all njs). As will be shown later, through such a simple condi-

tional probability setup, our model leads to an efficient Markov

chain Monte Carlo (MCMC) algorithm and our proposed

method compares favorably with competing methods.

Next, we assign Beta priors to �gds for d 2 0, þ ,�f g and

g ¼ 1, :::,G: �gd�
iid
Beta ��dng, �

�
dðJ� ngÞ

� �
, where ng is the

number of genes in the gene set g, and ��d represents the true

proportion of genes with status d in the overall gene list.

Although the values of ��ds are unknown, they can be roughly

estimated from expression data using some existing method or

specified directly using relevant biological knowledge, or they

can be simply set to ð1=3, 1=3, 1=3Þ to reflect the non-informative

prior belief. From the beta prior, we see that the prior mean of

�gd is set to be ng=J, the proportion of genes in set g among the

total gene list. That means the mean probability for a gene falling

into set g is proportional to the size of the gene set ng and does

not depend on the gene status. In this sense, the prior is sort of

‘non-informative’. The prior variance of �gd is

ðng=JÞð1� ng=JÞ=ð�
�
dJÞ. Thus, the larger ��d is (i.e. more genes

with status d), the smaller the prior variance is. In practice, it

is often believed that only a few genes are truly ‘interesting’, and

most genes are EE. This prior specification would allow that �g0
for EE genes is more concentrated around the prior mean ng=J
for set g, while �gþ and �g� for DE genes have large prior

variability around the mean. This seems to be reasonable.

3 POSTERIOR COMPUTATION AND BAYESIAN
INFERENCE

Details about Bayesian computation, including the full probabil-

ity model and full posterior conditionals, can be found in the

Supplementary Material. Although not all the parameters are

directly related to the detection of enriched gene sets, we need

to use MCMC to draw random samples from the joint posterior

distribution. Then statistical inference can be made by margin-

alizing over the posterior samples. One advantage of the pro-

posed model is that the posterior conditionals for all the

parameters involved, as listed above, are known distributions,

from each of which direct sampling can be done. This property

allows us to adopt an efficient Gibbs sampler, in which all the

parameters are drawn sequentially and generated readily from

the above conditional distributions without using any built-in

sampling algorithm (such as Metropolis–Hastings and

Acceptance/Rejection algorithms).

Here, our Bayesian inference is primarily focused on the gene

set enrichment analysis. As mentioned in the introduction, an

enriched gene set is defined as a set that has significantly

higher percentage of DE genes than would be expected by

chance. Or more formally, let  gd be the conditional probability

that a gene has status d given that it is in set g. Then, a gene set g

is claimed to be enriched if  gþ þ  g�4�þ þ ��.
Let �g � Prð gþ þ  g�4�þ þ ��jDÞ be the posterior

probability that set g is enriched, where D represents all observed

data. Let �ðtÞd and �ðtÞgd denote the posterior draws of the

parameters �d and �gd in the tth iteration of MCMC, for

g ¼ 1, . . . ,G and d 2 f0, þ ,�g. Then we can estimate �g by

�̂g ¼
PT

t¼1 Ið 
ðtÞ
gþ þ  

ðtÞ
g�4�ðtÞþ þ �

ðtÞ
� Þ=T, where T is the
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total number of iterations after the burn-in period;  ðtÞgþ and  ðtÞg�
are calculated using the following relationship based on the

Bayes rule:  ðtÞgd ¼ �
ðtÞ
gd�
ðtÞ
d =ð

P
d2f0,þ,�g �

ðtÞ
gd�
ðtÞ
d Þ. To identify

enriched gene sets, we can rank all the gene sets based on �̂g
and select the sets on the top of the ranked list. The choice of a

significance cutoff can be determined by controlling the Bayesian

false discovery rate (FDR) (Newton et al., 2004). For a given

cutoff c, the FDR can be estimated by

dFDRðcÞ ¼
PG

g¼1 ð1� �̂gÞIð�̂g � cÞ
n o

=
PG

g¼1 Ið�̂g � cÞ
n o

, where

Ið	Þ is the indicator function. We can choose c so thatdFDRþðcÞ 
 	, where 	 can be pre-specified (e.g. 1, 5, 10%).
Unlike the existing MAPE methods that are purely

algorithm-based, our Bayesian model integrates all the informa-

tion from different sources coherently, which enables us to con-

duct differential expression analysis, gene set enrichment analysis

and meta-analysis in parallel rather than in a sequential manner.

Further, it allows the use of objective decision rules based on

posterior probabilities to detect enriched gene sets. The simple

classification scheme makes the results from our Bayesian

inference easy to interpret.

4 SIMULATION

We design three simulation studies to examine the performance

of the proposed method in gene set enrichment meta-analysis,

and compare it with the three existing methods, MAPE_G,

MAPE_P and MAPE_I, developed by Shen and Tseng (2010).

In the first study, we mainly follow the setup in Section 3.1 of

Shen and Tseng (2010) that uses a single gene-set simulation

model, and compare the power of the four methods in identifying

the enriched gene set under different scenarios. In the second

study, we extend the single gene-set model and consider multiple

gene sets: some sets are enriched by UR genes and so are referred

to as UR gene sets, some others are enriched by DR genes and so

are referred to as DR gene sets, and all the remaining ones are

non-enriched. This would allow us to compare the sensitivity and

specificity of the four methods using receiver operating charac-

teristic (ROC) curves. In the past study, we generate expression

data from non-normal distributions to examine whether there is

still an advantage of using the proposed method, as opposed to

the three existing methods, when the normality assumption for

gene expression intensities is violated.

In all our simulation, we follow Shen and Tseng (2010) and

run MAPEs at their default setting. Also, when specifying the

beta priors for the proposed method, we estimate ��ds from data

using an overly simplistic approach so that the estimates are far

from the true values sometimes. In fact, our experience from

previous numerical studies suggests that the performance of

our method is robust to the choice of ��ds. Thus, in practice, we

suggest the non-informative setup ��d � 1=3 for simplicity.

4.1 Simulation I

To compare the power in gene set enrichment analysis using

multiple studies, we apply the similar simulation settings as

described in Shen and Tseng (2010). Suppose there are 500

genes in the genome and the first 100 genes are included in a

gene set, which is the only one considered in this simulation.

Shen and Tseng (2010) assumed that all DE genes involved are
UR genes. To simulate more realistic situations, we assume there
are �� 5%ð Þ UR genes and 5% DR genes in the gene set. In the

remaining 400 genes, there are 5% UR genes and 5% DR genes.
Therefore, if �410%, this gene set is enriched. Note that in
Simulation I, we always include the case of � ¼ 10%, where

the gene set is not enriched (i.e. the null case), to establish refer-
ence distributions of the statistics for the purpose of controlling
the type I error. In each study there are 40 samples where the first

20 are control samples and the last 20 are case samples. Recall
that we use a binary variable Vjk to indicate whether gene j is
included in study k. Here, we assume a universal sampling rate 

for different studies, where 
 � PrðVjk ¼ 1Þ, and we use
Bernoulli(
) to generate Vjks so that the number of genes in
study k is random. All EE gene expression intensities are

assumed to follow N 0, 1ð Þ, and we set �jk � 0 for all k and j.
The UR genes in study k have expression intensities from
N �kj, 1
� �

and DR genes are from N �kj, 1
� �

, where �kj40 and
�kj50. We set � 2 0:10, 0:15, 0:25f g and 
 2 0:4, 0:6, 0:8, 1:0f g.

As in Shen and Tseng (2010), five scenarios are considered in
Simulation I. In the first three scenarios, we set both �kj and �kj
to be constant over j (i.e. genes) and to satisfy �kj ¼ ��kj so that

all the DE genes have a common absolute mean expression level,
which intuitively represents the effect size (i.e. how strong the
signal is). In the first scenario, two studies with the same effect

size are considered; and we vary the degree of the effect size at
two different levels. In the second scenario, again, two studies are
considered but with different effect sizes. In the third, four stu-

dies instead of two are considered and everything else is the same
as the first scenario. In the last two scenarios, we consider vary-
ing effect sizes across genes; that is, �kj or �kj is no longer con-

stant over j and they are generated from independent normal
distributions with the same absolute mean. The fourth scenario
considers two studies with the same mean of the effect sizes,

while the fifth considers two studies with different means of
the effect sizes. The details of the simulation settings are
summarized in Supplementary Table S1.

In total, 100 independent datasets are generated for each fixed
parameter set 
,�,�kj, �kj

� �
. For each simulated dataset, we run

MCMC and then calculate �̂ for our proposed method, and

compute the Q values for the three MAPEs. For a fair compari-
son in power, we control the test size (i.e. the type I error) at the
level 0.05 for all the methods. To do so, for each of the methods

and each setting, we obtain the 5th percentile from the empirical
distribution of the corresponding statistic [i.e. ð1� �̂Þ for the
Bayesian model and Q values for the MAPEs] using the 100

datasets generated with the null-case parameter set

,� ¼ 0:10,�kj, �kj
� �

, and use it as the cutoff value to declare
whether the gene set is enriched or not. Then the power of each

method is estimated by the proportion of datasets in which the
gene set is found to be enriched.
Figure 2 displays the power comparison results for Scenario

1–2. Figures of Scenario 3–5 are included in Supplementary
Material (Supplementary Figs S1–S3). In all cases of Scenario
1, the proposed method has higher power than the MAPEs, es-

pecially when the enrichment signal is weak (i.e. the proportion �
of DE genes in the gene set is relatively close to that in the whole
genome). All methods tend to have increased power when 
 in-

creases. However, the power of the proposed method improves
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more rapidly than the MAPEs when � is 0.15, and it does not

change much when � is 0.25 because the power is close to one

regardless of 
. When the enrichment signal � is increased, all the

four methods appear to have increased power. However, the

MAPEs seem to be much more sensitive to the change of �

than the Bayesian method. When the effect size is one, the

power of the Bayesian method is almost one in nearly all the

cases while the power of MAPE_P, the best of its kind, reaches

one only when the sampling rate 
 is one and the DE gene pro-

portion of the gene set (�) is 0.25. We also test cases (results not

reported) in which the effect size is more than one (2 or 4). We

find that for large effect sizes, the Bayesian method always has

power equal to one, while the MAPEs do not, although their

performance improves substantially and the differences between

the Bayesian method and MAPEs become small, especially for

large 
 or �. In real microarray studies, the signal-to-noise ratio

may be low owing to the high noise level and may vary across

different studies. Therefore, in Scenario 2, the effect size of one

study is set to be relatively small. In this case we still have similar

findings as Scenario 1. In Scenario 3 (Supplementary Fig. S1), as

the number of studies increases from two to four, the power

tends to increase for all the four methods compared with

Scenario 1, and the Bayesian method still has higher power

than the other three in nearly all the cases. Further, similar ob-

servations as in the first two scenarios can be made from results

for Scenarios 4 and 5 (Supplementary Figs S2 and S3), where the

effect sizes are random across genes in component studies.

4.2 Simulation II

We want to compare the sensitivity and specificity of our model

with MAPEs when there are multiple gene sets including both
non-enriched and enriched sets. Two studies are considered and

each study contains 40 samples, of which the first 20 are controls
and the remaining 20 are cases. Suppose there are 1000 genes in

the genome. The first 200 genes are UR genes, the last 200 are
DR genes and the middle 600 are EE genes. See Supplementary
Table S2a for how we generate expression data for these genes. A

total of 100 gene sets are generated in this simulation, where the
first 30 sets are enriched by UR genes, the next 30 are enriched

by DR genes and the last 40 are non-enriched sets. See
Supplementary Table S2b for how we generate these gene sets.

In each gene set, UR, DR and EE genes are randomly selected
from their corresponding gene populations. We set


 2 0:4, 0:6, 0:8, 1f g as before.
The ROC curves for identifying enriched gene sets in

Simulation II are shown in Figure 3. When the sampling rate 

is 1, all methods work well. However, when 
51, it is clear that
the proposed method outperforms any of the MAPE methods.

When the sampling rate (
) is 0.4, the area under the curve
(AUC) of the Bayesian method equals 0.97, while those of

MAPE_P, MAPE_G and MAPE_I are 0.88, 0.67 and 0.85, re-
spectively. If the sampling rate is 0.6 or 0.8, the ROC curve of the
Bayesian model becomes perfect while the MAPEs do not. The

results show that the proposed model is useful when the gene
coverage is widely different among component studies in the

meta-analysis, which agrees with the observation in Simulation I.

4.3 Simulation III

We examine the robustness of the proposed method to deviations

from the normality assumption in (1) for gene expression inten-
sities and compare its performance with MAPEs when this as-

sumption is not satisfied. The simulation settings are the same as
in Simulation II except that we simulate the expression values of

DE genes for cases from t and Gamma distributions, instead of
normal distributions. It is known that a t-distribution has heavier
tails than the standard normal distribution and a Gamma

(a)

(b)

Fig. 2. Power comparison for the first two scenarios in Simulation I. In

each subpanel, the dash-dot line represents MAPE_P; the dotted line

represents MAPE_G; the dash line represents MAPE_I and the solid

line represents our Bayesian method

Fig. 3. ROC curve comparison of Simulation II. In each subpanel, the

dash-dot line represents MAPE_P; the dotted line represents MAPE_G;

the dash line represents MAPE_I and the solid line represents our

Bayesian method
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distribution is skewed. For the t-distribution setting, the expres-

sion intensities for cases are simulated using a t4ð0, 1Þ random

variable plus a location shift. For the UR/DR genes, the shift is

2/�2 in study one and 1.5/�1.5 in study two. In the Gamma

setting, expression intensities of UR genes for cases are from

Gamma (2,2) in study one and from Gamma (1.5,2) for study

two. The expression intensities ofDRgenes for cases are generated

from the sameGammadistributionasURgenes in the same study,

but with a negative sign. Similar to Simulation II, ROC curves

(Supplementary Figs S4 and S5) are compared for all the four

methods with the sampling rate 
 ¼ 0:4, 0.6, 0.8 and 1, and their

correspondingAUCvalues are displayed inTable 1. It is clear that

the proposed Bayesian model uniformly outperforms the other

three methods in both t and Gamma distribution settings for all


 except for 
 ¼ 1, where allmethodsworkwell and have compar-

ableperformance.The simulation results suggest that theproposed

Bayesian approach is not sensitive to mild or moderate deviations

from the normality assumption for the expression intensities.

5 DATA EXAMPLE

The model is applied to eight independent lung cancer datasets

and our goal is to find enriched gene sets/pathways related to

lung cancer. All of the datasets are pre-processed by Robust

Multi-array Average (RMA) (Irizarry et al., 2003) and are

log2-transformed. Patients in all datasets are classified into two

groups based on their survival time, using the R package ‘pamr’

(Hastie et al., 2011); see Supplementary Section S2 for detail. To

avoid the heterogeneity in molecular mechanisms caused by the

tumor subtypes, only patients with lung adenocarcinoma are

considered. The names, sources and sample sizes of these

datasets are displayed in Supplementary Table S3. A total of

186 C2 curated KEGG (Kanehisa et al., 2012) pathways from

MSigDB (Subramaniana et al., 2005) are considered in this ana-

lysis. To better evaluate the results, 20 test gene sets, including 10

positive controls and 10 negative controls, are generated as fol-

lows. Positive control gene sets are from a list of genes that are

believed to be highly related to the lung cancer (see

Supplementary Table S4), while the negative control gene sets

are randomly generated from the genes that are not included in

the positive control gene list or involved in any KEGG gene set.

We calculate �̂gs, the estimated posterior enrichment probabil-

ities defined in Section 3 from the MCMC samples, and plot

ð1� �̂gÞ in Figure 4a. Convergence detection is done using stand-

ard graphic tools (trace and density plots) and the commonly

used Gelman and Rubin diagnostic (Gelman and Rubin,

1992). For comparison, we first apply the three MAPE methods

with the default option that uses the maximum P-value statistic,

and find that none of them can identify any enriched pathways

including those positive controls, even when we set the cutoff of

the Q-values as high as 0.5. So we proceed to apply the MAPEs

with two other available options: the minimum P-value statistic

(minP) and the Fisher’s statistic (Fisher), andwe find theMAPE_I

method appears to perform better than or comparable with

MAPE_P and MAPE_G in identifying positive controls while

avoiding negative controls. So we report results for MAPE_I

with the minimum P-value statistic (labeled MAPE_I_minP)

and MAPE_I with the Fisher’s statistic (labeled

MAPE_I_Fisher), and plot their Q-values in Figure 4b and c,

respectively. We use ð1� �̂gÞ 50.05 in our Bayesian method,

anduseQ-value¡0.05 in theMAPE_I algorithms as the thresholds

to find enriched pathways. Figure 4a clearly shows that, in the

Bayesian method, the �̂gs for all positive control sets are equal to

one while the �̂gs for all negative control sets are close to or lower

than 0.2. Thus, it correctly identifies all the positive controls as

well as excluding all the negative controls. As shown in Figure 4b,

MAPE_I_minP can identify all positive control pathways.

However, it mistakenly claims that a negative control set is en-

riched. MAPE_I_Fisher fails to detect seven positive control sets

although it correctly excludes all negative control sets (Fig. 4c). In

Figure 5, we compare the numbers of enriched pathways via a

Venn Diagram, which shows that the Bayesian model detects

more enriched pathways than the MAPE_I methods.

A list of selected pathways identified by the proposed model

are displayed in Supplementary Table S5 along with their poster-

ior probabilities and Q-values of the two MAPE_I algorithms.

These pathways can be classified into three groups. The first is the

consensus group whose member pathways can be identified by all

the three methods. Examples in this group include ‘non-small cell

lung cancer’, ‘nucleotide excision repair’ and ‘DNA replication’,

(a) (b) (c)

Fig. 4. Scatter plot of (a) ð1� �̂g) where �̂g is the estimated posterior

probability that pathway g is enriched; (b) Q-values from MAPE_I using

Fisher’s statistic and (c) Q-values from MAPE_I using the minimum

P-value statistic. The pathways represented by solid dots are the 186

KEGG pathways; those displayed as solid triangles are the 10 negative

control gene sets and those represented by ‘x’ are the 10 positive control

gene sets. The two vertical lines separate KEGG pathways, positive and

negative controls. The horizontal line in (a) is the threshold correspond-

ing to ð1� �̂gÞ50:05. The horizontal lines in (b) and (c) correspond to

the threshold of Q-value50.05

Table 1. AUC comparison in Simulation III

Distribution 
 MAPE_P MAPE_G MAPE_I Bayesian

t 0.4 0.88 0.72 0.85 1.00

0.6 0.94 0.78 0.92 1.00

0.8 0.96 0.92 0.96 1.00

1 0.99 0.99 0.99 1.00

Gamma 0.4 0.79 0.70 0.79 1.00

0.6 0.89 0.67 0.83 1.00

0.8 0.96 0.86 0.94 1.00

1 0.98 0.94 0.97 1.00

Expression intensities of DE genes for cases are drawn from t and Gamma

distributions.
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which play important roles in lung cancer. The second group of

pathways are detectable by the Bayesian and MAPE_I_Fisher

methods, but not by MAPE_I_minP. This group includes, for

example, ‘pathways in cancer’ and ‘mTOR signaling pathway’.

The ‘mTOR signaling pathway’ is an important signal transduc-

tion pathway in cell apoptosis and survival, and it has been a

therapeutic target for lung cancer (LoPiccolo et al., 2008). The

third group contains those identified by the proposed method but

missed by the two MAPE_I algorithms. For instance, ‘vascular

endothelial growth factor (VEGF) signaling pathway’ belongs to

this group. The VEGFs are known to play a prominent role

during blood vessel formation. Importantly, tumor cells release

VEGF that induces tumor neovascularization. Thus, this path-

way is well established to be a target for antitumor therapy

(Kowanetz and Ferrara, 2006). Another example is ‘transforming

growth factor-beta (TGF-�) signaling pathway’. TGF-� and its

signaling effectors are key factors in determining cancer cell be-

havior. It is reported that the TGF-� signaling pathway can act as

a tumor suppressor as well as a promoter of tumor progression

and invasion (Derynck et al., 2001). While it took several previous

studies to find these lung cancer-related pathways, our proposed

method successfully captures them in one single meta-analysis. In

addition, those pathways identified by the proposed method, but

not yet discovered by existing studies, may be worth future

biological investigation and validation.
To further examine the results from our Bayesian method, we

use a popular method, SAM-t (Tusher et al., 2001), to test dif-

ferential messenger RNA expression and derive a P-value for

each individual gene in each study. Then the Fisher’s combined

probability test statistic, i.e. �2
P

k log pjk

� 	
, is computed to

combine the SAM-t P-values for each single gene from all stu-
dies. Finally, after performing a 2 test, we obtain a P-value from
the Fisher’s combined test for each gene. For genes in enriched

sets, we would expect that many such P-values would be rela-
tively low. Figure 6 shows P-values from the Fisher’s combined
tests for genes in two pathways with estimated posterior prob-

abilities of enrichment equal to one and two randomly chosen
positive control sets. From Figure 6, we can see that the two
identified pathways in the top panel and the two positive control

sets in the bottom panel all have a large number of genes with
small P-values. It indicates that these four pathways have high
percentages of DE genes. Supplementary Figure S6 shows the

Fisher’s P-values for the genes in another four pathways with
estimated posterior enrichment probabilities equal to 0.09, 0.10,

0.13 and 0.11, respectively. Unlike the pathways in Figure 6, the
distributions of P-values in these four pathways are not skewed
to the left, suggesting that they are not likely to be enriched. This

observation agrees with their low estimates of the posterior
probabilities of enrichment.

6 DISCUSSION

We have proposed a fully integrated Bayesian model for
meta-analysis of gene set enrichment using multiple genomic

studies, and developed an efficient Gibbs sampler for posterior
computation and inference, where all the steps can be done by

direct sampling from known distributions. Through simulation
studies and experimental data, we have shown that compared
with the existing methods, our approach can substantially im-

prove the power of detecting enriched gene sets, especially for
non-easy situations when the effect size is not large, gene over-
lapping rate is low or enrichment signal is weak. The perform-

ance gain of the proposed method may be attributed to the
following ideas behind our model-based approach: (i) explicit
modeling of between-study heterogeneities for gene expression

data; (ii) the capability of including non-overlapping genes in
the model; and (iii) joint modeling of gene set information and
expression data from multiple studies, which may utilize the

available information more efficiently than the MAPEs that syn-
thesize summary statistics only. Note that (iii) is closely related to
our previous work (Wang et al., 2012) but the focus of that paper

was on a single genomic study with different data structures.
Another advantage of our method is that it does not need the

so-called gene-sampling scheme. As argued in Goeman and
Buhlmann (2007), this scheme is implicitly required for compu-
tation or correct interpretation of P-values in the GSEA-like

methods or 2� 2 table methods, and is subject to the criticism
that it is unrealistic. Instead, our Bayesian model makes every
assumption clear; and it relies on posterior probabilities for iden-

tifying enriched gene sets, which reflect uncertainties after obser-
ving data and can be interpreted naturally without the
gene-sampling scheme.

Computational efficiency is an important aspect of Bayesian
modeling. Here we report the computing time of our simulation
studies. It takes between 3 and 10 min, depending on the sam-

pling rate 
, to run 4000 MCMC iterations for each dataset
involving two studies in Simulation I using one thread on a
Red Hat Enterprise Linux workstation with 4 Xeon(R) CPUs

@2.67GHz and 5.8 GB of memory. We also monitor the

Fig. 6. Empirical distributions of P-values from the Fisher’s combined

probability tests for genes in selected pathways. The two pathways on the

top have posterior enrichment probability estimated by one, and the

bottom two are randomly chosen from the 10 positive control sets

Fig. 5. Venn diagram of enriched KEGG pathways identified by the

three methods
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convergence of the MCMC processes, and the results suggest
that the proposed Bayesian model converges relatively fast. In
addition, under the non-informative prior setups, our algorithm
can become a fully automated procedure that does not require

any tuning parameter. This is convenient for an end user with
little or no statistical training. However, if meaningful prior
knowledge is available, certain features of the proposed

method may be changed to produce potentially better results
that incorporate such knowledge.
In a nutshell of the Bayesian framework, our method can be

extended and some of the model assumptions can be relaxed, to
allow for more modeling flexibility. First, motivated by the ap-
plication in Section 5, we assume a common variance of error for

all genes in study k. This is to avoid over-parameterization and
help the variance estimation when some studies in meta-analysis
lack enough samples to produce stable estimates of the gene-wise
variances. However, for individual studies with sufficient sam-

ples, this assumption can be relaxed by using gene-specific vari-
ances �2jks instead of �2k in (1). The Gibbs sampler can be
modified readily; see the end of Supplementary Section S1 for

detailed changes. Second, with minor adaption in the model and
algorithm, the method can be also applied to paired expression
data (such as those generated using two-channel arrays) besides

two-sample expression data discussed in the article; see Chapter 4
of Zang (2012) for detail. Last, we assume that a gene shares the
same differential status across studies as in the MAPE methods.
This assumption may be plausible when all the studies in meta-

analysis address the exactly same underlying biological question
and they are conducted in similar experimental conditions. On
the other hand, there exist situations where the true status of

some genes can vary across studies. If one applies the proposed
method directly here, these genes may need to be removed, when
possible, from the gene pool before application, as suggested by

one of the reviewers. To formally handle such situations, we can
extend our Bayesian model by adding a layer of hierarchy (e.g.
model the study-specific status of gene j as a random variable

with probability !DE
j to be DE in each study). Such extension

would change the model, the joint posterior distribution and
MCMC algorithm. Clearly, there is ample space for future
work to deal with this issue.

In meta-analysis, it is critical to carefully review and choose
studies because inclusion of data with poor quality might lead to
biased results or loss of efficiency. Thus, we recommend readers

to follow strict procedures of critical review of the literature
before applying any meta-analysis model. Finally, we mention
that one limitation of the proposed method is that, unlike

MAPEs, binary phenotypes/conditions are required in our ana-
lysis. Nonetheless, there exist a wide range of applications that
meet this requirement.
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