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Retroviral and lentiviral vectors have proven to be particularly efficient systems to deliver genes of interest into target cells, either
in vivo or in cell cultures. They have been used for some time for gene therapy and the development of gene vaccines. Recently
retroviral and lentiviral vectors have been used to generate tolerogenic dendritic cells, key professional antigen presenting cells that
regulate immune responses. Thus, three main approaches have been undertaken to induce immunological tolerance; delivery of
potent immunosuppressive cytokines and other molecules, modification of intracellular signalling pathways in dendritic cells, and
de-targeting transgene expression from dendritic cells using microRNA technology. In this review we briefly describe retroviral
and lentiviral vector biology, and their application to induce immunological tolerance.

1. Introduction

Viruses are obligate intracellular parasites which have evolved
to transfer their genetic material to infected cells and use
their biosynthetic machinery to replicate, encapsidate, and
package their genome. Virus particles are usually secreted so
they can infect neighbouring cells and start a new infectious
cycle. The discovery that viruses could also incorporate
and transmit genes of cellular origin opened the possibility
of using them as tools to genetically modify cells. The
engineering of virus vectors has allowed the development
of gene vaccines for a wide range of infectious diseases and
cancer. It is relatively easy to raise effective immune responses
against transgenes encoded in virus vectors. After all, the
innate immune system contains all necessary mechanisms
to recognise virus particles leading to its strong and speedy
activation. As such, virus particles act as “natural” adjuvants.
However, their capacity to activate the immune system
restricts their applicability for the treatment of autoimmune
disorders. In addition, their application for the correction of a
genetic disease is also limited because of their immunogenic-
ity. Transgene-specific immune responses severely limit the

success of gene therapy. However, despite all disadvantages,
virus vectors have been used to establish strong antigen-
specific immune suppression. This has been achieved by the
expression of immunosuppressive cytokines, modulators of
intracellular signalling pathways, and the incorporation of
microRNA targets.

2. Retrovirus and Lentivirus Vectors

There is an ever-growing list of different virus species that are
being used as virus vectors. Amongst those, the most exten-
sively used are adenoviruses, adeno-associated viruses, and
poxviruses. Interestingly, those belonging to the Retroviridae
family are possibly within the most successful. Retrovirus
vectors such as those based on Moloney mouse leukemia
virus (MLV) were amongst the first to be engineered [1].
They have also been the first to be successfully applied in
human gene therapy for the correction of genetic disorders
[2-5]. In recent years, lentivectors have strongly appeared in
biomedicine as an alternative to y-retrovirus vectors. As their
retrovirus cousins, lentivectors are devoid of viral proteins,
stably incorporate their genome into the host cell, and lead



to long-term transgene expression. In addition, unlike the
simple retroviruses, they can transduce nondividing cells
[6]. This characteristic opens up their application in gene
therapy to genetically target highly differentiated cells such
as neurons and dendritic cells.

The Retroviridae family consists of spherical (80-120 nm)
viruses containing a diploid, positive-sense ssRNA [7, 8]
(Figure 1). The RNA genome is complexed with the nucle-
ocapsid protein (NC), and bound to the reverse transcriptase
(RT), integrase (IN) and protease (PR). The nucleocapsid
is enclosed within a protein shell formed by capsid protein
(CA). Then, matrix proteins (MA) surround this internal
core, and interact with the virion lipid envelope, which
incorporates viral envelope glycoprotein (ENV). ENV is
formed by a TM (transmembrane) and SU (surface) domain,
which binds to the cellular receptor and mediates virion
entry.

3. The Retroviral Genome
and Vector Engineering

Viruses from the Retroviridae family are usually divided in
two groups, simple (such as Moloney mouse leukemia virus,
MLV), and complex (such as lentiviruses) retroviruses. In any
case, the genome organisation of both groups is similar in
many aspects. In the two groups, the genome is organized
from the 5" to the 3’ end in GAG, POL, and ENV genes.
While GAG encodes the structural proteins, POL encodes
the reverse transcriptase, integrase, and protease, and ENV
encodes the virus envelope glycoprotein responsible for
virion entry into the target cell. All these enzymes are
required for genome retro-transcription to cDNA, integra-
tion, and virion maturation [9]. The complex retroviruses
additionally contain other accessory genes, which regulate
viral replication, assembly, and pathogenesis [9-13]. Other
additional genes of the complex retroviruses are important
cis-acting sequences such as the RNA packaging signal (y)
[14] required for genome encapsidation in virions [15], the
polypurine tract (PPT) required for reverse transcription
[16, 17], and the long-terminal repeats (LTRs) which contain
the HIV promoter [18-20].

4. The Retroviral Life Cycle
and Retroviral Vectors

The general retrovirus (including lentiviruses) life cycle is
schematically depicted in Figure 2. The retrovirus virion
binds to its specific cellular receptor through the surface
unit of ENV. This interaction will determine the cell and
tissue tropism of the particular virus. As retrovirus biology
is fairly well-known, the identity of a wide number of
these receptors is known. Examples of retrovirus cellular
receptors are the murine cationic amino acid transporter and
sodium/phosphate symporters for different strains of mouse
leukemia virus (MLV) [21]. In the case of HIV-1, its receptor
is the T cell lymphocyte marker CD4, and CXCR4/CCRS5 as
coreceptors [22-24].

Binding of SU induces a conformational change in ENV
which exposes its fusion peptide, leading to fusion between
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FIGURE 1: General structure of the retrovirion. The structure of
the retrovirion is schematically shown in the figure. The retrovirus
contains a diploid RNA genome associated to the nucleocapsid
protein (NC), forming the nucleocapsid. This nucleocapsid is
associated to structural proteins involved in the retrotranscription
(RT), integration (integrase, IN), and virion maturation (protease,
PR). All these are enclosed by the capsid (CA) and matrix protein
(MA). Then, the virion envelope encloses the core and contains the
envelope glycoprotein. In the case of retroviruses and lentiviruses,
the envelope protein is made of the transmembrane (TM) and
globular subunit (SU).

the virion and cell membrane leading to the release of
the retrovirus core to the cytoplasm. This release triggers
the reverse-transcription reaction of the retrovirus genome,
possibly by an increase in ANTP concentration [19, 25].

The viral core containing a single cDNA copy from the
double stranded genomic RNA is transported to the nucleus
and it is integrated into the host cell chromosomes following
the activity of integrase (IN). While simple y-retroviruses
require the disappearance of the nuclear membrane during
cell division, complex retroviruses (lentiviruses) can actively
transport the core to the cell nucleus without requiring
mitosis [26, 27]. Thus, retrovirus vectors only transduce cells
during mitosis, while lentiviral vectors can transduce cells
independently on their division status. This characteristic
makes lentiviral vectors ideal for gene therapy of highly
differentiated, postmitotic cells.

Once the ¢cDNA is integrated into the host cell chro-
mosome, it remains there as a provirus. This provirus will
transcribe its genes from its LTR using the cellular RNA
polymerase I and cellular transcription factors. This provirus
will also remain integrated in the cell throughout its life and
it will be transmitted to daughter cells following mitosis.

Following the standard transcription machinery, the
mRNAs encoding the full-length viral RNA, and also the
spliced versions encoding the viral proteins, are produced,
transported out of the nucleus, and translated in the cyto-
plasm. Virus particles will then be assembled by specific
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FIGURE 2: General life cycle of retrovirus/lentivirus. The lentivirus life cycle is schematically depicted in this Figure. First, the virion can
enter the cell either by endocytosis of direct fusion with the cell membrane after binding to its specific receptor (top of the figure). Then, the
retrovirus core is released (core release) and reverse transcription takes place. The core containing the cDNA virus genome is transported to
the nucleus where it integrates into the host cell chromosome (provirus integration). From the provirus, transcription takes place leading to
the transport of either full-length RNA genomes, or to mRNAs encoding the structural and enzymatic proteins (translation). The structural
proteins package the full-length RNA genome during virion budding (see right of the figure), releasing infectious viruses following virion

maturation.

interactions between the RNA genome and the GAG/GAG-
POL polyproteins. This RNA packaging is coupled with viral
assembly and released out of the cell by virion budding. This
budding takes place at the cellular membrane, where the ENV
glycoprotein is also incorporated to the budding virion [28-
32]. Once the virion is released, the viral protease will exert
its activities on the GAG/GAG-POL polyproteins, releasing
the structural proteins and conferring infectivity to the newly
formed virion [6, 33].

For historical reasons, Moloney MLV has been exten-
sively used for the development of integrative gene vectors
[1]. To engineer a vector based on the MLV genome, the
GAG, POL, and ENV genes are deleted to include either a
gene of interest (under the transcriptional control of the virus
LTR), or an expression cassette made of a promoter of choice
with the gene of interest [1]. To generate the vector particles
containing the transfer vector itself, the viral proteins GAG,
POL and ENV are provided in trans in a packaging cell [1, 34].
In addition, several sequences are required in cis such as
the 5' and 3’ LTR, the packaging signal, and also others
involved in in reverse transcription and genome integration.
Cotransfection of these packaging plasmids will generate
retrovirus/lentivirus-like particles with the packaged vector
genome. Therefore, after cellular entry and integration, these
vectors are unable to reassemble and produce infectious viri-
ons, as the lack the GAG-POL genes. Thus, once integrated,
they will express the gene of interest that will be propagated to
progeny cells. A scheme depicting the lentivector engineering
system is shown in Figure 3.

While the advantages of simple retrovirus vectors are
the lack of genome-encoded viral proteins and persistent

gene expression after vector integration, they also present
important limitations. The main ones are virion instability
[35], relatively low titers [36], the inability to transduce
quiescent cells [27, 37], and finally, insertional mutagenesis
[38-40]. Interestingly, these shortcomings can be largely
overcome by using lentivectors, mainly developed from
human immunodeficiency virus (HIV)-1 [41-43]. However,
the main advantage for the use of lentivectors is their capacity
to transduce quiescent cells [27]. This crucial characteris-
tic is mediated by nuclear localisation sequences present
in the integrase protein, the matrix protein, vpr, and the
PPT sequence [12, 17, 42]. The specific steps to generate
lentivectors, their different “generations” and their biosafety
are extensively described elsewhere [6, 44].

5. Immunological Tolerance

Our organisms are constantly in direct contact with an exten-
sive variety of substances, particles, and living organisms of
diverse origins. While many of these comprise a potential list
of pathogens, the vast majority of them, including commensal
bacteria, pollen, yeast, mites, and many types of chemicals are
largely innocuous. Therefore, in the first instance the default
immunological response to these antigens is tolerance and
unresponsiveness. In addition to this, if an immune response
is triggered by a potential pathogen/threat, autoprotective
mechanisms exist to minimise collateral damage and loss of
tolerance towards the organisms’ own components (autoanti-
gens).

Consequently, there are many key physiological mech-
anisms that maintain immunological tolerance. One of the
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FIGURE 3: Engineering of the lentivector gene transfer system. The HIV-1 genome organisation is shown on the top, from 5’ to 3', long-
terminal repeats (LTR), packaging signal (PS), GAG-PRO-POL-In genes, envelope gene (ENV), and the accessory genes Vif, Vpr, Rev, Tat,
Nef, and the Rev-response element (RRE). This genome is separated into three different plasmid constructs. The transfer vector (vector), that
contains at least, the LTR, PS, and the internal promoter controlling the transcription of the gene of interest. The packaging plasmid, which
leads to the expression of the GAG-POL-PRO-IN, rev, and tat genes under the control of the cytomegalovirus (CMV) promoter. Lastly, the
envelope plasmid, which expresses the required envelope glycoprotein which will confer the tropism to the vector particle. Cotransfection of
these three plasmids will lead to the production of lentivirus-like particles with the capacity of transducing target cells independently of their

cell cycle.

most important is clonal deletion of autoreactive T lym-
phocytes in the thymus [45]. T lymphocytes expose T cell
receptors (TCRs) on their surface that are specific for a
particular antigen. When the cognate antigen is presented
to these T cells, they strongly proliferate and activate their
effector activities, for example, cytotoxicity (Figure 4). How-
ever, clonal deletion cannot eliminate all autoreactive T cells,
or at least T cells specific to antigens that have never been
present in the thymus. This fact is manifested in autoimmune
disorders such as rheumatoid arthritis, multiple sclerosis,
or diabetes, in which tolerance towards self-antigens is lost.
These antigens are then recognised by B and T lymphocytes,
which exert their effector activities with dramatic conse-
quences [46-51].

Many of the autoreactive T lymphocytes with high affinity
TCRs avoid clonal deletion and differentiate into natural
Foxp3+ CD4 regulatory T cells, which are strongly immuno-
suppressive [45, 52]. In addition to natural Tregs, another
immunosuppressive T cell differentiates in the periphery
from naive T lymphocytes. These inducible Tregs arise
after antigen presentation in a “tolerogenic” context, mainly
provided by tolerogenic dendritic cells (DCs) [53-55]. These
tolerogenic DCs can be effectively targeted by gene therapy
techniques using retrovirus and lentivirus vectors.

6. Tolerogenic DCs

DCs can either trigger effective immune responses or sup-
press them [56, 57]. Their acquisition of tolerogenic activities
takes place under specific circumstances. In general terms,
antigen presentation by immature DCs results in either
Treg differentiation or T cell inactivation/apoptosis [58-
61]. Tolerogenic DCs usually express low levels of surface

Cytotoxic CD8 cells

Antigen presentation

Antigen presentation

Helper T Cells
Antibody responses

FIGURE 4: Antigen presentation and T cell responses. Activation
of T cell responses by antigen presenting dendritic cells is shown
in the figure. On the left, a DC is presenting antigenic peptides
associated to MHC I (sphere containing “I”) or MHC II (sphere
containing “II”) molecules. CD8 or CD4 T cells recognise these
peptide-MHC molecules together with additional receptor-ligand
interactions (costimulation, represented by bars connecting the DC
with each T cell). These interactions accompanied by the presence of
a wide range of cytokines will drive T cell proliferation (right). CD8
T cells will then differentiate into cytotoxic T lymphocytes, and CD4
T cells into helper T cells which will collaborate in raising antibody
responses. T helper differentiation can lead to either immunological
tolerance or different types of immune responses, such as a “Th1-"
type (mainly cellular immunity) or a “Th2-” type (mainly humoral
immunity).

major histocompatibility molecules (MHC) I and IT and other
costimulatory molecules of antigen presentation such as
CD80,CD86,CD83,and ICAM1 [53, 62-64]. The low surface
expression of these molecules ensures that the interaction
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between the T cells and the antigen presenting cell does not
lead to T cell activation [65].

There are multiple mechanisms by which DCs become
tolerogenic and exert their immunosuppressive mechanisms.
Some resident DCs, such as those in the gut and other
mucosal tissues are strongly tolerogenic due to the presence
of a wide range of immunosuppressive molecules. DCs can
also become potently immunosuppressive after recognition
of some microbial-derived antigens through their Toll-like
receptors [66-68], lectin ligands, and immunosuppressive
cytokines [53, 64, 66, 67, 69, 70].

Generally, all tolerogenic DCs secrete high amounts of
immunosuppressive cytokines during antigen presentation,
such as TGF-p or IL-10 [53, 63, 66, 67, 69-73]. In addition
to this, tolerogenic DCs upregulate the surface expression
of inhibitory costimulatory molecules, which inhibit T cell
activation. This is the case of the T cell inhibitory receptor
PD-1 ligand, PD-L1 [74-78]. PD-L2 is a second PD-1 ligand,
which is specifically expressed on DCs and macrophages but
its immunosuppressive capacities, are still under debate [79].
Other B7 family members are also immunosuppressive such
as B7-H3 [80], B7-H4 [81], and VISTA [82].

Tolerogenic DCs can exert their immunosuppressive
activities in a variety of mechanisms, and some of them
include the upregulation of amino acid-metabolising
enzymes such as arginase and indoleamine 2,3-dioxygenase
(IDO) [83-88]. It is thought that consumption of essential
amino acids by tolerogenic DCs depletes them from T
cells, and their clonal expansion is arrested, becoming
“inactivated”.

7. Genetic Modification of DCs by
Retroviral and Lentiviral Vectors to Induce
Immunosuppression and Tolerance

The capacity of DCs to “capture” viruses and being trans-
duced with retrovirus and lentiviruses can be taken as an
advantage to genetically modify them [62, 89, 90]. However,
there are two main problems to overcome for efficient
human DC modification. Firstly, monocyte-derived DCs are
particularly difficult to transduce, as they possess an intracel-
lular restriction factor to lentivirus infection [91]. Secondly,
the process of DC transduction with these viral vectors
can induce their phenotypical and functional maturation,
particularly when high multiplicities of transduction are used
[44, 90]. This is a strong obstacle to overcome if tolerance
is to be achieved. These two problems can be circumvented
by the incorporation of the simian immunodeficiency virus
(SIV) Vpx into the lentivector capsid during production.
Vpx can counteract the human DC restriction to lentivector
transduction, resulting in the use of lower number of par-
ticles to achieve efficient DC modification [92]. However,
if correctly harnessed, the immunosuppressive capacities
of tolerogenic DCs can be exploited to induce therapeutic
immunological tolerance. Particularly, lentivectors are espe-
cially suitable to modify DCs and render them tolerogenic.
Lentivectors can introduce genes with immunosuppressive
properties while simultaneously coexpressing an antigen of

interest. Lentivector transduction leads to stable genome
integration and long-lasting transgene expression. This last
property is particularly important to induce tolerogenic DC
differentiation and prolonged antigen presentation to T cells.
Finally, as full-length transgenes can be expressed, it is not
required to previously identify specific epitopes for particular
MHC alleles. Thus, lentivector vaccines could be readily
applied to patients without the need of MHC typing.

The most straightforward procedure to differentiate
tolerogenic DCs is the delivery of potent immunosuppressive
cytokines (Figure 5). Retroviral and adenoviral vectors have
been successfully used for the treatment of inflammatory
diseases. This is the case of constitutive expression of TGF-
B using adenovirus vectors, leading to inhibition of immune
responses and prolonged DC survival [93]. Likewise, consti-
tutive expression of IL-4 in modified DCs inhibited collagen-
induced arthritis in mouse models [94]. Retroviral delivery
of viral IL-10 to DCs, naturally encoded by the Epstein-Bar
virus, strongly inhibited their ability to stimulate T cells in
vitro [73]. Similarly to retroviral transduction, lentivectors
have also been used to express IL-10. These DCs could
efficiently inhibit an OVA-dependent model of experimen-
tal asthma in mice. These modified DCs expanded IL-10-
expressing Foxp3+ Tregs. Interestingly, IL-10 expression by
the host Tregs was required to establish tolerance, rather than
IL-10 expression by DCs [95].

Apart from the expression of immunosuppressive
cytokines, tolerogenic DCs can be differentiated by targeting
specific intracellular signalling pathways (Figure 5). It
is well known that mitogen activated protein kinase
(MAPK) extracellularly regulated kinase (ERK) activation
in DCs is strongly immunosuppressive [63, 66, 96-
100]. In fact, sustained MAPK ERK activation can be
achieved by expression of constitutively active forms of its
upstream MAPK MEK1/2 [97, 99]. Lentivector delivery of
a constitutively active MEK1 mutant to DCs resulted in
immature DCs with CD40 downmodulation and expression
of bioactive TGF-B [53, 63]. These ERK-activated DCs
differentiated antigen-specific Foxp3 Tregs in vitro and
in vivo [53]. These Tregs strongly expanded in vivo after
a second antigen encounter in inflammatory conditions,
reinforcing antigen-specific tolerance, which controlled
inflammatory arthritis in a mouse model [53]. Other
intracellular signalling pathways have also been exploited
to induce antigen-specific tolerance. This is also the case of
constitutive activation of the type I IFN signalling pathway
in DCs. Lentivector expression of a constitutively active
IRF3 mutant, induced expression of IL-10 by modified DCs
possibly through interactions with the TLR adaptor molecule
MYD88 [63]. These modified DCs also expanded antigen-
specific Foxp3 Tregs in vivo, which inhibited effector T cells.
This is not surprising as the type I interferon pathway is
immunosuppressive in certain contexts [101], and both IFN-
B and IL-10 secretion share a common signal transduction
pathway [63, 101, 102]. Thus, IFN-f is administered in
patients of multiple sclerosis [103, 104]. Very interestingly,
direct lentivector vaccination achieves in vivo transduction
of the sufficient number of DCs to induce tolerance, which
was effective for at least one month [53, 63, 90, 105, 106].



A potential drawback of all these strategies is the limited
lifespan of transduced DCs. However, this can be overcome
by intravenous administration of lentivectors, which can
transduce DC precursors present in tissues leading to
long-term transgene expression [107, 108].

Another strategy based on modification of intracellular
signalling is the inhibition of proinflammatory signalling
pathways (Figure 5). In this way, their inhibition can in
some circumstances induce tolerance. A classic example
is the inhibition of the NF-xB pathway, a well-known
proinflammatory route [62]. Consequently, Rel-B silencing
by specific shRNAs prevented DC maturation after TLR
stimulation, a strategy which was successfully used for the
treatment of autoimmune myasthenia gravis in mice [109].
Conversely, the targeted activation of endogenous negative
feedback mechanisms of proinflammatory pathways can also
be exploited. When the suppressor of cytokine signalling 3
(SOCS-3) was overexpressed in DCs, these modified DCs
exhibited impaired proinflammatory signalling [110]. These
modified DCs showed a markedly reduced expression of
classical proinflammatory cytokines such as IFN-y, IL-12,
and IL-23. They also showed an enhanced IL-10 secretion.
Opverall, these SOC-3 expressing DCs could effectively inhibit
experimental autoimmune encephalomyelitis (EAE) in mice,
a model of human multiple sclerosis [110].

In some cases, the pathogenic antigen leading to autoim-
mune disease is unknown in humans. This is clearly the
case in rheumatoid arthritis. Even then, lentivectors can
also be used to suppress autoimmune disorders without
the direct targeting of the pathogenic antigen. Therefore,
administration of a B cell activating factor (BAFF)-specific
siRNA in the inflamed joint was sufficient to treat experimen-
tal collagen-induced arthritis [111-113]. These lentivectors
preferentially transduce DCs in the inflamed joint without
the need of modifying their tropism in vivo. Expression of this
BAFF siRNA interfered with DC maturation and inhibited
Th17 differentiation [112]. Retroviral modification of T
cells can also be performed to achieve tolerance in diseases
with unknown (uncharacterised) pathogenic antigens. For
example, the introduction of an OVA-specific TCR in Foxp3+
Tregs by retroviral transduction modified their specificity
towards OVA. The administration of OVA in the inflamed
joints in a model of inflammatory arthritis in mice in which
these OVA-Treg cells were adoptively transferred allowed
the suppression of inflammation and bone destruction. This
circumvented the need of targeting the pathogenic arthrito-
genic antigen [114]. In a similar fashion, OVA-specific Tregs
generated by ERK-activated (by lentivector transduction)
OVA-expressing DCs achieved the same end [53, 63].

Lentivectors can also deliver a wide range of immuno-
suppressive mediators, such as the vasointestinal peptide
(VIP). VIP expression of lentivector-transduced DCs effec-
tively inhibited DC maturation and resulted in expression
and inhibition of immunosuppressive and proinflammatory
cytokines, respectively. Their therapeutic efficacy was medi-
ated by differentiation and expansion of Foxp3+ Tregs [115].
Basically, the same strategy was successfully used for the
treatment of EAE and in the coecal ligation and puncture
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(CLP), models for multiple sclerosis and sepsis in humans,
respectively [106]. Even viral proteins with immunosuppres-
sive properties can be expressed by lentivectors to induce
tolerance [116].

8. Induction of Immunological Tolerance by
MicroRNA-Tagging

A major problem in lentivector gene therapy is that its direct
administration in vivo raises a strong transgene-specific
immune response. This is desirable to boost immunity for
the treatment of infectious diseases and cancer [63, 90, 117-
120]. However, this property of lentiviral vectors is very
detrimental for gene therapy of genetic and metabolic disor-
ders. Transgene-specific immune responses limit the survival
of corrected cells, and therefore, their therapeutic activities
[121-123]. A very elegant strategy to prevent trangene-
specific immune responses was achieved by miRNA tagging
[124] (Figure 5).

MicroRNAs (miRNAs) comprise a collection of non-
coding RNAs, which form part of a posttranscriptional
regulatory system of gene expression. MiRNAs contain small
sequences of 20-24 nt, termed siRNAs, which are partially
complementary to endogenous mRNAs. These siRNAs can
inhibit gene expression by mainly (but not exclusively)
inducing mRNA degradation. This endogenous regulatory
system was also exploited to prevent an immune attack
against genetically corrected cells using lentiviral vectors
as gene carries. It was shown that transgene expression
in professional antigen presenting cells was responsible
for antigen-specific T cell responses. These T cells exert
their cytotoxic activities towards transgene-expressing cells.
Therefore, to avoid T cell responses, the expression of the
transgene was prevented specifically in professional antigen
presenting cells by introducing a sequence target for the
haematopoietic-specific miRNA 142 3p in the transgene
[125]. Thus, the mRNA coding for the transgene would be
degraded in cells from the hematopoietic lineage (lympho-
cytes, granulocytes, macrophages, and DCs), but not in cells
from other lineages. 142 3p-tagged lentivectors could then
be intravenously administered without raising transgene-
specific immune responses leading to long-term transgene
expression in hepatocytes [125]. Rather than immunological
silencing, this strategy induced transgene-specific tolerance
by expansion of Foxp3+ Tregs [126]. The authors of the
study showed that transgene expression in hepatocytes was
required to expand Tregs [126]. miRNA 142 3p-tagging
was effectively used to express factor IX in liver, leading to
correction of experimental haemophilia B [127].

9. Biosafety Considerations on the Application
of Retroviral and Lentiviral Vectors

Biosafety considerations are clearly a priority when applying
new experimental therapies to human disorders that may
be tackled using more conventional approaches. This is
the case of some autoimmune/inflammatory disorders such
as rheumatoid arthritis or diabetes. Biosafety concerns of
using retrovirus and lentivirus vectors have been particularly
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FIGURE 5: Main strategies for the induction of immunological tolerance by genetic modification of DCs using retroviral/lentiviral vectors. In
this scheme, the most utilised strategies for the induction of immunological tolerance using gene modification of DCs are shown. On top,
using lentiviral or retroviral vectors, the expression of immunosuppressive cytokines in DCs can induce the differentiation of antigen-specific
Tregs, or in some cases, Th2 cells. In the middle, lentivectors can be used to express constitutive activators or immunosuppressive intracellular
signalling pathways leading to the differentiation of suppressive T cells. On the bottom, lentiviral vectors can either deliver short hairpin RNAs
targeted towards proinflammatory pathways such as NF-«xB, proinflammatory receptors such as BAFF, or inhibitors of cytokine signalling
such as SOC3. All these strategies also lead to the development of suppressive T cells. Not shown in any of these schemes, all strategies lead
to differentiation of tolerogenic DCs which will either prevent the expansion of cytotoxic CD8 T cells, or induce their apoptosis/anergy.

highlighted after the first clinical application of MLV-based
retrovirus vectors for the treatment of X-linked SCID and
chronic granulomatous disease. In the case of the X-SCID
trials, a significant number of treated children developed
leukemia, possibly linked to insertional mutagenesis by
transcriptional upregulation of proto-oncogenes [38, 128-
130]. The removal of the proviral LTRs can partially solve this
problem (self-inactivating lentivectors [20, 131, 132], since
the viral enhancers that they contain strongly up-regulate
proto-oncogenes and also lead to aberrant transcription and
alternative splicing [128, 129, 133, 134]. All these genotoxic
effects could also be prevented, at least for the induction of
tolerance, using nonintegrating lentivectors (NILVs). These
lentivectors can be generated straightforwardly by introduc-
ing inactivating mutations in the integrase coding region,
or integrase-binding sites in the transfer vector [118, 135].
Consequently, the vector remains in the nucleus as an epi-
some, and long-term expression is achieved in non-dividing
cells, suitable for DC genetic modification. NILVs have been
shown to be effective for gene modification of retina, muscle,
and brain [135-138], and they have been already used for
vaccination [108, 118, 139, 140].

Genotoxic effects are possibly more severe in poorly
differentiated cells, rather than in terminally differentiated,
postmitotic cells. Therefore, another way to increase biosafety
is to physically target the lentivector particle to the desired
cell/tissue. This can be achieved by pseudotyping of the
retrovirus/lentivirus vector particle. The envelope glycopro-
tein (ENV) present on the particle’s surface determines the
specific recognition of the target cell. Then, after ENV binding
to its appropriate cellular receptor, the vector particle gains
entry into the cell. Retrovirus and lentivirus vectors can
acquire a large number of different envelope glycoproteins
as they bud at the cellular membrane from the producer cell.
Interestingly, these viral particles exhibit the natural tropism
conferred by the incorporated glycoprotein [141, 142]. The
most used envelope glycoprotein for lentivector pseudotyp-
ing is the vesicular stomatitis virus glycoprotein (VSV-G)
[41, 42, 143, 144]. Pseudotyping with VSV-G presents many
advantages, including particle stability and high titer vector
preparations [29]. Importantly, VSV-G confers virus vector
particles with a very broad host cell range, which includes
mouse and human DCs [10, 29, 145]. Therefore, potentially,
the restriction of lentivector tropism may result in safer in



vivo gene delivery and enhancement of the therapeutic effects
by a reduction in the lentivector dose.

Retroviral and lentiviral vectors have been success-
fully pseudotyped with a wide range of different het-
erologous viral proteins [146, 147]. As examples, mouse
leukemia virus amphotropic (MLV-A), gibbon ape leukemia
virus (GALV), and feline endogenous retrovirus (RD114)
envelopes [31, 148-153]. Lentivector pseudotyping with
alphavirus envelopes confers specific tropism towards mouse
and human DCs [154, 155]; Interestingly, baculovirus gp64
confers transduction capacity to hepatocytes but not cells
from the immune system, a property that can be exploited
for the induction of immunological tolerance [156, 157].
This property can be exploited to prevent transgene-specific
immune responses.

Pseudotyping with measles virus H/F ENV envelope
glycoproteins confers transduction capacity to resting human
B and T cells, with the possibility of targeting these immune
cell types for the induction of tolerance [30, 158].

Additionally, lentivectors can also be pseudotyped with
modified viral glycoproteins, conferring new tropisms for the
vector particles. Just as an example, specific gene targeting
in vivo to DCs was successfully accomplish by introducing
selected mutations in the Sindbis virus envelope proteins
E1/E2, to enhance binding to DC-SIGN [159, 160].

10. Conclusions

Since retroviral vectors have proven to be efficient systems to
deliver genes of interest into target cells they are being used
for gene therapy and the development of gene vaccines. What
makes them good systems is that they are devoid of viral
proteins, and stably incorporate into target cells. Lentiviral
vectors, developed from complex retroviruses, have prop-
erties that overcome several limitations of simple retroviral
vectors, including higher virion stability and titers and a lower
frequency of insertional mutagenesis. Especially important
for immunotherapy is the fact that they can transduce highly
differentiated cells such as DCs [6].

DC transduction with retroviral vectors causes their
phenotypical and functional maturation. While this is an
advantage when treating infectious disease or cancer it has the
adverse effect when immunological tolerance is the desired
outcome, as it is in the case of treatment of autoimmunity.

Lentivectors delivering immunosuppressive mediators to
inhibit the maturation of transduced DCs could be designed
to induce tolerance. On the other hand, there are different
types of matured DCs and not all of them induce an immune
response. There are tolerogenic DCs in the periphery that
provide tolerogenic signals to autoreactive T cells with high-
affinity TCRs that cause them to differentiate into inducible
Treg’s [53-55]. These tolerogenic DCs can be used to achieve
immunological tolerance. To differentiate tolerogenic DCs
there are three general (most used) methods; the delivery of
potent immunosuppressive cytokines, targeting of intracel-
lular signaling pathways leading to a tolerogenic phenotype
(MAPK/ERK activation), and the inhibition of proinflam-
matory signaling pathways (NF-xB pathway). What makes

Scientifica

lentivector transduction of DCs an especially elegant method
is the fact that it can be applied without previous MHC
typing as the DC will automatically present antigens from the
transgene. The combination of delivering immunosuppres-
sive properties while coexpressing an antigen of interest will
prime a tolerogenic response towards this antigen.

Gene therapy by lentivectors, while promising, had lim-
ited success due to the fact that these vectors induce a strong
transgene-specific immune response in vivo that limits the
survival of corrected cells and their therapeutic activities. To
overcome this hurdle, miRNA tagging could be exploited to
prevent transgene expression in professional antigen present-
ing cells by introducing a sequence target for specific miRNAs
present in these cells, or in certain maturation stages.

The use of retroviral vectors would in principle seem
more suitable to diseases where the immune system needs to
be boosted, such as cancer. But due to the elegance of our
immune system that can induce immunity or tolerance, its
modulation using gene therapy approaches may prove to be
an effective system to counter the overprotective reactions
of our immune system, which may give rise to autoimmune
disease.
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