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Abstract

Despite research spanning several decades, the exact value of the shear modulus G, of the
erythrocyte membrane is still ambiguous, and a wealth of studies, using measurements based on
micropipette aspirations, ektacytometry systems and other flow chambers, and optical tweezers as
well as application of several models have found different average values in the range 2-10 uN/m.
Our study shows that different methodologies have predicted the correct shear modulus for the
specific membrane modeling employed, i.e. the variation in the shear modulus determination
results from the specific membrane modeling. Available experimental findings from
ektacytometry systems and optical tweezers suggest that the dynamics of the erythrocyte
membrane is strain-hardening at both moderate and large deformations. Thus the erythrocyte shear
modulus cannot be determined accurately using strain-softening models (such as the neo-Hookean
and Evans laws) or strain-softening/strain-hardening models (such as the Yeoh law) which
overestimate the erythrocyte shear modulus. According to our analysis, the only available strain-
hardening constitutive law, the Skalak ef a/. law, is able to match well both deformation-shear rate
data from ektacytometry and force-extension data from optical tweezers at moderate and large
strains, using an average value of the shear modulus of G;=2.4-2.75 uN/m, i.e. very close to that
found in the linear regime of deformations via force-extension data from optical tweezers, G =
2.5+0.4 uN/m. In addition, our analysis suggests that a standard deviation in Ggof 0.4-0.5 uN/m
(owing to the inherent differences between erythrocytes within a large population) describes well
the findings from optical tweezers at small and large strains as well as from micro-pipette
aspirations.

1. INTRODUCTION

A human erythrocyte is essentially a capsule (i.e. a membrane-enclosed fluid volume) where
the liquid interior (cytoplasm) is a concentrated hemoglobin solution that behaves as a
Newtonian fluid with viscosity y, ~ 6-10 mPa s[1, 2]. In healthy blood and in the absence
of flow, the average human erythrocyte assumes a biconcave discoid shape of surface area
S, =135 un?, with a diameter of 7.8 zmand a thickness varying from 0.8 — 2.6 um at
physiological osmolarity, resulting in a volume of V= 94 un? [3, 4]. The erythrocyte
membrane is a complex multi-layered object consisting of a 4-nmrthick lipid bilayer (which
is essentially a two-dimensional incompressible fluid with no shear resistance) and an
underlying elastic network of spectrin (which exhibits shear resistance like a two-
dimensional elastic solid) [4].
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Despite research spanning several decades, the exact value of the shear modulus G, of the
erythrocyte membrane is still ambiguous, and a wealth of studies, using measurements based
on micro-pipette aspirations, ektacytometry systems and other flow chambers, and optical
tweezers as well as application of different models have found different average values in
the range 2-10 uN/m. Early experimental studies using micro-pipette aspiration reported an
average shear modulus of G;=4-10 uN/m[5-7] while models proposed a strain-dependent
shear modulus with a value near G;= 2 uN/m at low strains, e.g. see [8]. In 1999, Hénon et
al. [9], utilizing optical tweezers at small strains, found the membrane shear modulus to be
Gs= 2.5+ 0.4 uN/m. Later studies, using force-extension data from optical tweezers and
matching them with continuum and molecular models, found a shear modulus in the high
range, Gs= 8.3 uN/m[10-12]. In our recent work [13], we compared our computational
results with ektacytometry findings [14] and found a very good match for a shear modulus
very close to the average value found by optical tweezers at low strains, G;= 2.5 uN/m[9].
(To facilitate the subsequent discussion, in several places only the shear modulus value will
be presented with the implicit assumption that its units are always pA/m.)

The significant discrepancies between these values suggest a need to examine the
methodologies employed. Our review of published studies on the determination of the
erythrocyte shear modulus reveals the following conclusions (as also discussed in sections 3
and 4). (i) Several studies are approximate since they utilize simple (or even crude) models
and thus, at best, they find the order of magnitude of the shear modulus rather than its exact
value. (ii) From the rest of the studies which rely on accurate models, many utilize identical
or very similar methodologies and thus it is not surprising that they predict a similar value
for the shear modulus. Therefore, from the available large number of studies employing
accurate models, only a much smaller set is truly independent. (iii) This small set of
independent methodologies still predict different values of the shear modulus. Thus a
question naturally arises as to the reasons for this variation on the shear modulus
determination.

Based on the above, the present paper has two main goals: (a) to explain why different
methodologies predict different values of the erythrocyte shear modulus; and (b) to predict
accurately the value of the shear modulus and, in particular, its average value and the range
of its possible variation (owing to the inherent differences between erythrocytes within a
large population).

In section 2 we review several constitutive laws that have been used for the continuum
description of the erythrocyte membrane since they are the basis to relate the available
experimental measurements to the erythrocyte shear modulus. Based on the nature of these
constitutive laws and their relationship, in section 3 we discuss the determination of the
shear modulus via four distinct methodologies: force-extension data from optical tweezers at
small and large strains, deformation-shear rate data from ektacytometry, and data from
micro-pipette aspirations. A review of additional methodologies on the shear modulus of the
erythrocyte membrane has been included in section 4.

We emphasize that our review of the existing studies on the determination of the erythrocyte
shear modulus included in this paper cannot be all-inclusive owing to the difficulty in
finding all papers published and, most important, to the limited space commonly available
for the references in a given publication. Thus, in this work, we include and discuss a few
representative publications for several methodologies employed on shear modulus
determination. Our comparisons and comments on earlier studies do not intend, by any
mean, to discount any previous study; all of them have provided invaluable information on
the challenging problem of the physics of erythrocyte dynamics and its modeling.
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2. MEMBRANE DYNAMICS

A. Common constitutive laws

Several constitutive laws have been used for the continuum description of thin elastic
membranes such as that of the erythrocyte and many artificial capsules, e.g. [10, 13, 15-17].
These laws describe the principal elastic tensions z; (/= 1, 2) on the membrane as a function
of the principal stretch ratios A,. Note that A;= ds/dS;, where dS;and ds;denote line
elements in the reference and the deformed shapes, while the principal strain components

are given by e,:(/l? — 1)/2 [15]. Below we present the elastic tension t4 for five constitutive
laws; to calculate <, reverse the A;subscripts.

The Hooke (H) law (physically valid for small deformations) assumes that the membrane
tensions depend linearly on the surface strain [15]

H H

s Gs 2 2
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o
where G is the shear modulus associated with this law and v the surface Poisson ratio (vs
#1).

The neo-Hookean (NH) law, a special case of the Mooney-Rivlin law, results from the
application of the corresponding three-dimensional law to a very thin membrane [15, 18]

NH_ G 2 1
1~ 1 2 o)
A1z (4142)

where GY* is the associated shear modulus. This law does not contain a parameter
associated with area dilatation which is implicitly embodied into the law.

The Yeoh law (YE) [19] is a higher-order extension of the neo-Hookean law; its application
to a very thin membrane gives the corresponding two-dimensional law [18]
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where GY¥ is the associated shear modulus, and €3 and C3* dimensionless parameters.
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The Skalak et al. (SK) law [20] adds non-linearly the area dilatation to the shear deformation
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In the equation above, G5 is the shear modulus associated with this law while the

dimensionless parameter C'is associated with the area-dilatation modulus G3 ¥ of the
membrane (scaled with its shear modulus). In particular, analysis in the limit of small

deformations shows that the area-dilatation modulus is G3¥=G3¥(1+2¢) [15].

The Evans (EV) law [17, 21] adds linearly the area dilatation to the shear deformation,
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where GV is the shear modulus associated with this law while the dimensionless parameter
CEV represents the area-dilatation modulus of the membrane (scaled with its shear modulus).
Note that this law is also called Evans-Skalak law in some papers, e.g. [18, 22], probably
because it appeared later in the book of Evans and Skalak [23].

It is of interest to know that the Skalak ef a/. and Evans laws are two-dimensional laws,
derived to represent thin elastic membranes. On the other hand, the (original) Hooke, neo-
Hookean and Yeoh laws are three-dimensional laws, derived to represent elastic materials.
One may apply these laws to thin elastic membranes by either using the three-dimensional
laws with a very small membrane thickness and volume incompressibility (i.e. A1AoA3 = 1)
or utilizing the corresponding two-dimensional laws presented above. (The derivation of the
two-dimensional laws from the original three-dimensional laws has been described in earlier
papers, e.g. see section 3.3 in Ref.[18] and section 4.7 in Ref.[24].)

Under (mechanically) uniaxial extension or isotropic dilatation of capsules with finite
surface area-dilatation resistance, it was found that the neo-Hookean and Evans laws are
strain-softening (i.e. their tensions increase sub-linearly with the strain) while the Skalak et
al. law is strain-hardening (i.e. its tensions grow super-linearly with the strain) [15, 18].
(Note that the linear increase used in these comparisons refers to the common slope of all
laws in the linear regime of deformations.) The same behavior is observed in the steady-state
dynamics of these capsules in planar extensional flows [25]. The behavior of the Yeoh law
is more complicated; while at small deformations it behaves like the neo-Hookean law, due
to the higher-order correction included in the Yeoh law, its nature (strain-softening or strain-
hardening) and its degree of strain-softening vary with deformation at moderate and large

deformations and depends on the particular choice of its two parameters, C§ Eand C§ ET119].

B. Constitutive laws and local area-incompressibility

Erythrocyte continuum models (such as the ones used to determine the membrane’s shear
modulus) commonly treat the erythrocyte membrane as a locally area—incompressible elastic
solid by either employing a large area-dilatation modulus or imposing directly the local area-
incompressibility constraint AqA, = 1, e.g. [6, 10, 16].

By imposing locally the constraint A1\, = 1, the constitutive laws described earlier are
simplified to the following equations

H
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It is interesting to note that several studies, e.g. [5, 6, 10, 12, 26], referred to and/or
employed the Evans law under local area-incompressibility in the form

GEv 1 T
V=25 (/l% — — | wherer,—
1

In figure 1 we plot the principal tension t; (scaled with its associated shear modulus) as a

function of the principal strain elz(/lf — 1)/2 for all of the laws studied in this paper. Note
that for the Hooke law we used v¢= 1/3 which produces a practically linear tension-strain
dependence up to el = 1.5 (or A1 = 2) included in this figure with a slope very close to the

common slope of all laws at small deformations. For the Yeoh law we used C; =0 and

C§E=1 /15, i.e. the value of these two parameters (according to our notation and definition)
employed in Ref.[10] to match erythrocyte’s force-extension data from optical tweezers at
large strains.

Figure 1 shows that, even under local area-incompressibility, the Skalak et a/. law is strain-
hardening, the neo-Hookean and Evans laws are strain-softening while the Evans law is
more strain-softening than the neo-Hookean law. For the particular choice of the parameters

cYE and 3", after the initial strain-softening behavior at low deformations, the Yeoh law
becomes strain-hardening at large strains.

Small deformation behavior—When local area-incompressibility is enforced and the

deformation is very small, i.e. 23=1+s, where |e| < 1, all aforementioned constitutive laws
result into the same equation, i.e.

T{=Gjewherea=H,NH, YE, SK,EV (12

as simple perturbation algebra shows. Thus, under local area-incompressibility and in the
small-deformation regime all laws produce identical tension-extension behavior for the same
shear modulus, i.e.

GH=GN1=GIE=G5¥=GE" (13)

In essence, all constitutive laws behave as the Hooke law due to the linearization inherent in
the regime of small deformations.

Non-small-deformation behavior—In moderate and large deformations, the different
constitutive laws produce different behavior. Based on the strain-hardening or strain-
softening nature of each law, we expect that, for a given deformation, the more strain-
softening law should produce the same tensions as a less strain-softening law but for a
higher shear modulus.

This behavior has been identified for the deformation of capsules with moderate area-
dilatation resistance. For example, by matching the force-deformation curves derived from
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(mechanical) compression experiments, Carin et al. [27] showed that the strain-softening
Evans law produces an almost 40% higher shear modulus than the Skalak et a/. law [27].

In addition, if the matching is not valid over the entire deformation range, we expect the
difference in the predicted shear moduli to increase with the deformation of matching. Thus,
at small deformations all laws predict the same shear modulus; by matching at moderate
deformations the more strain-softening law should predict a higher shear modulus, while by
matching at large deformations the more strain-softening law should predict a much higher
shear modulus.

This was shown in figure 21(b) of our earlier work [25] where we plot the steady-state
maximum principal tensions 7£__as a function of the capsule extension/ length L, for a neo-

max
Hookean and a Skalak capsule with C =1 in a planar extensional flow. (Note that in our
earlier work, the tensions were scaled with the shear modulus of each law while the capsule

length was scaled with its equilibrium length.) When L, = 1.5 (extension 50%), matching
the maximum tensions of these laws requires G /GS¥ ~ 1.7; the moduli ratio increases to
GNH |GSK ~ 2.5, 3.4 for lengths L= 2, 2.5 (or extension 100%, 150%).

To estimate the difference in the predicted shear modulus of these constitutive laws under
local area-incompressibility, we match the local tensions given by each law for the same
stretch ratio. Based on this, the following relationships are derived

2/14 /lQGSK
GYI=11G3K GEV=—LG3KandGE L )
A+l 142CY 3+ - 2)+3CY 3+ % - 2)
1 1

To derive an estimation of the relative magnitude for the shear modulus of these laws, we
can approximate the stretch ratio A4 with the ratio of the extension of the deformed
erythrocyte to its extension at the reference (i.e. equilibrium) shape which occurs in a given
experimental system. For example, if we assume that at moderate deformations in

ektacytometry systems or optical tweezers 12=2 (or A4 ~ 1.41), then the equations above
predict

GV 2G5 GEY ~ 2.67G5KandGE ~ 1.90G3K  (15)

At large deformations (such as in optical tweezer experiments at large strains), the
erythrocyte axial diameter is increased to almost 100%; in this case, our prediction for A1 =
2 gives

G ~ 4GS GEY ~ 6.4G5KandG!F ~ 1.99G3K (16

The predictions above verify our earlier discussion in this subsection that, for matching in a
specific deformation range, the more strain-softening law should produce the same tensions
as a less strain-softening law but for a higher shear modulus while the difference in the
predicted shear moduli should increase with the deformation range of matching.

In figure 2 we plot the shear modulus of the neo-Hookean, Yeoh and Evans laws (scaled
with the shear modulus of Skalak et a/. law) as a function of the stretch ratio A.4. This figure
shows clearly that, owing to its strain-hardening at large strains for the specific choice of the

parameters C3 % and C3*, the Yeoh law should produce a good match at large strains for
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membranes following the Skalak et a/. law. It is of interest to note that for a stretch ratio A1
in the range [1.35, 2] (which almost covers the extensions used in optical tweezer

experiments at large strains [10]), the Yeoh’s shear modulus is GY¥ ~ 2G3 X with en error of
only £10%.

It is of interest to note that the shear resistance of the erythrocyte membrane results from its
spectrin cytoskeleton which may undergo local area changes under the constraint of fixed
total area being enclosed beneath the lipid bilayer in the erythrocyte membrane [13, 28, 29].
In our present work, we utilize the assumption of local area-incompressibility (so that we are
able to determine the relationship between different constitutive laws), because this
assumption has been employed by earlier shear modulus finding methodologies, e.g. via
force-extension data from optical tweezers at moderate and large strains [10, 11, 30], via
micro-pipette aspiration [6, 7, 26], and from electrically induced deformation experiments
[16], as discussed in more detail in sections 3 and 4.

C. Finding the shear modulus of a membrane

In section 2B we discussed that different constitutive laws should predict different
estimations of the shear modulus of the erythrocyte membrane, depending on the degree of
strain-softening of each law and the deformation range of matching. Thus, a question
naturally arises as to how to determine accurately the shear modulus of a given membrane
and in particular of the erythrocyte. To help answer this question (which actually constitutes
a research interest spanning several decades), two major statements can be made.

First, if the dynamics of a membrane is known to follow a given constitutive law in a range
of deformations, then the shear modulus predicted by this law in this deformation range
represents an accurate determination of the shear modulus of this membrane.

The statement above does not imply that if a constitutive law matches some experimental
findings in a given range (e.g. the force-deformation curve from compression experiments or
the deformation-shear rate curve from ektacytometry systems or the force-extension
relationship from optical tweezers at large strains), then this means that the dynamics of this
membrane follows this law. Due to the bulk (and thus simplistic) nature of some
experimental findings, these can be matched in a given range or even in the entire range of
available deformations via one or several laws without the membrane to follow one or any
of these laws.

For example, obviously the biocompatible alginate capsule used in the compression
experiments of Carin ef al. [27] mentioned earlier, cannot be at the same time strain-
hardening and strain-softening since it was found that the strain-hardening Skalak et a/. law
as well as the strain-softening Evans law describe well the capsule’s force-deformation
compression curves. In reality, this capsule may follow one of these two laws or even none
of them. Again this points to the simplistic nature of some available experimental findings.

Therefore, to find the constitutive law which truly describes the dynamics of a certain
capsule (and thus its real shear modulus) more detailed (or complicated) experimental data
are needed, i.e. using different experimental data (e.g. force-deformation but also
deformation-shear rate data) and probably including information about local properties
describing the capsule dynamics as opposed to the commonly available bulk-type
experimental data (e.g. force-deformation or deformation-shear rate data).

For example, Lefebvre and Barthés-Biesel [31] proposed to flow capsules into a
microchannel of comparable dimensions and observe local details of its interfacial shape as
a function of the flow rate (including the curvature along the capsule profile) as a way to
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deduce the membrane shear modulus. Based on this, alginate capsules were found to show a
strain-hardening dynamics best modeled by the Skalak et a/. law with a small pre-stress.

The second major conclusion which can be drawn on this subject is that, to avoid the
complications arising from the fact that different laws predict different values of the
membrane shear modulus based on experimental findings at moderate and large
deformations, one may consider the membrane dynamics at small deformations where all
laws predict identical value of the shear modulus. Thus, the membrane moduli are formally
defined by basic deformations in the linear regime of deformations. In particular, the
(surface) Young modulus £ (which is associated with the shear modulus Gj) is measured by
the membrane response to a uniaxial extension while the area-dilatation modulus G, is
measured by the membrane response to an isotropic tension [15, 20].

The small-deformation regime offers an additional advantage to the shear-modulus finding
methodologies which employ an analytical equation to relate the membrane shear modulus
with the experimental measurements; due to the linearization inherent in this deformation
regime, the required relationship is, in general, easier to derive than in the (non-linear)
regime of large deformations.

3. NATURE AND SHEAR MODULUS OF THE ERYTHROCYTE MEMBRANE

Nature of erythrocyte membrane under strain

Measurements in ektacytometry systems have long shown that the erythrocyte’s
(ektacytometry) deformation increases logarithmically with the shear stress in both moderate
and large deformations. (See for example figure 3 in Ref.[14].) This finding reveals two
conclusions: (a) the cell membrane has a single nature under both moderate and large
strains, i.e. it is either strain-hardening or strain-softening, and (b) this single nature is strain-
hardening since the deformation-shear stress dependence is logarithmic. In addition, force-
extension data from optical tweezers show clearly a hard-straining behavior at large strains,
as has been identified in earlier studies, e.g. see figure 8 in Ref.[10]. The shear resistance of
the erythrocyte membrane results from its elastic network of spectrin [4] while the strain-
hardening nature of the spectrin cytoskeleton with deformation has also been identified via
computational modeling [11, 32].

Our reasoning based on the experimental findings suggests that the erythrocyte membrane is
strain-hardening for non-small deformations, i.e. for both moderate and large strains. In this
case, the erythrocyte shear modulus cannot be determined accurately using strain-softening
models (such as the neo-Hookean and Evans laws) or strain-softening/strain-hardening
models (such as the Yeoh law). In particular, both types of laws are expected to produce a
higher value of the shear modulus as discussed in section 2B.

Determination of shear modulus at small strains via force-extension data from optical

tweezers

In 1999, Hénon et al. [9], utilizing optical tweezers at small strains (stretching force < 15
pn), determined the membrane shear modulus to be Gg=2.5 £ 0.4 uN/m. The discotic cell at
rest was modeled by two parallel discs submitted to zero stress at their border. Owing to the
linear regime of deformations, the early study employed constitutive laws from linear
elasticity to relate the cell’s transverse diameter with the applied force and the shear
modulus.

To support their high value of the membrane shear modulus found by optical tweezers at
large strains, Dao, Suresh and coworkers [10] discussed several possible reasons for the low
shear modulus found by Hénon et al. [9], including “idealization of a biconcave cell as a
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two-dimensional planar disc” and “neglecting the effects of the relatively large contact
region between the cell and the beads”. In our opinion, these possible reasons do not
constitute proofs while so far no study has actually challenged the findings of Hénon et al.
[9] at low strains, e.g. by proving that either the experiments or the employed analytical
model are erroneous.

It is of interest to note that the earlier theoretical model of Fischer ef a/. [8] also suggested a
low value of Gg=2 pN/mat small strains to explain experiments on red cells whose
membrane shear modulus has been increased by treatment with diamide. To match the
higher value of the shear modulus at large strains known from micro-pipette aspiration
studies, the authors proposed a strain-dependent shear modulus [8].

Determination of shear modulus at moderate strains via deformation-shear rate data from
ektacytometry

In our recent work [13], we developed a cytoskeleton-based continuum erythrocyte
algorithm based on the Skalak et a/. law. In addition, we compared our computational results
with the ektacytometry deformation-shear rate findings reported in figure 3 of Hardeman et
al. [14]. Our computational results capture two important aspects of the relationship between
cell deformation and capillary number (or wall shear stress): (i) the dependence is
logarithmic for the employed range of shear rates, and (ii) while using a log-scale for the
capillary number, our method produces a slope consistent with experimental results. (See
figure 3 in our earlier paper [13].) In addition, for G, = 2.4 uN/mthe experimental and
computational curves coincide suggesting that the sample used in the experimental
measurement had a shear modulus very close to the average value found by optical tweezers
at low strains, Gs= 2.5 uN/m [9].

We emphasize that additional comparisons of our computational results reported in Ref.[13]
with ektacytometry findings from different studies show that the matching shear modulus
falls inside the range for G, valid for most red blood cells at low strains, i.e. 1.7-3.3 uN/m
[9], and rather close to the average value. In particular, the ektacytometry’s deformation-
shear stress data included in table 1 of Wang et a/. [33] from the LORCA ektacytometer
correspond to a shear modulus G, = 2.3; the ektacytometry data for the control (i.e. normal
erythrocytes) included in figure 1 of Alexy et al. [34] correspond to G, = 2; while hew
ektacytometry data received from Hardeman (personal communication) correspond to Gg=
2.1. Therefore, our four comparisons reveal an average value of the shear modulus Gs= 2.2.

Note that our comparisons involve experimental findings via the LORCA ektacytometer
which works at the human body temperature of 37° and its measurements show negligible
standard deviation. Since all the remaining methodologies discussed in this paper determine
the shear modulus at room temperature (near 25°), we can apply a temperature correction to
our shear modulus determination. In their micro-pipette aspiration study, Waugh and Evans
[6] reported a 9% decrease in the shear modulus from 24.8° to 35.3° in their table 1; using
this correction our average value of the shear modulus becomes Gg = 2.4. The slightly higher
value of G = 2.64 is obtained if we use the 20% decrease from 25° to 35° reported in figure
11 in the electrically induced deformation methodology of Engelhardt and Sackmann [16].

Determination of shear modulus at moderate and large strains via force-extension data
from optical tweezers

In a series of papers, Dao, Suresh and coworkers determined the shear modulus of the
erythrocyte membrane by matching computational results from continuum and molecular
models with their optical tweezer force-extension data at moderate and large strains
(stretching force 20 to 198 pN), e.g. [10-12]. The results based on their continuum modeling
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were summarized in Ref. [10]. In particular, the authors utilized a finite-element program to
solve for the cell shape deforming as in the optical tweezer experiments, assuming that the
erythrocyte membrane follows either the neo-Hookean law (with or without enforcing local
area incompressibility) or the Yeoh law (without enforcing local area incompressibility).
During the deformation, the flow inside the erythrocyte was not considered; the cytoplasm
was treated as an inviscid fluid which acts to keep the interior volume constant. (Similar
continuum modeling was employed in later studies from other groups with similar
predictions, e.g. [36].)

As reported in figure 7 of the earlier study [10], the neo-Hookean law is able to describe
adequately the cell’s axial diameter at moderate strains only (stretching force 20 to 88 p/\)
but fails at higher strains since it cannot describe the erythrocyte’s hard-straining behavior in
this range of deformations. Without enforcing local area incompressibility, the shear
modulus was found to vary in the range [5.3, 11.3] due to the variation in the experimental

data with an average value of GY=7.3. The shear modulus under local area
incompressibility is 75% of that without, i.e. it varies in the range [4, 8.5] with an average

value of GY#=5.5[10].

According to our estimation discussed in section 2B, the corresponding shear modulus for a
membrane following the Skalak er a/. law is expected to be about half that of the neo-
Hookean law, i.e. under local area incompressibility it is expected to vary in the range [2,

4.25] with an average value of G5X=2.75. This is very close to that found in the linear
regime of deformations, i.e. average value G;= 2.5 and range [1.7, 3.3] [9].

When the Yeoh law was used to described the erythrocyte membrane, the computations of
Dao, Suresh and coworkers were able to describe adequate the cell’s axial diameter at both
moderate and large strains (stretching force 20 to 198 pA) as seen in figure 8 of the earlier
study [10], due to the hard-straining nature of the Yeoh law at large strains (as also shown in
our figure 1). Without enforcing local area incompressibility, they found the same range and
average value as for their neo-Hookean law at moderate strains. (We note that the model
was unable to match the transverse diameter; an optical matching for the average value of
the experimental data suggests an average value for the shear modulus below 3.)

By using the shear modulus of the Yeoh law which best matches the erythrocyte axial
diameter, and converting it to the corresponding shear modulus under local area
incompressibility by multiplying with 0.75 as suggested by the authors (see Ref.[10] and
table 1 in Ref.[12]), we obtain the same values as for the neo-Hookean law. As shown
clearly in our figure 2, for almost the entire range of the strains used in the work of Dao,

Suresh and coworkers, the Yeoh’s shear modulus is GY* ~ 2G3X with an error of only
+10%. Thus, again we obtain the same determination for the shear modulus of the Skalak et

al. law: range [2, 4.25] and average value of GSX=2.75.

It is of interest to note that the recent study of Le et a/. [36] which considered the same
membrane modeling with that of Dao and coworkers [10] but also solved the inner viscous
flow utilizing their implicit immersed boundary method, reported a shear modulus range of

[4.8, 10] and an average value of G£=7.3, based on matching with the optical tweezer data
for the axial diameter as shown in their figure 13. If we account for the missing local area-
incompressibility (by multiplying by 0.75) and convert to the Skalak et a/. law (by dividing
by 2), we get the range [1.8, 3.75] which is very close to the range [1.7, 3.3] found in the
linear regime [9].
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Therefore, the Skalak ef a/. law is the only employed law which is able to match well both
deformation-shear rate data from ektacytometry and force-extension data from optical
tweezers at moderate and large strains using a value of the shear modulus very close to that
found in the linear regime of deformations, i.e. Gs= 2.5 uN/m[9]. This reinforces further
our earlier conclusion that the nature of the erythrocyte membrane is strain-hardening at
both moderate and large deformations.

An important conclusion here is that the shear modulus found by matching a constitutive
law with experimental data in a specific range of deformations is not necessarily the same as
that found in the linear regime of deformations, i.e. the true shear modulus of the membrane.
For example, if the erythrocyte membrane follows the Skalak ef a/. law, then our
understanding is that Dao, Suresh and coworkers [10-12] as well as other groups [36] found
the shear modulus that represents the Yeoh law at large strains but not the true shear
modulus of the erythrocyte membrane, as shown optically in figure 3 and explained in its
caption.

Determination of shear modulus from micro-pipette aspiration

Different research groups have long used micro-pipette aspiration experiments to determine
the mechanical properties of the erythrocyte membrane, e.g. [5-7, 26, 37]. These studies
utilized the incompressible Evans law, given by Eq.(11), and an analytical equation to relate
the pipette suction pressure with the aspiration length. Based on this methodology the shear
modulus was found to vary in the range 4-10 with a typical value of Gg=6-7 at room
temperature [5].

Hénon et al. [9] discussed several possible reasons to explain the difference between their
low shear modulus value at the linear regime and the high value from the micro-pipette
aspiration. According to their summary"the shear modulus is expected to increase from the
small to the finite deformation regime, and because the elastic modulus measured with
micro-pipettes is a combination of the shear modulus and area compressibility” [9].

Our analysis suggests that this difference results from the constitutive law employed in the
micro-pipette aspiration studies. Based on our discussion in section 2B, the Evans
incompressible law should overestimate the erythrocyte shear modulus (based on the Skalak
et al. law) by a factor of 2-3 at moderate deformations and much more at larger
deformations. To show further the correspondence between the two laws, in the Appendix
we employ Evans analysis for the statics of the micro-pipette aspiration but utilize the

incompressible Skalak et a/. law, and show that the moduli ratio GEV /G3¥X should vary in the
range [1.5, 3.6] for the aspiration lengths usually employed in the micro-pipette studies.
Thus the typical value of G;= 6.5 found by micro-pipette aspirations corresponds to a

moduli ratio of GEY /G5X=6.5/2.5=2.6 which is rather well representative of the
overestimation of the Evans law (with respect to the Skalak et a/. law) in these experiments.

It is of interest to note that the values of the standard deviation found in micro-pipette
aspiration studies are consistent with the standard deviation of 0.4 found by Hénon et a/. [9],
if we scale them with the corresponding moduli ratio. For example, Waugh and Evans found
Gs=6.61 + 1.24; scaling this standard deviation with 2.5/6.61 we obtain 0.47. We also
obtain the same scaled standard deviation from the study of Evans et a/. [26] who found G,
=9+ 1.7. Leliévre et al [37] found G;= 4.5 + 0.8 and thus their scaled standard deviation is
0.44.

In essence, we believe that the (very) strain-softening Evans law cannot represent well the
strain-hardening behavior of the erythrocyte membrane at non-linear deformations, and thus
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methodologies which employ this law should always overestimate the shear modulus of the
erythrocyte membrane.

4. REVIEW OF ADDITIONAL METHODOLOGIES ON THE SHEAR MODULUS
OF THE ERYTHROCYTE MEMBRANE

Cytoskeleton molecular models

A series of papers utilized spectrin-based molecular algorithms and compared their results
with force-extension measurements via optical tweezers at moderate and large strains, e.g.
[11, 12, 38]. These studies are based on the molecular algorithm of Dao, Suresh and
coworkers and thus it is not surprising that they predicted a shear modulus in the high-range,
Gs=8.3 uNm[11, 12, 38], since this spectrin algorithm employs specific values for the
associated molecular parameters that match the Yeoh continuum law, as discussed in Ref.
[12]. Further, the shear modulus of the molecular algorithms originally results from the
particular choice of the employed molecular parameters and not via matching with optical
tweezer measurements that is used only for verification (see section 2.4 in Ref. [12] and
section 4.3 in Ref. [38]).

It is of interest to note that the molecular algorithms of Dao ef a/. [11, 12] and Hartmann
[38], which do not account for the local area-incompressibility forces of the lipid bilayer,
produce a practically linear force-extension relationship which does not match well the hard-
straining nature of the erythrocyte shown in the experimental measurements (e.g. see figure
8 in Ref.[12] and figure 7 in Ref.[38]). By incorporating the constraint of local area-
incompressibility in the spectrin description, Karniadakis and coworkers [30] produced a
very good match with the hard-straining force-dependence for the axial diameter of the
erythrocyte.

As discussed in our cytoskeleton-based continuum erythrocyte algorithm [13], the local
area-incompressibility forces (i.e. locally isotropic forces) of the lipid bilayer should be
accounted for in any spectrin modeling either continuum or molecular. However, in our
opinion enforcing a local area-incompressibility on the spectrin membrane appears to be
stricter than necessary since the cytoskeleton can undergo local area changes under the
constraint of fixed total area being enclosed beneath the lipid bilayer in the erythrocyte
membrane [13, 28, 29]. (The main issue here is that the local area-incompressibility forces
of the lipid bilayer produce incompressibility of the local area on the lipid bilayer but not
necessarily on the spectrin cytoskeleton.)

The incorporation of the local area-incompressibility constraint in the spectrin description
[30] reduced the predicted shear modulus from G;= 8.3 to Gs= 6.3. This reduction is in
agreement with the correction factor of 0.75 suggested in the earlier studies of Dao, Suresh
and coworkers [10, 11] since 8.3 x 0.75 = 6.2, i.e. in essence the methodology of
Karniadakis and coworkers [30] corresponds to an incompressible Yeoh law. Therefore,
based on the analysis of this paper, if the parameters of Karniadakis’ methodology are
modified to match the Skalak ef a/. law, then we expect the prediction of the shear modulus
to be within the range found by Hénon et al. [9].

Low-viscosity ektacytometry

Alternative ektacytometry systems have been developed by Wen and coworkers [39, 40] that
involve erythrocytes in the “wheel” orientation in low-viscosity surrounding liquids at
moderate shear rates. Based on a simple analytical model (which assumes that the
incompressible Evans law applies to the maximum elongation of the cell), the authors
predicted a shear modulus of G, = 6.1 via measurements through changes in laser-diffraction
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patterns, and a shear modulus of G, = 4.3 via direct observations of erythrocyte deformation
in a flow chamber.

Recently, MacMeccan et al. [41], utilizing a coupled lattice-Boltzmann/finite-element
method, found good agreement with the experimental data on deformation versus flow rate
in the flow chamber [39, 40]. The numerical method utilizes the physiological conditions of
the human erythrocyte with G;=5.7 but it does not enforce local area-incompressibility.
Observation of their figure 12 shows that a (computational) line with a smaller slope (i.e. a
smaller G,) matches better the experimental results while the shear modulus is further
reduced (by a factor of 0.75) if we enforce the local area-incompressibility constraint.

However, the experimental work of Wen and coworkers [39, 40] used red blood cells from
rabbits which are smaller than human erythrocytes (i.e. mean diameter 6.5 um) and thus
probably have different properties including equilibrium shape, inner viscosity and shear
modulus, while the effects of osmotic pressure and temperature are unclear for these cells.
Until these issues are clarified, further discussion on these experimental measurements
seems redundant.

Methodologies based on electrically induced deformation experiments

Engelhardt and Sackmann [16] developed a method to measure the shear modulus of the
erythrocyte membrane based on the fixation and transient deformation of cells in a high-
frequency electric field. The cell were subjected to both moderate and large deformations
while the shear modulus determination was based on moderate deformations (i.e.
elongations less then 3 um). Owing to the non-linear deformations, the authors had to utilize
an approximate sphere-to-ellipsoid deformation model that appears to be accurate at
moderate deformations based on numerical tests via finite elements that the authors
performed [16]. In addition, Engelhardt and Sackmann employed the incompressible Evans
law and found an average value of the shear modulus of all cells of G;= 6.1. Our analysis in
section 2B suggests that the incompressible Evans law should overestimate the erythrocyte
shear modulus based on the Skalak et a/. law by a factor of 2-3 at moderate deformations.
Thus their shear modulus corresponds to a Skalak ef a/. shear modulus of about

G3%=6.1/2.5=2.44 which is in excellent agreement with that found in the linear regime [9].

Additional methods

Korin et al. [22] utilized observations of erythrocytes flowing in microchannels at moderate
deformations (relative cell extensions between 10% and 60%) and determined a shear
modulus of Gg= 3.7. However, the earlier study used the incompressible Evans law which,
based on our discussion in section 2B, should overestimate the erythrocyte shear modulus
based on the Skalak et a/. law by a factor of 2-3 at these deformations. Most important, to
solve the flow dynamics the Keller and Skalak model was employed which is an
approximate model that predicts only qualitatively the erythrocyte motion [42]. A major
source of error in this model results from the omission of the shape-memory effects owing to
the non-spherical quiescent erythrocyte shape; this is a phenomenon which has been
identified only recently [43, 44]. Thus, the Keller and Skalak model predicts with a small
error the erythrocyte inclination but overpredicts by a factor of 5-6 its tank-treading
frequency [45] which is used in the model of Korin et al. [22] to determine the membrane
shear modulus.

Therefore, the theoretical model of Korin et al. [22] is very approximate and the fact that its
prediction of G;= 3.7 appears to be realistic is because the model contains counter-balanced
approximations, i.e. combined significant overprediction with significant underprediction of
the true erythrocyte dynamics.
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5. CONCLUSIONS

Despite research spanning several decades, the exact value of the shear modulus G, of the
erythrocyte membrane is still ambiguous, and a wealth of studies, using measurements based
on micro-pipette aspirations, ektacytometry systems and other flow chambers, and optical
tweezers as well as application of different models have found different average values in
the range 2-10 uN/m.

Our work shows that different methodologies have predicted the correct shear modulus for
the specific membrane modeling employed, i.e. the variation in the shear modulus
determination results from the specific membrane modeling. Available experimental
findings from ektacytometry systems and optical tweezers suggest that the dynamics of the
erythrocyte membrane is strain-hardening at both moderate and large deformations. Thus the
erythrocyte shear modulus cannot be determined accurately using strain-softening models
(such as the neo-Hookean and Evans laws) or strain-softening/strain-hardening models (such
as the Yeoh law) which overestimate the erythrocyte shear modulus. According to our
analysis, the only available strain-hardening constitutive law, the Skalak et a/. law, is able to
match well both deformation-shear rate data from ektacytometry and force-extension data
from optical tweezers at moderate and large strains, using a value of the shear modulus of G
=2.4-2.75 uN/m, i.e. very close to that found in the linear regime of deformations via force-
extension data from optical tweezers, Gg= 2.5 £ 0.4 uN/m [9]. Finally, our work suggests
that this is the accurate value of the erythrocyte shear modulus and does not vary with strain.
The range of the shear modulus variation (owing to the inherent differences between
erythrocytes within a large population) appears to be well described with that found by
Hénon et al. [9]; in particular our analysis suggests that a standard deviation in G of 0.4-0.5
uN/m describes well the findings from optical tweezers at small and large strains as well as
from micro-pipette aspirations.

We emphasize that the strain-hardening nature and the true value of the shear modulus are
necessary for the understanding of experimental findings on erythrocytes dynamics, e.g. [8,
14], including their circulation in the blood system. In addition, the shear modulus is used in
the determination of other properties of the erythrocyte membrane such as its bending
resistance and surface viscosity [8, 17, 26, 30]. Thus we believe that it may be necessary to
reconsider the determination of the bending modulus and the viscosity of the erythrocyte
membrane from earlier studies, which utilized strain-softening models and high values for
the shear modulus.

To improve the understanding of the erythrocyte dynamics, it would be very useful if
experimental groups provide non-bulk-type data on erythrocyte deformation such as local
details of the interfacial shape of individual cells in basic flows (e.g. simple shear flow or
planar extensional flow) or in confined solid geometries (e.g. microfluidic channels). In this
case, the experimental studies should also provide information on the properties of the
individual cells studied, including equilibrium shape and cytoplasm viscosity.
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Appendix: Micro-pipette aspiration analysis based on the Skalak et al. law

In this appendix, we employ Evans analysis for the statics of the micro-pipette aspiration
[46] but utilizing the Skalak et a/. law instead of the Evans law so that we can determine the

shear modulus G5 of the Skalak et a/. law applicable to micro-pipette analysis.
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As discussed in pages 122-124 in the work of Waugh and Evans [6], the principal stretch
ratio along the meridian direction at a point outside the pipette entrance is given by

2
/lf=1+(&) (%—1) an
r p

where £, is the pipette internal radius and L, the aspiration length. The pipette suction
pressure is determined by integrating in the plane of the membrane from the pipette tip
outward

4 Ty
AP=— | —d
Rpf w19

where 5= (t1 — tp)/2. Utilizing the incompressible Evans law for the principal tensions t;
and <, and thus for zggiven by Eq.(11), the authors found the pipette suction pressure to be
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(Note that the same result for AP was also found by Chien et al. [7] who applied the Evans
law but considered the statics inside the pipette using a spherical cap model.)

Following the same analysis but for the incompressible Skalak et a/. law, given by Eq.(9),
we can easily show that

SK
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1 1
S 2 2
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while the pipette suction pressure is now given by
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Combining Egs.(19) and (21), we find the moduli ratio for the two laws
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Different micro-pipette aspiration studies have utilized aspiration lengths of about L /R, =
1.5-4, e.g. see [6, 7, 26, 37]. In this range of L,/R,, the moduli ratio GE" /G3 X increases
practically linearly with the aspiration length and takes on values of 1.5-3.6. Thus, even
based on Evans micro-pipette analysis, if one uses Evans law to describe the tensions of a
strain-hardening membrane following the Skalak et a/. law, then this will result in a
significant overestimation of the shear modulus.

It is of interest to note that Lelievre ef al. [37] reported that they used the Skalak et al. law
and the Evans analysis in their micro-pipette aspiration study. However, Lelievre et al.

neglected the last factor for 5 & shown in our Eq.(20) and thus found z, for the Evans law
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given by our Eq.(11) while they used the pipette suction pressure valid for the Evans law,
i.e. EQ.(19) above. (See Egs.(5) and (6) in the earlier study [37]). We note that the factor

2
4
in

+/l[2 — 1 cannot be neglected in the non-linear regime of deformations such as those used
the micropipette systems. Thus, in essence Leliévre et al. [37] utilized the Evans law with

Evans micro-pipette analysis similarly to earlier studies, e.g. [6, 46].
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FIG. 1.

Principal tension <4 (scaled with its associated shear modulus) as a function of the principal
strain ¢, for the Hooke (HO), neo-Hookean (NH), Yeoh (YE), Skalak et al. (SK) and Evans
(EV) laws under local area-incompressibility A1\, = 1. For the Hooke law we used vs=1/3

while for the Yeoh law we used €3#=0 and C}*=1/15.
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FIG. 2.

Variation of the shear modulus of the neo-Hookean (NH), Yeoh (YE) and Evans (EV) laws
(scaled with the shear modulus of Skalak et a/. (SK) law) with the stretch ratio A so that all
laws produce the same principal tension <.
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FIG. 3.

Principal tension ; (scaled with the membrane’s shear modulus G) as a function of the
principal strain e; for the Yeoh (YE) and the Skalak et a/. (SK) laws having the membrane’s
shear modulus, i.e. GY2=G3¥=G¥. Also plotted is the tension-strain dependence YE2 for
the Yeoh law having a shear modulus twice that of the membrane, cY=2G%. (a) Curve
YE2 appears to match adequately the SK curve in moderate and large strains while optically

it also appears to produce a good matching at small strains owing to the large x-axis scale.
(b) Working in the linear regime (e.g. plotting the data only for small strains) it is obvious
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that curve YE2 cannot match the common slope (i.e. the membrane’s shear modulus G) of
the other two curves.
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