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Abstract
Over the last 50 years, sequencing, structural biology and bioinformatics have completely
revolutionised biomolecular science, with millions of sequences and tens of thousands of three
dimensional structures becoming available. The bioinformatics of enzymes is well served by,
mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics,
preparation and biological sources of enzymes, while KEGG is valuable for understanding
enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on
the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing
and manual annotation, human curation will never finish the functional annotation of the ever-
expanding list of known enzymes. Hence there is an increasing need for automated annotation,
though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the
Gene Ontology already profit from automation. Despite our growing understanding of enzyme
structure and dynamics, we are only beginning to be able to design novel enzymes. One can now
begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to
perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function
evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-
ligand interactions. Similarly, most drugs bind to more than one protein target. This may
sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often
leads to adverse side-effects. Many cheminformatics approaches can be used to model the
interactions between druglike molecules and proteins in silico. We can even use quantum
chemical techniques like DFT and QM/MM to compute the structural and energetic course of
enzyme catalysed chemical reaction mechanisms, including a full description of bond making and
breaking.

1. INTRODUCTION
Thousands of enzymes play essential roles in catalysing chemical reactions critical for the
survival of living organisms [1]. Often enzymes are very precisely selective for their
substrate and the chemistry and stereochemistry of the reaction they catalyse; however,
some enzymes carry out a variety of different functions with a range of efficiencies [2]. Our
understanding of systems biology and metabolism depends on a detailed knowledge of
enzyme function [3].

For five decades, the community has been annotating enzymes with Enzyme Commission
(EC) numbers, a simple hierarchical description of their function [4]. Over that time,
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sequencing, structural biology and bioinformatics have completely revolutionised
biomolecular science, with millions of sequences in UniProt [5] and tens of thousands of
three dimensional (3D) structures in the PDB [6]. Beyond the sheer quantity of data, a
plethora of software, much of it freely available, allows sophisticated computations to be
carried out on large datasets. Ever increasing hardware capabilities and network capacities
ensure that computations can be carried out rapidly either locally or over the internet.

Since around half of all known drugs act by inhibiting or modulating enzymes [7],
understanding the structures and functions of enzymes is important for drug design. While
the design of small molecules to inhibit or modulate enzymes has been a mainstay of
molecular design, more ambitious goals now appear achievable. The design of enzymes
themselves is progressing from site-directed re-engineering of natural proteins towards de
novo design and assembly of active enzymes. Jiang et al. created from scratch novel active
sites capable of catalytic activity as retro-aldol enzymes, basing their design process on a
careful analysis of the catalytic requirements of the chemical mechanism and inserting their
designs in scaffolds borrowed from naturally occurring proteins [8]. The same level of
understanding of enzyme function is also used to predict the unknown functions of protein
structures [9]. Function prediction from sequence can also achieve high accuracy if a
suitable database including close evolutionary homologues of the query sequence, expected
usually to share similar function, is available [10]. However, the high throughput and
difficulty of curation of automated function prediction carry a risk of propagating many mis-
annotations through the bioinformatics databases [11].

Depending on the context, enzyme function can be defined at different levels. Here, we are
chiefly concerned with the molecular function, the chemist’s perspective. For example, to
the chemist, angiotensin converting enzyme (ACE) is an exopeptidase catalysing the
conversion of angiotensin I to angiotensin II by the hydrolytic removal of two C-terminal
residues (EC 3.4.15.1), as well as degrading bradykinin. To the biologist, ACE brings about
vasoconstriction and thereby raises blood pressure [12]. Both the chemical and biological
descriptions are equally correct, but see the enzyme’s function from different perspectives.

2. TYPES AND SOURCES OF DATA
BRENDA [13, 14] contains copious information about the chemistry, substrate specificity,
kinetics, preparation and biological sources of enzymes. Kinetic parameters will be
especially valuable in the future, with Bar-Even et al. having demonstrated that the rate
acceleration and efficiency of real enzymes often falls far below those of idealised textbook
case studies [15]. KEGG (Kyoto Encyclopaedia of Genes and Genomes) is a valuable
resource, especially for understanding enzymes in the context of metabolic pathways [16,
17]. The ExplorEnz database is useful for searching and browsing the EC classification, and
is also a convenient source of up-to-date statistical information, from which we learn that
there are (August 2012) 4867 current EC numbers [18, 19]. Both IntEnz [20, 21] and the
official website of the NC-IUBMB [4, 22] also provide gateways to enzyme classification
and nomenclature information. The Catalytic Site Atlas (CSA) describes the residues which
have catalytic functionality in the active sites of enzymes, based on almost 1,000 papers in
the primary literature, with the corresponding information also inferred for about 27,000
homologs. The CSA provides 3D templates which can be used to search a protein structure
for spatial signatures of enzymatic activity [23, 24]. These can be searched, for instance, to
find evidence of convergent evolution [25]. The major enzyme databases are thoroughly
hyperlinked together, so that the sequences from UniProt [5] and X-ray or Nuclear Magnetic
Resonance (NMR) structures in the PDB [6] are easily available when browsing any of the
major sources of data.
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Some of the most valuable data on enzymes relate to the chemical mechanisms by which
they operate. EzCatDB contains mechanistic data on 828 enzyme reactions (August 2012)
[26, 27]. These data are classified according to EzCatDB’s own RLCP classification system
of mechanisms. The Structure-Function Linkage Database (SFLD) concentrates on
superfamilies of evolutionarily related, divergently evolved enzymes [28, 29]. The SFLD
facilitates study of the evolutionary paths through which related enzyme mechanisms
diverge [30]. MACiE combines extensive coverage of the world of enzyme reactions with a
very detailed stepwise description of the mechanism of each one, including every chemical
bond made or broken [31, 32]. MACiE has been used to show that convergently evolved
enzymes typically carry out similar chemical transformations by very different mechanisms
[33], for validating atom-to-atom matching between the chemical structures substrates and
products [34], and for understanding the complexity of enzymes [35].

3. ENZYME ANNOTATION AND FUNCTION PREDICTION
Sequence based methods are more widely applicable to newly sequenced proteins compared
to methods requiring a 3D protein structure. We now consider the kinds of data and methods
used to predict enzymatic function from gene or protein sequences.

3.1 Curation of enzyme function
Despite some known limitations, such as some inconsistencies between the rules set by the
nomenclature committee and the actual EC number definitions [36], the NC-IUBMB
Enzyme Commission (EC) nomenclature [4] is widely used to define enzymatic reactions,
and is the current standard for enzyme function classification. The EC nomenclature uses a
four digit code, such as EC 1.2.3.4, to represent an enzymatic reaction. Enzymatic classes
are long-tail distributed, that is, some EC numbers are very frequent among proteins while
most EC numbers only rarely occur, as shown in Figure 1. 80% of EC numbers annotate
only about 10% of UniProt [5] enzymes, while the remaining 20% most common EC classes
annotate 90% of UniProt enzymes. 731 EC numbers have fewer than five protein examples
in UniProt; 277 EC numbers only have one protein example in UniProt.

Enzyme resources can be divided into archives, closed and open databases. In archives, only
the submitting authors have the right to assign an annotation. Examples of archives are the
Protein Data Bank [6] or the EMBL (European Molecular Biology Laboratory) Nucleotide
Sequence Database [37]. In closed databases, a privileged group of curators is responsible
for the manual annotation of enyzmes. Examples of closed databases include UniProt Swiss-
Prot [5], KEGG [38, 39] and Reactome [40]. In contrast, open databases allow any non-
malicious user to edit the collected annotations. An example is PDBWiki [41], which allows
the community to annotate the protein structure entries deposited in the Protein Data Bank
(PDB) [6]. In practice, no current wiki is entirely dedicated to enzyme annotation.

Enzyme annotation is rarely changed or curated in most secondary databases, and is usually
represented as a link to a read-only entry in one of the main data sources mentioned above.
Enzyme annotation tends to cascade down from archives to other databases unchallenged.
For example, in UniProt TrEMBL (the non-manually annotated section of UniProt), EC
numbers are usually taken directly from the corresponding EMBL Nucleotide Sequence
Database or PDB entry. UniProt Swiss-Prot is, together with KEGG, one of the richest
collections of manually curated protein entries. In Swiss-Prot, the justification for a protein
annotation is provided as a list of literature entries. However, no specific paper is directly
linked to the EC annotation, making it difficult to identify the specific evidence the curator
used to assign a certain enzymatic function.
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3.2 Automated prediction of enzyme function
At the current rates of genome sequencing and expert annotation, manual curation will never
complete the functional annotation of all available enzymes [42], hence the need for
automated annotation. We concentrate on methods that use sequence signatures,
evolutionarily conserved patterns derived from known genetic sequences, as attributes
(features) for machine learning prediction. A signature is usually annotated with its function,
derived from the literature, structures or mutant information available for the underlying
sequences containing that signature. One of the main databases of signatures is InterPro
[43], an umbrella database including twelve other sources of signatures: Pfam, PRINTS,
PROSITE, SMART, ProDom, PIRSF, SUPERFAMILY, PANTHER, CATH-Gene3D,
TIGRFAMs and HAMAP. Out of all their signatures, InterPro curators manually condense,
give unique names and integrate the most reliable signatures. Sequence signatures can have
different lengths and tolerance for mutations, ranging from short catalytic sites with a
stringent requirement in terms of amino acid type to entire protein domains composed of
hundreds of amino acids. InterPro also provides a browser-based web service and offline
software to match signatures to any sequence (InterProScan) [44].

Automated prediction is not widespread for EC annotations. In contrast, functional
ontologies such as the Gene Ontology already profit from established automated prediction,
such as the InterPro2GO method that assigns Gene Ontology terms depending on matches to
InterPro signatures [45]. Tetko et al. [46] used principal component analysis to show that the
highest contributors to the performance of various protein function prediction methods were
InterPro signatures. Hence, in theory, EC labels too could be directly assigned from InterPro
domains using the InterPro2GO method and then the EC2GO lists. However, as shown in
[10], this method would have much lower accuracy (80%) than more recent machine
learning methods (EnzML 97%).

Sequence based methods for predicting enzyme function, in the guise of EC numbers,
include EFICAz [47], ModEnzA [48] and PRIAM [49]. However, some enzymes can
perform different reactions, either due to the presence of multiple catalytic sites, or because
of substrate promiscuity, or by regulation of a single site. Hence, one enzyme can be
associated with multiple EC numbers (multi-label), while these methods can only predict
one EC number per protein (multi-class). Regarding multi-label prediction, support vector
machines were used to predict EC numbers up to the second digit (e.g., EC 1.2.-.-), on 8,291
enzymes [50]. Hierarchical classification was also applied to about 6,000 enzymes from
KEGG, obtaining over 85% accuracy in predicting full four-digit EC numbers [51]. EnzML
[10] also used InterPro signatures to predict multiple four-digit EC numbers, and reached an
accuracy of over 95% on about 300,000 Swiss-Prot proteins using a K-Nearest Neighbours
multi-label algorithm [52].

3.3 The Nature and Limitations of Automated Prediction
The overall success of these methods is partly due to InterPro signatures providing a
compact representation of protein functionality. The 13.5 million proteins in UniProt are
described by only 154,583 unordered sets of InterPro signatures (attributes). Many of these
sets are very similar, only differing by one signature. The success of bioinformatics-based
prediction methods clearly owes much to the extent to which protein sequence space has
already been explored and annotated. For any given query sequence it is very likely that,
amongst the hundreds of thousands of sequences with existing functional annotations, there
will be some containing the same sequence signatures - indicative of evolutionary
relatedness and probably shared function. These methods, which effectively transfer
functional annotations amongst evolutionary neighbours, seem to reproduce well the human
curation process, including - in all probability - the same mistakes. Propagation of
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annotations demands trust that the original is correct. Automated methods can only be
evaluated against current manual annotation, while they cannot be easily validated against
extensive experimental evidence; biochemical characterisation of protein function has a
much lower throughput than sequencing [11].

Current manual annotation of enzymes differs substantially between databases such as
Swiss-Prot, KEGG and Reactome. In July 2011, up to a third of Swiss-Prot and KEGG
enzyme annotations were different. Excluding disagreeing annotations substantially reduces
the available data. Creating a gold standard of enzymatic function for automated prediction
is also made difficult by the peculiar distribution of EC numbers; using only annotations
agreeing in two or more data sources (as done in [10] for Swiss-Prot and KEGG) causes the
loss of many rare EC classes. At the same time, if too many redundant sequences are
included in the test set, automated methods’ accuracy can easily be overestimated. In the
future, enzymatic annotation could usefully profit from the same curation workflow
established for Ontology terms [53]. A GO functional class is attached to a protein together
with a standardised evidence code (derived from evidence, from literature, automatically
predicted etc.) and a link to the available evidence, usually in the form of literature or other
supporting data. This would allow more transparent presentation of both manual and
automated methods to predict enzymatic function.

4. DESIGNING ENZYMES WITH NOVEL MOLECULAR FUNCTIONS
Nature doesn’t have a problem inventing novel enzymes - but we do. Although our
understanding of enzyme structure and dynamics has improved impressively, still we are
only on the cusp of being able to properly design a novel enzyme. Here, we discuss
examples of computational enzyme design, its limitations and applications. Enzyme design
challenges our fundamental grasp of structure and dynamics, and how they enhance
catalysis: the structure-function relationship.

4.1 Computational enzyme design
Enzymes are very efficient catalysts, enhancing the rate of reaction many times over.
Enzymes are by nature exquisitely selective, capable of selecting amongst closely related
substrates to perform controlled reactions [54]. During enzyme catalysis, a substrate binds to
the active site, which then stabilizes the transition state, releases the product, and finally the
enzyme is restored to its native form, ready for another round of catalysis [55]. The
fundamental properties of enzymes are represented in many ways, via sequence, structure
and catalytic characteristics [56]. An excellent review by Lipscomb [57] points out the
important features of enzyme structure and catalysis that could be used in enzyme design.

Albery et al. [58] considered the evolutionary improvement of enzyme catalysis in nature in
terms of molecular structure and catalytic factors, suggesting the importance of the
relationship between structure and function in the course of evolution. Eisenmesser et al.
[59] showed the fluctuations of the active site’s conformation during catalysis using a
nuclear magnetic resonance relaxation method. This study reveals enzyme dynamics with
respect to substrate turnover, without including the side-chain dynamics. In contrast,
Tousignant et al. [60] have considered the fluctuation of the entire protein to show the
modification of catalysis. These analyses add up to a better understanding of the structural
dynamics of the entire protein during catalysis. All these sources of evidence show
important features needing to be incorporated in enzyme design.

The goal of enzyme design is to reconstruct an enzyme that is capable of performing
catalysis efficiently, bearing in mind the properties of enzyme structure and chemical
reactions which closely resemble the enzyme reaction in nature. This tests our understanding
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of many aspects of enzyme function. For example, a study by Kaplan et al. [61] designed an
O2-dependent phenol oxidase from scratch, illustrating the powerful role of enzyme
selectivity. With progress in designing, engineering and testing the function of enzymes, our
basic understanding of structure-function relationships is also improving greatly [62]. The
applications of enzyme design are widespread through biomedical to synthetic chemistry,
and have expanded into the realms of the chemical industry [63].

4.2 Computational methods and strategy: De novo design and redesign
With our current understanding of enzymes, we are able to improve the catalytic power of
an artificial enzyme and discern the important properties while designing or redesigning the
protein [64, 65]. De novo [55] designed proteins are novel with respect to structure and
catalysis, whereas in redesign [54] the natural protein is mimicked with improved catalysis.
In the past [64, 65], enzyme redesign was the more tractable approach.

It is a challenging task to use computational protein design to create an enzyme to perform a
desired chemical reaction. Studies by Jiang et al. [8] and by Rothlisberger et al. [66]
overcame this challenge by designing a novel catalytically active enzyme where no prior
information was provided [67]. In the first paper [8], they constructed a novel enzyme
catalyst, performing a retro-aldol reaction on the non-natural substrate 4-hydroxy-4-(6-
methyoxy-2-napthyl)-2-butanone. In the second paper [66], they demonstrated a novel
computational strategy, combined with molecular evolution, to create novel enzyme
catalysts for a reaction with no natural enzyme; the Kemp elimination [68]. Both of these
studies used a Rosetta match algorithm [69], rapidly comparing the geometry of active sites
in the structure. This method has been used for enzyme catalysis for a variety of chemical
reactions [70]. These studies showed an impressive understanding of the relationship
between structure and reactivity.

4.3 Challenges remaining in enzyme engineering
Computational enzyme design [67, 71, 72] has achieved significant breakthroughs, with
profound biotechnological, pharmacological and biomedical implications: design of new
biocatalysts [8, 61, 66] and improving enzymatic activity [73, 74].

The studies by Baker and colleagues [8, 66] demonstrate significant improvement in our
fundamental understanding of enzymatic reactions. Kiss et al. [75] evaluated the enzymes
designed in [8, 66], suggesting that there is room for improvement in the utilisation of
underlying physical principles for enzyme catalysis. They aimed firstly to develop and
improve a fast algorithm by filtering out inactive designs, and secondly to reveal any
limitations of the earlier studies [8, 66]. Kiss et al. demonstrated that the relative efficiencies
of the designed enzymes could be predictively ranked using a MD-based procedure.

We are yet to achieve the dream of routine enzyme design, engineering of de novo
biocatalysis with catalytic power comparable to natural enzymes. Protein design faces major
challenges, concerning issues such as computational complexity, energy structure-function
dynamics and precise atomic-level simulations. Glowacki et al. [76] designed a simple
model using transition-state theory based on the realistic physical parameters embracing the
structural conformational change involved in the reaction. A study by McGeagh et al. [77]
also favours using the transition state theory for understanding the role of structural changes
during enzyme catalysis. It would be beneficial in the future to consider together the
dynamics of enzyme structure and function [78, 79] for modelling enzyme catalysis, which
is closely related to understanding and predicting natural enzymes’ functionality [9].

Alderson et al. Page 6

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



5. THE EVOLUTION OF ENZYMES
5.1 The evolution of novel functionality in enzymes

It is thought that the most ancient enzymes showed weak specificity and were able to carry
out multiple reactions, but with relatively weak catalytic efficiency [80]. Over the course of
evolution these enzymes have become optimised to carry out specific reactions and have
hence increased in catalytic efficiency [80].

Broadly speaking, two phenomena displayed by modern day enzymes exemplify how novel
functionality may have arisen more recently from already highly evolved enzymes. O’Brien
& Herschlag developed the ideas of Jensen, who noted that some modern enzymes showed
‘substrate ambiguity’ [80] and subsequently termed enzymes using an active site for an
alternative reaction as ‘catalytically promiscuous’ [81], a description later elaborated on by
Khersonsky & Tawfik [82].

In order for a new function in an enzyme to evolve, the gene must be able to accumulate
new mutations. As such, it is thought that gene duplication has allowed genes to evolve
without affecting the function of the ‘master’ copy [83]. However, the point at which
duplication comes into play, i.e., whether duplication allows novel function to manifest in
the first place or whether duplication merely permits optimisation of an enzyme already
performing a second function, has been under debate since its first proposal; examples of
recent reviews include [82, 84]. The idea of enzyme promiscuity has been applied to specific
cases of divergence of enzyme function, for example by Russell et al. who discuss enzyme
promiscuity in terms of evolution of insecticide resistance as compared to xenobiotic
metabolism [85].

In addition to catalytic promiscuity at the active site, some enzymes are able to ‘moonlight’
[86]. According to Huberts and van der Klei, in moonlighting, the enzyme performs an
additional mechanistically different and independent function (Figure 2), using the same
domain as its principal function [87]. Moonlighting functions can be structural, regulatory or
enzymatic, and tend to occur in locations other than the active site, although this is not
always the case as discussed by Copley [88]. Often this additional functionality is context
dependent - the dependency upon cellular or extracellular location or other factors is
discussed by Jeffery [86]. The ‘classic’ example of moonlighting was discovered by
Piatigorsky et al. in 1988 in which the δ-crystallin gene was found to have different roles,
one structural, one metabolic, depending on expression levels in the duck [89]. Numerous
reviews give examples of moonlighting proteins, we highlight some more recent works that
explore the evolutionary mechanisms behind the emergence of novel moonlighting functions
[87, 88]. Very recently, a study by Rodríguez Plaza et al., which used protein engineering of
‘hunter-killer peptides’, revealed the possibility that moonlighting proteins are maintained in
evolution because the combination of two pre-existing functions in one domain can lead to
emergent and novel enzyme functionality [90].

5.2 Tracing the evolution of function in enzymes
One way to trace back the emergence of function in evolutionary history is by the use of
phylogenetics. However, innovation of novel functionality typically represents an ancient
event from the perspective of a modern day enzyme. In order to build such a ‘functional
phylogeny’, the members chosen must be homologous and their resulting alignment should
accurately reflect this homology. This involves discerning which parts of a sequence are
most conserved and therefore more likely to have retained some phylogenetic signal.

One way in which to achieve this is by the use of databases such as CATH [91] and SCOP
[92], in which enzymes are clustered into homologous groups aided by the conservation of
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protein structure, which is thought to be more conserved than sequence. Recent studies
which have utilised structure to aid inference of distant evolutionary relationships include
the exploration of the strictosidine synthase-like proteins [93] and the ferritin-like
superfamily [94].

The FunTree online application, released in 2011, allows for the evolution of CATH defined
superfamilies (at the ‘Homologous Superfamily’ level) to be explored [95, 96, 97]. The
application uses structural alignments to define ‘structurally similar groups’ (SSGs) within
the superfamily. Sequences within each SSG are aligned using a structurally informed
method. The resulting alignment is then used to build phylogenetic trees that integrate data
from the CSA [23, 24] and MACiE [31, 32] and allow for structural superimpositions of
structures at each node to be visualised using Jmol [98]. Thus, the evolution of functions in
diverse superfamilies can be seen in terms of changes in structure and active site residues.

An application such as FunTree represents an interesting and exciting way to explore
evolution. However, one only has to examine the ‘example’ phylogenetic trees on the
FunTree homepage [97] to see that in many cases the bifurcations at some nodes, especially
more ancient ones, show a low level of bootstrap support. This is unsurprising, given the
low level of homologous signal so far back in evolutionary history. The problem of low
signal to noise ratio in studies of highly divergent enzymes is on-going and seemingly
unavoidable; it will be of much interest to see what strategies will be developed in the future
to try and overcome this.

6. PREDICTING DRUG-PROTEIN INTERACTIONS
6.1 On and off-target prediction

It is well known that most drugs bind to more than one protein target. This may sometimes
result in polypharmacology, beneficial pharmacological effects from a drug modulating
more than one target, or more frequently in adverse side-effects. A drug discovery program
takes on average around 6 years before a drug candidate is ready for clinical trials and
another 6-7 for the three clinical phases. Hence it is very important to be able to identify
adverse effects as soon as possible, in order to save time and money as well as for patient
safety.

A number of cheminformatics approaches that model in silico the interactions between
druglike molecules and proteins have been proposed. They use different molecular
representations including two-dimensional fingerprints (2D), three-dimensional fingerprints
(3D), 3D pharmacophore models, and shape based approaches (such as Spherical Harmonic
representations, Gaussian maps etc.) [99]. These methods can predict interactions with the
primary pharmaceutical target, leading to bioactivity, and also off-target interactions that
may lead to side-effects. The use of these techniques for virtual screening in the first stages
of drug discovery allows up to millions of compounds to be assessed for bioactivity, ADME
and toxicity without the need to spend time or money synthesising them.

Recent years have seen rapid growth of publically available databases, such as ChEMBL
[100], BindingDB [101], PubChem [102] and DrugBank [103], and commercial products
like the MDDR [104] and WOMBAT [105]. These databases typically list affinities or
activities for molecules against targets, grouping compounds according to their functionality
against a given enzyme, protein or disease. Ideally, using those data, one would like to
identify all possible drug-to-target interactions or possible target-to-target connections
between different proteins and enzymes, as seen in Figure 3. To exploit this vast amount of
information, data mining has been combined with many predictive methods such as machine
learning, Bayesian and other statistically-based approaches, kernel density estimation and
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Inductive Logic Programming [106, 107, 108, 109, 110, 111]. Most of these methods use 2D
fingerprints to represent and compare molecules, since those methods still outperform the
more sophisticated three-dimensional (3D) techniques [112].

6.2 Applications of Predictive Models
One important pharmacological side-effect is phospholipidosis, the excess accumulation of
phospholipids within cells, which is often triggered by cationic amphiphilic drugs. This
affects many different types of cells and can cause significant delay in the drug development
process [113]. Recently, machine learning algorithms and kernel density estimation methods
have been used in order to predict the propensity of a drug to induce phospholipidosis, with
very good results [106, 108]. Such studies show how important computational methods are
and how much effort, time and money can be saved with minimal costs.

Another emerging trend is drug repositioning, where drugs are redirected from one specific
therapeutic area to another [114, 115]. Computational methods have succeeded in
identifying new drug-target associations. These encouraging results provide more
motivation for collaboration between experimental and computational laboratories, such as
those supported by the European Cooperation in Science and Technology (COST).

7. QM/MM AND DFT METHODS FOR ENZYME REACTIONS
7.1 Theoretical Chemistry Approaches to Enzyme Function

Computational chemistry can be used to elucidate the complex mechanisms of enzymatic
function. Chemical kinetics and thermodynamics are fundamental to our understanding, and
ultimately control, of enzymatic reactions. These factors are governed by the changes that
occur on the molecular and atomic length scales; hence consideration must be given to
quantum mechanical (QM) effects. Methods such as density functional theory (DFT) and
partitioned quantum mechanics and molecular mechanics (QM/MM) are therefore
employed. Results from calculations of this nature can stand alone, or be used to supplement
or replace some traditional descriptors in informatics models, such as quantitative structure-
property relationships (QSPR) and quantitative structure-activity relationships (QSAR) [116,
117]. Whatever quantum mechanical methods are used to study an enzymatic pathway, the
potential energy surface (PES) of the system must be explored, and the lowest energy, and
therefore most probable, path through which the mechanism can proceed should be located.

Conventional quantum chemical methods, like Hartree–Fock (HF), are wave function based
methods, and focus their effort on finding an appropriate wave function that is a solution of
the Schrödinger equation. HF methods can be systematically improved by adding additional
terms accounting for electron correlation, leading to the post-HF methods required for an
accurate description of correlation effects such as dispersion.

DFT is a set of quantum chemical methods used in electronic structure calculations,
generally for small to medium sized molecules of up to a few hundred atoms [118]. DFT
finds its roots in the Thomas-Fermi model of the 1920s [119, 120], although most modern
methods are based on the work of Hohenberg and Kohn [121] and Kohn and Sham [122] in
the 1960s. DFT, unlike the conventional wave function based quantum chemical methods
such as HF, derives a system’s electronic energy using density functionals applied to the
electron density [123, 118]. DFT is in principle a more efficient method of QM calculation
[123, 124], one for which the limiting factor is again the description of electron correlation
and also electron exchange. DFT computing time scales approximately as N3, where N is the
number of basis functions [118]. DFT has been described as a ladder [125] in which each
rung represents a more sophisticated class of functionals and hence an improved
approximation. These approximations, unfortunately, are not necessarily systematic
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improvements in the same sense as for post-HF methods. DFT functionals continue to
advance in complexity and accuracy. Some newer functionals, such as the M06 family of
functionals, contain empirical data to account for electron correlation effects [126].
Correction schemes have also been derived to overcome some of the deficiencies, such as
dispersion correction schemes [127]. For an overview of DFT methods, we refer the reader
to a review by Parr and Yang [128].

7.2 Kohn-Sham DFT applied to enzymes
DFT has been applied to small biomolecules such as peptides in the past, sometimes
highlighting the shortcomings of certain DFT functionals [129, 130]. DFT has also been
applied to small molecule catalysis [131], making DFT a good starting point for looking at
larger and more complex catalytic systems. Applications of conventional Kohn-Sham DFT
to enzymatic reaction mechanisms have been generally to cut-down model systems,
typically containing the active site region of the enzyme and the substrate. These cut down
models are sometimes referred to as mimics, biomimics [132], or theozymes [133]. By
cutting a system down to a size at which DFT is useable, one has the advantage of being
able to treat the interesting portion of the system at the QM level, in reasonable computer
time. However, neglecting a large portion of the system can lead to loss of accuracy.

Work by Georgiev et al. [132] exemplifies such DFT methods. The study looks at the
enzyme catalysed ring cleavage of catechol derivatives by the iron-containing dioxygenase
enzymes, of which there are two groups: intradiol-cleaving (e.g., catechol 1,2-dioxygenase,
EC 1.13.11.1) and extradiol-cleaving dioxygenases (e.g., catechol 1,3-dioxygenase, EC
1.13.11.2). A representative theozyme is used in place of the full enzyme. The study
proceeds using the hybrid DFT functional B3LYP [134] and an altered form B3LYP*
(adjusted to contain 15% HF exchange instead of 20%). B3LYP* had been previously found
to produce better results for systems containing transition metals [135]. Georgiev et al. were
able to make a reasoned deduction as to why the catalytic process goes selectively via the
intradiol-cleaving dioxygenase mechanism. The study shows that both possible mechanisms
produce an alkoxy radical via oxygen-oxygen bond homolysis. At this point, the intradiol-
cleaved substrate undergoes a barrier free carbon-carbon bond cleavage. In contrast, the
extradiol-cleavage mechanism incurs a second barrier to reaction in the formation of an
epoxide. Recent similar studies have provided insights into the mechanistic pathway of N-O
bond cleavage in nitrous oxide reductase [136], while Blomberg et al. used DFT to model
the catalytic mechanism of type II dehydroquinase [137]. A more comprehensive review of
these methods and applications can be found in [138].

7.3 QM/MM
Molecular mechanics (MM) is a level of theory based on classical mechanics, though
including non-classical components of the potential energy, such as exchange-repulsion and
dispersion. Its force fields have been used for many different applications in chemistry and
biochemistry, especially molecular dynamics (MD). One of the major drawbacks of MM is
that it cannot be used directly to model systems in which bond breaking and formation
occurs, which is often precisely the chemistry we want to study [118]. QM/MM is a method
that allows the user to incorporate chemical reactions into MM and also to consider a larger
system than allowed by traditional QM methods, such as an enzyme-substrate complex in its
entirety. QM/MM involves splitting a calculation into sections; the regions of most interest
(typically where bond formation and breaking occur) are treated as QM bubbles, with
molecular mechanics (MM) used for the rest of the system, see Figure 4. QM/MM has the
advantage over cut-down DFT theozyme models of accounting, at least classically, for the
whole macromolecular system. However, the method leads to a complex boundary area
between QM and MM regions, and still lacks a QM description of the full system. QM/MM
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typically uses semi-empirical wave function methods or DFT to describe the QM region,
although other methods are possible. In the MM region, a variety of force fields are
available, including some polarisable force fields [118, 139, 140]. ChemShell [141] can be
used to couple together many popular programs in order to perform QM/MM calculations,
while some quantum chemistry packages have self-contained QM/MM functionality.
Interesting reviews of QM/MM and quantum chemical methods for studying enzymatic
catalysis have been written by Friesner and Guallar [140] and by Lonsdale et al. [142].

Alhambra et al. [143] studied the proton transfer reaction catalysed by the enzyme enolase,
with consideration of QM proton tunnelling. The reaction is the conversion of 2-phospo-D-
glycerate (2-PGA) to phosphoenolpyruvate (PEP) (EC 4.2.1.11), an important step in
glucose fermentation. A crystal structure was used as an initial starting point along with
additional solvent water molecules, equilibrated using a classical MD simulation. A second
shorter MD simulation was then run with constraints on the length of the breaking and
forming bonds. The system was then split into QM and MM portions. The QM portion,
comprising 25 atoms including the substrate and part of the lysine 345 residue, contained the
region of bond forming and breaking and was treated at the AM1 semi-empirical level. The
rest of the system was frozen at acceptable random geometries from the second MD
simulation, and was treated with MM. Geometry optimisation from these random geometries
gave the reactants, transition state and products. The study concluded, by consideration of
QM effects, that tunnelling was a plausible mechanism. The free energies of activation
calculated from the optimised structures were also very similar to those obtained by
experiment [143]. Correction schemes using QM/MM to adjust classical simulation results
have also been proposed. Beierlein et al. [144] used single point B3LYP DFT-QM/MM
calculations at specific geometries to correct their classical simulations of protein-ligand
binding free energy via a single step free energy perturbation from MM to DFT-QM/MM
using the Zwanzig equation [145].

7.4 Linear Scaling DFT
The essence of linear scaling methods for ab initio and DFT calculations is the ability to
localise regions and apply QM methods regionally. The first linear scaling algorithm used
for QM calculation was the “divide and conquer” method (DAC) [128, 146, 147], based on
DFT. The idea is that, as the electron density is a local property, the system can be
decomposed into smaller subsystems, which are calculable separately and later combined
together to represent the whole system. This method does not follow the conventional
Kohn–Sham equations and instead aims to compute the electron density directly [146, 148].
A number of linear scaling methods have been developed and implemented [148, 149], and
reviewed [150]. Linear scaling algorithms are now available in ChemShell [141] and also in
stand-alone programs such as ONETEP [151, 152], a linear scaling DFT code.

Cole et al. [153] used ONETEP to study the binding of CO and O2to myoglobin (Mb). The
study uses a DFT energy functional corrected for dispersion (DFT+D) and for self-
interaction (DFT+U), which corrects the function locally. This is coupled with a basis set
achieving accuracy equivalent to that of a plane wave basis set. The heme binding site plus a
substantial portion of the surrounding protein structure were used in the study, comprising
over 1000 atoms. Elsewhere, an implicit solvation model incorporated into ONETEP was
used to test the effects of solvation on protein-ligand binding for T4 lysozyme, containing
more than 2000 atoms [154].

CONCLUSIONS
Efforts to understand, predict, control and even redesign the function of enzymes lie at the
heart of contemporary bioinformatics and molecular biology, underpinned by the ever-
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growing fund of genomic data and the free availability of most key databases. These data are
enriched by expert curation and annotation that allow associations to be made between
sequences, structures, enzyme classification, chemical reactions, mechanisms, cellular
functions, protein-ligand interactions, protein expression, metabolism, disease, and
pharmacology. Since the volume of data now overwhelms manual annotation, computer
algorithms will in future play a critical role in reliably deepening and broadening this
knowledge though automated annotation, updating and linking of databases. Phylogenetic
reconstructions of evolutionary history will hopefully help us to keep pace with the
development of antibiotic resistance, and to understand how novel enzyme functions evolve.
With the variety of DFT, ab initio, semi-empirical and QM/MM computational methods
now at our disposal, quantum chemical techniques will become increasingly useful for
elucidating and understanding enzyme mechanisms. In summary, a wide range of
computational techniques from machine learning, through bioinformatics and
chemoinformatics, to quantum chemistry will be required to progress the vast quantity of
available data on enzymes into useful knowledge, and to translate that knowledge into
technological, pharmaceutical and medical applications.

Acknowledgments
We thank the BBSRC for grant BB/I00596X/1 to JBOM which supports LDF’s research, and for studentship
funding for RGA. Research by JBOM and LM is supported by WADA. We thank the Scottish Universities Life
Sciences Alliance (SULSA) for supporting JBOM, JLMcD and NN, and we also thank the Scottish Overseas
Research Student Awards Scheme of the Scottish Funding Council (SFC) for financial support of NN’s studentship.
We thank Leo Holroyd and Luke Crawford for helpful discussions.

List of abbreviations

2D Two Dimensional

3D Three Dimensional

ACE Angiotensin Converting Enzyme

ADME Absorption, Distribution, Metabolism, and Excretion

BRENDA BRaunschweig ENzyme Database

COST (European) Cooperation in Science and Technology

CSA Catalytic Site Atlas

DFT Density Functional Theory

EC Enzyme Commission

EMBL European Molecular Biology Laboratory

MACiE Mechanism, Annotation and Classification in Enzymes

Mb Myoglobin

HF Hartree–Fock

KEGG Kyoto Encyclopaedia of Genes and Genomes

MDDR MDL Drug Data Report

MM Molecular Mechanics

NC-IUBMB Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology

NMR Nuclear Magnetic Resonance

Alderson et al. Page 12

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



PES Potential Energy Surface

QM Quantum Mechanics

QM/MM Quantum Mechanics / Molecular Mechanics

QSPR Quantitative Structure-Property Relationship

QSAR Quantitative Structure-Activity Relationship

RLCP Reaction, Ligand, Catalysis, Residues

SFLD Structure-Function Linkage Database

SSG Structurally Similar Group

REFERENCES
[1]. Bairoch A. The ENZYME database in 2000. Nucleic Acids Research. 2000; 28(1):304–305.

[PubMed: 10592255]

[2]. Copley S. Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Current
Opinion in Chemical Biology. 2003; 7(2):265–272. [PubMed: 12714060]

[3]. Li P, Dada JO, Jameson D, Spasic I, Swainston N, Carroll K, Dunn W, Khan F, Malys N, Messiha
HL, Simeonidis E, Weichart D, Winder C, Wishart J, Broomhead DS, Goble CA, Gaskell SJ,
Kell DB, Westerhoff HV, Mendes P, Paton NW. Systematic integration of experimental data and
models in systems biology. BMC Bioinformatics. 2010; 11(1):582. [PubMed: 21114840]

[4]. IUBMB. Enzyme Nomenclature 1992: Recommendations of the Nomenclature Committee of the
International Union of Biochemistry and Molecular Biology on the Nomenclature and
Classification of Enzymes. Academic Press; London: 1992.

[5]. The UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource
(UniProt). Nucleic Acids Res. 2012; 40(D1):D71–D75. [PubMed: 22102590]

[6]. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE.
The Protein Data Bank. Nucleic Acids Research. 2000; 28(1):235–242. [PubMed: 10592235]

[7]. Hopkins AL, Groom CR. The druggable genome. Nature reviews. Drug discovery. 2002; 1(9):
727–730.

[8]. Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker
JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D. De novo computational
design of Retro-Aldol enzymes. Science. 2008; 319(5868):1387–1391. [PubMed: 18323453]

[9]. Hermann JC, Marti-Arbona R, Fedorov AA, Fedorov E, Almo SC, Shoichet BK, Raushel FM.
Structure-based activity prediction for an enzyme of unknown function. Nature. 2007;
448(7155):775–779. [PubMed: 17603473]

[10]. De Ferrari L, Aitken S, van Hemert J, Goryanin I. EnzML: Multi-label prediction of enzyme
classes using InterPro signatures. BMC Bioinformatics. 2012; 13(1):61. [PubMed: 22533924]

[11]. Furnham N, Garavelli JS, Apweiler R, Thornton JM. Missing in action: enzyme functional
annotations in biological databases. Nature Chemical Biology. 2009; 5(8):521–525.

[12]. Fleming I. Signaling by the Angiotensin-Converting enzyme. Circulation Research. 2006; 98(7):
887–896. [PubMed: 16614314]

[13]. Scheer M, Grote A, Chang A, Schomburg I, Munaretto C, Rother M, Söhngen C, Stelzer M,
Thiele J, Schomburg D. BRENDA, the enzyme information system in 2011. Nucleic Acids
Research. 2011; 39(suppl 1):D670–D676. [PubMed: 21062828]

[14]. BRENDA. [Accessed 23 July 2012] The Comprehensive Enzyme Information System. http://
www.brenda-enzymes.info/

[15]. Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R. The moderately
efficient enzyme: Evolutionary and physicochemical trends shaping enzyme parameters.
Biochemistry. 2011; 50(21):4402–4410. [PubMed: 21506553]

Alderson et al. Page 13

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.brenda-enzymes.info/
http://www.brenda-enzymes.info/


[16]. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation
of large-scale molecular data sets. Nucleic Acids Research. 2011; 40(D1):D109–D114. [PubMed:
22080510]

[17]. KEGG. Kyoto Encyclopedia of Genes and Genomes. http://www.kegg.jp/Accessed 23 July 2012

[18]. McDonald AG, Boyce S, Moss GP, Dixon HB, Tipton KF. ExplorEnz: a MySQL database of the
IUBMB enzyme nomenclature. BMC Biochemistry. 2007; 8:14. [PubMed: 17662133]

[19]. [Accessed 14 August 2012] ExplorEnz-The Enzyme Database. http://www.enzyme-database.org/

[20]. Fleischmann A, Darsow M, Degtyarenko K, Fleischmann W, Boyce S, Axelsen KB, Bairoch A,
Schomburg D, Tipton KF, Apweiler R. IntEnz, the integrated relational enzyme database.
Nucleic Acids Research. 2004; 32(suppl 1):D434–D437. [PubMed: 14681451]

[21]. [Accessed 23 July 2012] IntEnz. http://www.ebi.ac.uk/intenz/

[22]. [Accessed 23 July 2012] NC-IUBMB. http://www.chem.qmul.ac.uk/iubmb/enzyme/

[23]. Porter CT, Bartlett GJ, Thornton JM. The Catalytic Site Atlas: a resource of catalytic sites and
residues identified in enzymes using structural data. Nucleic Acids Research. 2004; 32(suppl
1):D129–D133. [PubMed: 14681376]

[24]. [Accessed 23 July 2012] Catalytic Site Atlas. http://www.ebi.ac.uk/thornton-srv/databases/CSA/

[25]. Gherardini PFF, Wass MN, Helmer-Citterich M, Sternberg MJ. Convergent evolution of enzyme
active sites is not a rare phenomenon. Journal of Molecular Biology. 2007; 372(3):817–845.
[PubMed: 17681532]

[26]. Nagano N. EzCatDB: the Enzyme Catalytic-mechanism Database. Nucleic Acids Res. 2005;
33(suppl 1):D407–D412. [PubMed: 15608227]

[27]. EzCatDB. [Accessed 14 August 2012] http://mbs.cbrc.jp/EzCatDB/

[28]. Pegg SCH, Brown SD, Ojha S, Seffernick J, Meng EC, Morris JH, Chang PJ, Huang CC, Ferrin
TE, Babbitt PC. Leveraging enzyme Structure-Function relationships for functional inference and
experimental design:  the Structure-Function Linkage Database. Biochemistry. 2006; 45(8):
2545–2555. [PubMed: 16489747]

[29]. [Accessed 23 July 2012] Structure-Function Linkage Database. http://sfld.rbvi.ucsf.edu/django/

[30]. Meng EC, Babbitt PC. Topological variation in the evolution of new reactions in functionally
diverse enzyme superfamilies. Current Opinion in Structural Biology. 2011; 21(3):391–397.
[PubMed: 21458983]

[31]. Holliday GL, Almonacid DE, Bartlett GJ, O’Boyle NM, Torrance JW, Murray-Rust P, Mitchell
JBO, Thornton JM. MACiE (Mechanism, Annotation and Classification in Enzymes): Novel
tools for searching catalytic mechanisms. Nucleic Acids Research. 2007; 35(suppl 1):D515–
D520. [PubMed: 17082206]

[32]. [Accessed 23 July 2012] MACiE (Mechanism, Annotation and Classification in Enzymes). http://
www.ebi.ac.uk/thornton-srv/databases/MACiE/

[33]. Almonacid DE, Yera ER, Mitchell JBO, Babbitt PC. Quantitative comparison of catalytic
mechanisms and overall reactions in convergently evolved enzymes: implications for
classification of enzyme function. PLoS Computational Biology. 2010; 6(3):e1000700. [PubMed:
20300652]

[34]. Rahman SA, Bashton M, Holliday GL, Schrader R, Thornton JM. Small molecule subgraph
detector (SMSD) toolkit. Journal of Cheminformatics. 2009; 1:12. [PubMed: 20298518]

[35]. Holliday GL, Fischer JD, Mitchell JBO, Thornton JM. Characterizing the complexity of enzymes
on the basis of their mechanisms and structures with a bio-computational analysis. FEBS Journal.
2011; 278(20):3835–3845. [PubMed: 21605342]

[36]. Egelhofer V, Schomburg I, Schomburg D. Automatic Assignment of EC Numbers. PLoS Comput
Biol. 2010; 6(1):e1000661. [PubMed: 20126531]

[37]. Cochrane G, Akhtar R, Bonfield J, Bower L, Demiralp F, Faruque N, Gibson R, Hoad G,
Hubbard T, Hunter C, Jang M, Juhos S, Leinonen R, Leonard S, Lin Q, Lopez R, Lorenc D,
McWilliam H, Mukherjee G, Plaister S, Radhakrishnan R, Robinson S, Sobhany S, Hoopen PT,
Vaughan R, Zalunin V, Birney E. Petabyte-scale innovations at the European Nucleotide
Archive. Nucleic Acids Res. 2009; 37(suppl 1):D19–D25. [PubMed: 18978013]

Alderson et al. Page 14

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.kegg.jp/
http://www.enzyme-database.org/
http://www.ebi.ac.uk/intenz/
http://www.chem.qmul.ac.uk/iubmb/enzyme/
http://www.ebi.ac.uk/thornton-srv/databases/CSA/
http://mbs.cbrc.jp/EzCatDB/
http://sfld.rbvi.ucsf.edu/django/
http://www.ebi.ac.uk/thornton-srv/databases/MACiE/
http://www.ebi.ac.uk/thornton-srv/databases/MACiE/


[38]. Kotera M, Hirakawa M, Tokimatsu T, Goto S, Kanehisa M. The KEGG databases and tools
facilitating omics analysis: latest developments involving human diseases and pharmaceuticals.
Methods Mol Biol. 2012; 802(1):19–39. [PubMed: 22130871]

[39]. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and
analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010; 38(suppl
1):D355–D360. [PubMed: 19880382]

[40]. Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath G,
Jassal B, Jupe S, Kalatskaya I, Mahajan S, May B, Ndegwa N, Schmidt E, Shamovsky V, Yung
C, Birney E, Hermjakob H, D’Eustachio P, Stein L. Reactome: a database of reactions, pathways
and biological processes. Nucleic Acids Res. 2011; 39(suppl 1):D691–D697. [PubMed:
21067998]

[41]. Stehr H, Duarte JM, Lappe M, Bhak J, Bolser DM. PDBWiki: added value through community
annotation of the protein data bank. Database. 2010; 2010 doi: 10.1093/database/baq009.

[42]. Baumgartner WA, Cohen KB, Fox LM, Acquaah-Mensah G, Hunter L. Manual curation is not
sufficient for annotation of genomic databases. Bioinformatics. 2007; 23(13):i41–i48. [PubMed:
17646325]

[43]. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty
L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I,
Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A,
Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD,
Valentin F, Wilson D, Wu CH, Yeats C. InterPro: the integrative protein signature database.
Nucleic Acids Res. 2009; 37(suppl 1):D211–D215. [PubMed: 18940856]

[44]. Mulder N, Apweiler R. InterPro and InterProScan: tools for protein sequence classification and
comparison. Methods Mol Biol. 2007; 396:59–70. [PubMed: 18025686]

[45]. Burge S, Kelly E, Lonsdale D, Mutowo-Muellenet P, McAnulla C, Mitchell A, Sangrador-Vegas
A, Yong S-Y, Mulder N, Hunter S. Database. 2012; 2012 doi: 10.1093/database/bar068.

[46]. Tetko IV, Rodchenkov IV, Walter MC, Rattei T, Mewes H-W. Beyond the ‘best’ match: machine
learning annotation of protein sequences by integration of different sources of information.
Bioinformatics. 2008; 24(5):621–628. [PubMed: 18174184]

[47]. Tian W, Arakaki AK, Skolnick J. EFICAz: a comprehensive approach for accurate genome-scale
enzyme function inference. Nucleic Acids Res. 2004; 32(21):6226–6239. [PubMed: 15576349]

[48]. Desai DK, Nandi S, Srivastava PK, Lynn AM. ModEnzA: Accurate identification of metabolic
enzymes using function specific profile HMMs with optimised discrimination threshold and
modified emission probabilities. Adv Bioinformatics. 2011; 2011:743782. [PubMed: 21541071]

[49]. Claudel-Renard C, Chevalet C, Faraut T, Kahn D. Enzyme-specific profiles for genome
annotation: PRIAM. Nucleic Acids Res. 2003; 31(22):6633–6639. [PubMed: 14602924]

[50]. Cai CZ, Han LY, Ji ZL, Chen YZ. Enzyme family classification by support vector machines.
Proteins: Structure, Function, and Bioinformatics. 2004; 55(1):66–76.

[51]. Astikainen K, Holm L, Pitkanen E, Szedmak S, Rousu J. Towards structured output prediction of
enzyme function. BMC Proceedings. 2008; 2(suppl 4):S2. [PubMed: 19091049]

[52]. Spyromitros, E.; Tsoumakas, G.; Vlahavas, I. An empirical study of lazy multilabel classification
algorithms; SETN ‘08 Proceedings of the 5th Hellenic conference on Artificial Intelligence:
Theories, Models and Applications; 2008; p. 401-406.

[53]. Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte N, Lopez R,
Apweiler R. Nucleic Acids Research. 2004; 32:D262–D266. [PubMed: 14681408]

[54]. Penning TM, Jez JM. Enzyme Redesign. Chemical Reviews. 2001; 101(10):3027–3046.
[PubMed: 11710061]

[55]. Baltzer L, Nilsson H, Nilsson J. De Novo Design of Proteins - What Are the Rules? Chemical
Reviews. 2001; 101(10):3153–3164. [PubMed: 11710066]

[56]. McCammon JA. Protein Dynamics. Rep. Prog. Phys. 1984; 47(1):1–46.

[57]. Lipscomb WN. Structure and catalysis of enzymes. Annu Rev Biochem. 1983; 52:17–34.
[PubMed: 6225375]

[58]. Albery WJ, Knowles JR. Efficiency and Evolution of Enzyme Catalysis. Angewandte Chemie
International Edition in English. 1977; 16(5):285–293.

Alderson et al. Page 15

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[59]. Eisenmesser EZ, Bosco DA, Akke M, Kern D. Enzyme Dynamics During Catalysis. Science.
2002; 295(5559):1520–1523. [PubMed: 11859194]

[60]. Tousignant A, Pelletier JN. Protein Motions Promote Catalysis. Chemistry & Biology. 2004;
11(8):1037–1042. [PubMed: 15324804]

[61]. Kaplan J, DeGrado WF. De novo design of catalytic proteins. Proc Natl Acad Sci USA. 2004;
101(32):11566–11570. [PubMed: 15292507]

[62]. Nanda, V.; Zahid, S.; Xu, F.; Levine, D. Chapter twenty - Computational Design of
Intermolecular Stability and Specificity in Protein Self-assembly. In: Michael, LJ.; Ludwig, B.,
editors. Methods in Enzymology. Vol. 487. Academic Press; 2011. p. 575-593.

[63]. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the
third wave of biocatalysis. Nature. 2012; 485(7397):185–194. [PubMed: 22575958]

[64]. Tao H, Cornish VW. Milestones in directed enzyme evolution. Current Opinion in Chemical
Biology. 2002; 6(6):858–864. [PubMed: 12470742]

[65]. Gro M, Plaxco KW. Protein engineering: Reading, writing and redesigning. Nature. 1997;
388(6641):419–420. [PubMed: 9242395]

[66]. Rothlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL,
Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D. Kemp
elimination catalysts by computational enzyme design. Nature. 2008; 453(7192):190–195.
[PubMed: 18354394]

[67]. Nanda V. Do-it-yourself enzymes. Nat Chem Biol. 2008; 4(5):273–275. [PubMed: 18421288]

[68]. Casey ML, Kemp DS, Paul KG, Cox DD. Physical organic chemistry of benzisoxazoles. I.
Mechanism of the base-catalyzed decomposition of benzisoxazoles. Journal of Organic
Chemistry. 1973; 38(13):2294–2301.

[69]. Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA, Röthlisberger D, Baker
D. New algorithms and an in silico benchmark for computational enzyme design. Protein
Science. 2006; 15(12):2785–2794. [PubMed: 17132862]

[70]. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D. De Novo Enzyme Design Using
Rosetta3. PLoS ONE. 2011; 6(5):e19230. [PubMed: 21603656]

[71]. Suárez M, Jaramillo A. Challenges in the computational design of proteins. J. R. Soc. Interface.
2009; 6(suppl 4):S477–S491. [PubMed: 19324680]

[72]. Lippow SM, Tidor B. Progress in computational protein design. Current Opinion in
Biotechnology. 2007; 18(4):305–311. [PubMed: 17644370]

[73]. Dantas G, Kuhlman B, Callender D, Wong M, Baker D. A Large Scale Test of Computational
Protein Design: Folding and Stability of Nine Completely Redesigned Globular Proteins. Journal
of Molecular Biology. 2003; 332(2):449–460. [PubMed: 12948494]

[74]. Jaramillo A, Wernisch L, Héry S, Wodak SJ. Folding free energy function selects native-like
protein sequences in the core but not on the surface. Proceedings of the National Academy of
Sciences. 2002; 99(21):13554–13559.

[75]. Kiss G, Röthlisberger D, Baker D, Houk KN. Evaluation and ranking of enzyme designs. Protein
Science. 2010; 19(9):1760–1773. [PubMed: 20665693]

[76]. Glowacki DR, Harvey JN, Mulholland AJ. Taking Ockham’s razor to enzyme dynamics and
catalysis. Nature Chemistry. 2012; 4(3):169–176.

[77]. McGeagh JD, Ranaghan KE, Mulholland AJ. Protein dynamics and enzyme catalysis: Insights
from simulations. Biochimica et Biophysica Acta. 2011; 1814(8):1077–1092. [PubMed:
21167324]

[78]. Kamerlin SCL, Warshel A. At the dawn of the 21st century: Is dynamics the missing link for
understanding enzyme catalysis? Proteins: Structure, Function, and Bioinformatics. 2010; 78(6):
1339–1375.

[79]. Lassila JK. Conformational diversity and computational enzyme design. Current Opinion in
Chemical Biology. 2010; 14(5):676–682. [PubMed: 20829099]

[80]. Jensen RA. Enzyme recruitment in evolution of new function. Ann. Rev. Microbiol. 1976;
30:409–425. [PubMed: 791073]

Alderson et al. Page 16

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[81]. O’Brien PJ, Herschlag D. Catalytic promiscuity and the evolution of new enzymatic activities.
Chemistry & Biology. 1999; 6:R91–R105. [PubMed: 10099128]

[82]. Khersonsky O, Tawfik DS. Enzyme promiscuity: a mechanistic and evolutionary perspective.
Annual Review of Biochemistry. 2010; 79:471–505.

[83]. Ohno, S. Evolution by gene duplication. Springer-Verlag; New York: 1970. p. xvp. 160

[84]. Copley SD. Toward a systems biology perspective on enzyme evolution. Journal of Biological
Chemistry. 2012; 287(1):3–10. [PubMed: 22069330]

[85]. Russell RJ, Scott C, Jackson CJ, Pandey R, Pandey G, Taylor MC, Coppin CW, Liu J-W,
Oakeshott JG. The evolution of new enzyme function: lessons from xenobiotic metabolizing
bacteria versus insecticide-resistant insects. Evolutionary Applications. 2011; 4(2):225–248.

[86]. Jeffery CJ. Moonlighting proteins. Trends in Biochemical Sciences. 1999; 24(1):8–11. [PubMed:
10087914]

[87]. Huberts DHEW, van der Klei IJ. Moonlighting proteins: An intriguing mode of multitasking.
Biochimica et Biophysica Acta. 2010; 1803(4):520–525. [PubMed: 20144902]

[88]. Copley SD. Moonlighting is mainstream: Paradigm adjustment required. BioEssays. 2012; 34(7):
578–588. [PubMed: 22696112]

[89]. Piatigorsky J, O’Brien WE, Norman BL, Kalumuck K, Wistow GJ, Borras T, Nickerson JM,
Wawrousek EF. Gene sharing by delta-crystallin and argininosuccinate lyase. Proceedings of the
National Academy of Sciences of the United States of America. 1988; 85(10):3479–3483.
[PubMed: 3368457]

[90]. Rodríguez Plaza JG, Villalón Rojas A, Herrera S, Garza-Ramos G, Torres Larios A, Amero C,
Zarraga Granados G, Gutiérrez Aguilar M, Lara Ortiz MT, Polanco Gonzalez C, Uribe Carvajal
S, Coria R, Peña Díaz A, Bredesen DE, Castro-Obregon S, del Rio G. Moonlighting peptides
with emerging function. PLoS ONE. 2012; 7(7):e40125. [PubMed: 22808104]

[91]. Cuff AL, Sillitoe I, Lewis T, Clegg AB, Rentzsch R, Furnham N, Pellegrini-Calace M, Jones D,
Thornton J, Orengo CA. Extending CATH: increasing coverage of the protein structure universe
and linking structure with function. Nucleic Acids Research. 2011; 39(Database issue):D420–
D426. [PubMed: 21097779]

[92]. Murzin AG, Brenner SE, Hubbard T, Chothia C. SCOP: a structural classification of proteins
database for the investigation of sequences and structures. Journal of Molecular Biology. 1995;
247(4):536–540. [PubMed: 7723011]

[93]. Hicks MA, Barber AE, Giddings L-A, Caldwell J, O’Connor SE, Babbitt PC. The evolution of
function in strictosidine synthase-like proteins. Proteins. 2011; 79(11):3082–3098. [PubMed:
21948213]

[94]. Lundin D, Poole AM, Sjöberg BM, Högbom M. Use of Structural Phylogenetic Networks for
Classification of the Ferritin-like Superfamily. Journal of Biological Chemistry. 2012; 287(24):
20565–20575. [PubMed: 22535960]

[95]. Furnham N, Sillitoe I, Holliday GL, Cuff AL, Rahman SA, Laskowski RA, Orengo CA,
Thornton JM. FunTree: a resource for exploring the functional evolution of structurally defined
enzyme superfamilies. Nucleic Acids Research. 2012; 40(D1):D776–D782. [PubMed: 22006843]

[96]. Furnham N, Sillitoe I, Holliday GL, Cuff AL, Laskowski RA, Orengo CA, Thornton JM.
Exploring the evolution of novel enzyme functions within structurally defined protein
superfamilies. PLoS Computational Biology. 2012; 8(3):e1002403. [PubMed: 22396634]

[97]. FunTree. [Accessed 8 August 2012] http://www.ebi.ac.uk/thornton-srv/databases/FunTree/

[98]. [Accessed 8 August 2012] Jmol: an open-source Java viewer for chemical structures in 3D.
http://jmol.sourceforge.net/

[99]. Ghemtio L, Perez-Nueno VI, Leroux V, Asses Y, Souchet M, Mavridis L, Maigret B, Ritchie
DW. Recent Trends and Applications in 3D Virtual Screening. Combinatorial Chemistry & High
Throughput Screening. 2012; 15 in press.

[100]. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S,
Michalovich D, Al-Lazikani B, Overington JP. ChEMBL: a large-scale bioactivity database for
drug discovery. Nucleic Acids Research. 2012; 40(D1):D1100–D1107. [PubMed: 21948594]

Alderson et al. Page 17

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.ebi.ac.uk/thornton-srv/databases/FunTree/
http://jmol.sourceforge.net/


[101]. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK. BindingDB: a web-accessible database of
experimentally determined protein-ligand binding affinities. Nucleic Acids Research. 2007;
35(suppl 1):D198–D201. [PubMed: 17145705]

[102]. Bolton EE, Wang Y, Thiessen PA, Bryant SH. PubChem: Integrated platform of small
molecules and biological activities. Annual Reports in Computational Chemistry. 2008; 4
Chapter 12.

[103]. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V,
Djoumbou Y, Eisner R, Guo AC, Wishart DS. DrugBank 3.0: a comprehensive resource for
‘omics’ research on drugs. Nucleic Acids Res. 2011; 39(suppl 1):D1035–D1041. [PubMed:
21059682]

[104]. MDL Drug Data Report, 2010.2. Accelrys, Inc.; San Diego, CA (USA): 2010.

[105]. Olah, M.; Mracec, M.; Ostopovici, L.; Rad, R.; Bora, A.; Hadaruga, N.; Olah, I.; Banda, M.;
Simon, Z.; Mracec, M.; Oprea, TI. WOMBAT: World of Molecular Bioactivity, in
Chemoinformatics in Drug Discovery (ed T. I. Oprea). Wiley-VCH Verlag GmbH & Co. KGaA,
Weinheim; Germany: 2005. doi: 10.1002/3527603743.ch9

[106]. Lowe R, Mussa HY, Nigsch F, Glen RC, Mitchell JBO. Predicting the mechanism of
phospholipidosis. Journal of Chemoinformatics. 2012; 4:2.

[107]. Lowe R, Mussa HY, Mitchell JBO, Glen RC. Classifying Molecules Using a Sparse
Probabilistic Kernel Binary Classifier. J. Chem. Inf. Model. 2011; 51(7):1539–1544. [PubMed:
21696153]

[108]. Lowe R, Glen RC, Mitchell JBO. Predicting Phospholipidosis Using Machine Learning. Mol.
Pharmaceutics. 2010; 7(5):1708–1718.

[109]. Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas A, Hufeisen SJ, Jensen NH, Kuijer MB, Matos
RC, Tran TB, Whaley R, Glennon RA, Hert J, Thomas KLH, Edwards DD, Shoichet BK, Roth
BL. Predicting new molecular targets for known drugs. Nature. 2009; 462(7270):175–181.
[PubMed: 19881490]

[110]. Chen B, Wild D, Guha R. PubChem as a Source of Polypharmacology. J. Chem. Inf. Model.
2009; 49(9):2044–2055. [PubMed: 19708682]

[111]. Cannon EO, Amini A, Bender A, Sternberg MJE, Muggleton SH, Glen RC, Mitchell JBO.
Support vector inductive logic programming outperforms the naive Bayes classifier and inductive
logic programming for the classification of bioactive chemical compounds. Journal of Computer-
Aided Molecular Design. 2007; 21(5):269–280. [PubMed: 17387437]

[112]. Venkatraman V, Perez-Nueno VI, Mavridis L, Ritchie DW. Comprehensive Comparison of
Ligand-Based Virtual Screening Tools Against the DUD Data set Reveals Limitations of Current
3D Methods. J. Chem. Inf. Model. 2010; 50(12):2079–2093. [PubMed: 21090728]

[113]. Anderson N, Borlak J. Drug-induced phospholipidosis. FEBS Letters. 2006; 580(23):5533–
5540. [PubMed: 16979167]

[114]. Chong CR, Sullivan DJ. New uses for old drugs. Nature. 2007; 448(7154):645–646. [PubMed:
17687303]

[115]. Tartaglia LA. Complementary new approaches enable repositioning of failed drug candidates.
Expert Opinion on Investigational Drugs. 2006; 15(11):1295–1298. [PubMed: 17040191]

[116]. Palmer DS, Llinas A, Morao I, Day GM, Goodman JM, Glen RC, Mitchell JBO. Predicting
Intrinsic Aqueous Solubility by a Thermodynamic Cycle. Molecular Pharmaceutics. 2008; 5(2):
266–279. [PubMed: 18290628]

[117]. Frolov AI, Ratkova EL, Palmer DS, Fedorov MV. Hydration Thermodynamics Using the
Reference Interaction Site Model: Speed or Accuracy? The Journal of Physical Chemistry B.
2011; 115(19):6011–6022. [PubMed: 21488649]

[118]. Cramer, CJ. Essentials of Computational Chemistry: Theories and Models. 2nd ed.. John Wiley
& Sons; Chichester, UK: 2004.

[119]. Thomas LH. The calculation of atomic fields. Mathematical Proceedings of the Cambridge
Philosophical Society. 1927; 23(5):542–548.

[120]. Fermi E. Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend Accad
Naz Lincei. 1927; 6(6):602–607.

Alderson et al. Page 18

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[121]. Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Physical Review. 1964; 136(3B):B864–
B871.

[122]. Kohn W, Sham LJ. Self-Consistent Equations Including Exchange and Correlation Effects.
Physical Review. 1965; 140(4A):A1133–A1138.

[123]. Field MJ. Simulating enzyme reactions: Challenges and perspectives. Journal of Computational
Chemistry. 2002; 23(1):48–58. [PubMed: 11913389]

[124]. Li D, Wang Y, Han K. Recent density functional theory model calculations of drug metabolism
by cytochrome P450. Coordination Chemistry Reviews. 2012; 256(11-12):1137–1150.

[125]. Perdew JP, Schmidt K. Jacob’s ladder of density functional approximations for the exchange-
correlation energy. AIP Conference Proceedings. 2001; 577(1):1–20.

[126]. Zhao Y, Truhlar D. The M06 suite of density functionals for main group thermochemistry,
thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two
new functionals and systematic testing of four M06-class functionals and 12 other functionals.
Theor Chem Account. 2008; 120(1-3):215–241.

[127]. Grimme S. Accurate description of van der Waals complexes by density functional theory
including empirical corrections. Journal of Computational Chemistry. 2004; 25(12):1463–1473.
[PubMed: 15224390]

[128]. Parr RG, Yang W. Density-Functional Theory of the Electronic Structure of Molecules. Annual
Review of Physical Chemistry. 1995; 46(1):701–728.

[129]. Holroyd LF, van Mourik T. Insufficient description of dispersion in B3LYP and large basis set
superposition errors in MP2 calculations can hide peptide conformers. Chemical Physics Letters.
2007; 442(1-3):42–46.

[130]. Valdes H, Pluhácková K, Pitonák M, Rezác J, Hobza P. Benchmark database on isolated small
peptides containing an aromatic side chain: comparison between wave function and density
functional theory methods and empirical force field. Physical Chemistry Chemical Physics. 2008;
10(19):2747–2757. [PubMed: 18464990]

[131]. Chass GA, Kantchev EAB, Fang D-C. The fine balance between one cross-coupling and two β-
hydride elimination pathways: a DFT mechanistic study of Ni(π-allyl)2-catalyzed cross-coupling
of alkyl halides and alkyl Grignard reagents. Chemical Communications. 2010; 46(16):2727–
2729. [PubMed: 20369163]

[132]. Georgiev V, Noack H, Borowski T, Blomberg MRA, Siegbahn PEM. DFT Study on the
Catalytic Reactivity of a Functional Model Complex for Intradiol-Cleaving Dioxygenases. J.
Phys. Chem. B. 2010; 114(17):5878–5885. [PubMed: 20387788]

[133]. Simón L, Goodman JM. Enzyme Catalysis by Hydrogen Bonds: The Balance between
Transition State Binding and Substrate Binding in Oxyanion Holes. The Journal of Organic
Chemistry. 2010; 75(6):1831–1840. [PubMed: 20039621]

[134]. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. The Journal of
Chemical Physics. 1993; 98(7):5648–5652.

[135]. Salomon O, Reiher M, Hess BA. Assertion and validation of the performance of the B3LYP*
functional for the first transition metal row and the G2 test set. The Journal of Chemical Physics.
2002; 117(10):4729–4737.

[136]. Ertem MZ, Cramer CJ, Himo F, Siegbahn PE. N-O bond cleavage mechanism(s) in nitrous
oxide reductase. Journal of Biological Inorganic Chemistry. 2012; 17(5):687–698. [PubMed:
22434248]

[137]. Blomberg LM, Mangold M, Mitchell JBO, Blumberger J. Theoretical study of the reaction
mechanism of streptomyces coelicolor type II dehydroquinase. Journal of Chemical Theory and
Computation. 2009; 5(5):1284–1294.

[138]. Siegbahn PEM, Blomberg MRA. Transition-Metal Systems in Biochemistry Studied by High-
Accuracy Quantum Chemical Methods. Chemical Reviews. 2000; 100(2):421–438. [PubMed:
11749242]

[139]. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD, Schnieders MJ, Haque I, Mobley DL,
Lambrecht DS, DiStasio RA, Head-Gordon M, Clark GNI, Johnson ME, Head-Gordon T.
Current Status of the AMOEBA Polarizable Force Field. J. Phys. Chem. B. 2010; 114(8):2549–
2564. [PubMed: 20136072]

Alderson et al. Page 19

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[140]. Friesner RA, Guallar V. Ab initio quantum chemical and mixed quantum mechanics/molecular
mechanics (QM/MM) methods for studying enzymatic catalysis. Annual Review of Physical
Chemistry. 2004; 56(1):389–427.

[141]. [Accessed 9 August 2012] ChemShell, a Computational Chemistry Shell. Available from: http://
www.chemshell.org

[142]. Lonsdale R, Ranaghan KE, Mulholland A. J. Computational enzymology. Chem. Commun.
2010; 46(14):2354–2372.

[143]. Alhambra C, Gao J, Corchado JC, Villà J, Truhlar DG. Quantum Mechanical Dynamical Effects
in an Enzyme-Catalyzed Proton Transfer Reaction. J. Am. Chem. Soc. 1999; 121(10):2253–
2258.

[144]. Beierlein FR, Michel J, Essex JW. A Simple QM/MM Approach for Capturing Polarization
Effects in Protein-Ligand Binding Free Energy Calculations. The Journal of Physical Chemistry
B. 2011; 115(17):4911–4926. [PubMed: 21476567]

[145]. Zwanzig RW. High-Temperature Equation of State by a Perturbation Method. I. Nonpolar
Gases. The Journal of Chemical Physics. 1954; 22(8):1420–1426.

[146]. Yang W. Direct calculation of electron density in density-functional theory. Physical Review
Letters. 1991; 66(11):1438–1441. [PubMed: 10043209]

[147]. Zhao Q, Yang W. Analytical energy gradients and geometry optimization in the divide-and-
conquer method for large molecules. The Journal of Chemical Physics. 1995; 102(24):9598–
9603.

[148]. Lee T-S, Lewis JP, Yang W. Linear-scaling quantum mechanical calculations of biological
molecules: The divide-and-conquer approach. Computational Materials Science. 1998; 12(3):
259–277.

[149]. Goedecker S, Scuserza GE. Linear scaling electronic structure methods in chemistry and
physics. Computing in Science & Engineering. 2003; 5(4):14–21.

[150]. Goedecker S. Linear scaling electronic structure methods. Reviews of Modern Physics. 1999;
71(4):1085–1123.

[151]. Haynes PD, Mostof AA, Skylaris CK, Payne MC. ONETEP: linear-scaling density-functional
theory with plane-waves. Journal of Physics: Conference Series. 2006; 26(1):143.

[152]. Skylaris C-K, Haynes PD, Mostofi AA, Payne MC. Introducing ONETEP: Linear-scaling
density functional simulations on parallel computers. The Journal of Chemical Physics. 2005;
122(8):084119.

[153]. Cole DJ, O’Regan DD, Payne MC. Ligand Discrimination in Myoglobin from Linear-Scaling
DFT+U. The Journal of Physical Chemistry Letters. 2012; 3(11):1448–1452.

[154]. Dziedzic J, Fox SJ, Fox T, Tautermann CS, Skylaris C-K. Large-scale DFT calculations in
implicit solvent—A case study on the T4 lysozyme L99A/M102Q protein. Int. J. Quantum
Chem. 2012 doi: 10.1002/qua.24075.

[155]. Makino M, Sugimoto H, Shiro Y, Asamizu S, Onaka H, Nagano S. Crystal structures and
catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton.
Proceedings of the National Academy of Sciences. 2007; 104(28):11591–11596.

Alderson et al. Page 20

Curr Top Med Chem. Author manuscript; available in PMC 2013 March 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.chemshell.org
http://www.chemshell.org


Figure 1.
Distribution of InterPro signatures, InterPro signature sets and EC numbers in the E. coli
UniRef100 data of UniProt [5]. Both axes are logarithmic.
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Figure 2.
In moonlighting, the enzyme performs an additional mechanistically different and
independent function. This may serve as a starting point for evolving a new principal
function.
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Figure 3.
Using 2D fingerprints and a Kernel density estimation function the family associations from
the Drug Bank families are predicted. Abbreviations: HIV protease inhibitors (HIV-PI),
Angiotensin-converting Enzyme Inhibitors (AcEI), and Non-Essential Amino Acids
(neAA).
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Figure 4.
Separation of QM/MM model into QM (inside the black circle) MM (outside the black
circle) regions for chromopyrrolic acid bound cytochrome P450 StaP (PDB 2Z3U) [155].
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