
GPU-Accelerated Forward and Back-Projections with Spatially
Varying Kernels for 3D DIRECT TOF PET Reconstruction

S. Ha,
Center for Visual Computing, Computer Science Department, Stony Brook University, NY 11794
USA

S. Matej [Senior Member, IEEE],
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA

M. Ispiryan [Member, IEEE], and
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA

K. Mueller [Senior Member, IEEE]
Center for Visual Computing, Computer Science Department, Stony Brook University, NY 11794
USA
S. Ha: sunha@cs.sunysb.edu; S. Matej: matej@mail.med.upenn.edu; M. Ispiryan: misp@mail.med.upenn.edu; K.
Mueller: mueller@cs.sunysb.edu

Abstract
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system
response kernels and performs forward- and back-projection operations with these kernels for the
DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent
challenges arise from the poor memory cache performance at non-axis aligned TOF directions.
Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory
according to these patterns in order to maximize the memory cache performance. We also exploit
the GPU instruction-level parallelism to efficiently hide long latencies from the memory
operations. Our experiments indicate that our GPU implementation of the projection operators has
slightly faster or approximately comparable time performance than FFT-based approaches using
state-of-the-art FFTW routines. However, most importantly, our GPU framework can also
efficiently handle any generic system response kernels, such as spatially symmetric and shift-
variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach
cannot cope with.

Index Terms
CUDA; DIRECT TOF PET Reconstruction; Forward and back-projection; GPU; Spatially varying
kernels

I. Introduction
The introduction of Time-Of-Flight (TOF) information to positron emission tomography
(PET) image reconstruction has been a decisive advancement. Having TOF information
available makes it possible for a point of annihilation (or an event) to be much more
accurately predicted than with conventional PET imaging. This improved localization
reduces noise in the imaging data, resulting in higher image quality, shorter imaging times,
and/or lower dose to the patient [1–4].

NIH Public Access
Author Manuscript
IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

Published in final edited form as:
IEEE Trans Nucl Sci. 2013 February ; 60(1): 166–173.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

A full realization of the TOF information requires proper reconstruction tools. The DIRECT
(Direct Image Reconstruction for TOF) [5] is a novel approach for TOF reconstruction and
is more efficient than traditional list-mode and binned TOF-PET reconstruction approaches
[6][7]. In the binned aproaches, the events are binned by their Line-Of-Response (LOR) and
arrival time to form a set of histo-projections, one for each angular view. On the other hand,
in the DIRECT approach the events are first sorted into a (sub)set of angular views and then
deposited for each view into a dedicated histo-image, each having the same lattice
configuration and the same voxel resolution as the reconstructed image.

As in any TOF iterative reconstruction, DIRECT requires convolution-like operations
(forward- and back-projections) in each corrective update using the system response (SR)
kernels to model the scanner’s timing (TOF) and detector (LOR) resolution functions. These
operations can be performed efficiently in Fourier space when the SR kernels are spatially
(shift) invariant. However, in practical applications the SR kernels are not shift-invariant.
Rather, their width considerably increases towards the edge of the FOV and becomes
asymmetric towards the edge of the scanner. Also, a kernel’s size is typically quite large – in
our specific application it is 300–600 ps (45–90 mm FWHM) of TOF resolution and 5–10
mm FWHM of LOR resolution in the axial and radial directions [8][9]. Handling these types
of SR kernels in the Fourier domain is difficult, while operating in the spatial domain is
computationally very expensive. We have sought to overcome this challenge by GPU-
acceleration [10][11], exploiting the massively parallel computations they allow.

Mapping a CPU-based algorithm to the GPU and achieving 1–2 orders of speed-up is
typically not straightforward. The CPU-based algorithm often needs to be reordered or
decomposed to fit optimally to the GPU architecture and programming model. A critical
component in GPU architectures is the memory. It is organized into a hierarchy, with some
of it on-chip but the majority off-chip (but on-board). The former is orders of magnitudes
faster. As it takes 100s of clock cycles to bring off-chip data into on-chip memory, it is of
utmost importance to re-use the local data among the parallel threads as much as possible.
Also, since on-chip memory is quite small (in the order of kilobytes), careful occupancy
planning of this limited resource is equally important.

The SR kernel has a much wider width in the TOF direction than in the other directions.
Since it can traverse the histo-image space at arbitrary angles, the data access at these off-
axis orientations is non-sequential. To achieve a maximum utilization of on-chip GPU
memory for these off-axis directions, we recently proposed a two-stage scheme [12]. It first
resampled (rotated) the data into a storage pattern aligned with the TOF direction of the SR
kernels, allowing for fast linear access in on-chip memory. By subtracting the smoothing
effects of the resampling interpolation kernel from the SR kernel, we were able to
compensate for the interpolation kernel’s blurring effects. However, despite the system’s
good time performance, it has two major limitations: (1) practical interpolation kernels are
often wider than the actual detector resolution and thus the subtraction of the interpolator
effects from the SR kernel is not fully possible, and (2) the method is only applicable for
symmetric SR kernels, ignoring that accurate SR kernels have some degree of asymmetry at
large radii.

We chose to go a different route by using a one-stage method which does not require prior
interpolation. Here we aimed for a method that (1) maximizes memory cache performance
by carefully selecting GPU memory based on the access patterns to the memory and (2)
minimizes latency stemming from memory operations on both thread and instruction levels.

Our paper is organized as follows. Section II provides more detail on the forward- and
backward-operations of DIRECT. Section III covers relevant background of both GPU

Ha et al. Page 2

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

architecture and programming model. Section IV describes the methodology and technical
detail of our approach, while experimental results are presented in sections V and VI.

II. Projection In DIRECT
The characteristics of the SR kernels are determined by the TOF-PET detector. In this work,
we considered an experimental full-ring TOF-PET detector based on the LaBr3 crystals
developed at the University of Pennsylvania [8][9]. It has about 300–400 ps TOF resolution
(45–60 mm). The TOF information gives the probability of where a detected event was
generated along its LOR. Furthermore, an event can be observed at multiple detector crystals
due to detector resolution effects, called LOR resolution. Practical LOR blurring in a whole
body scanner can vary within a range of 5–10 mm FWHM in the LOR radial direction. The
variation in the LOR axial direction is relatively small and consequently it is kept constant in
this study. The SR kernels we considered have ellipsoidal-like shapes with wider width in
the TOF direction and a varying FWHM in the LOR radial direction.

Iterative reconstruction typically alternates projection and back projection. In DIRECT, the
forward-projection operator projects an image into histo-image space. The discrepancy
(ratio) between these simulated projection data and the measured (histo-image) data
obtained from the scanner is then back-projected into image space to reconstruct a corrected
image. As mentioned, it is the distinguishing feature of the DIERCT approach that both of
these operations occur in the same lattice configuration and at the same voxel resolution.

In DIRECT both forward and backward projection operations become convolution-like
operations using the SR kernels [5]. The forward-projection can be interpreted as a
scattering operation, where each image voxel spreads its value to its neighbors, weighted by
that voxel’s SR kernel. In contrast, the back-projection (transpose of the forward-projection)
can be described as a gathering operation, where each voxel collects values from its
neighbors, weighted by that voxel’s SR kernel. Fig. 1 gives an illustration. For the
symmetric shift-invariant SR kernels, both projection and back-projection operations are
equivalent 3D convolution operations, which can be handled efficiently by means of FFT
[5]. However, in the case of shift-variant and/or asymmetric SR kernels, projection and
back-projection operations must be strictly distinguished and handled in the spatial domain
because the FFT cannot handle such generic system resolution models. Detailed
comparisons and explanations will be discussed in section V.B.

III. NVIDIA GPU Architecture And Its Programming Model, CUDA
We have accelerated both forward- and back projections on a NVIDIA GTX 285 GPU with
1GB DDR3 off-chip memory. This GPU has 240 CUDA cores organized into 30 streaming
multiprocessors (SM) of 8 scalar processors (SP) each. Groups of SMs belong to Thread
Processing Clusters (TPC). This GPU, like all modern GPUs, has off-chip memory
including global, texture and constant memory which all incur hundreds of cycles of
memory latency. Access to off-chip memory is often the bottleneck of a GPU application.
Fortunately, texture and constant memory are cached, replacing the hundreds of cycles of
latency with only a few cycles for on-chip cache access. The CUDA (Computer Unified
Device Architecture) is a C-like API used to program NVIDIA GPUs. Execution of a
CUDA kernel (or function) invokes multiple threads which are organized into thread blocks
on a grid. The GTX 285 can have a maximum of 512 threads per block. Some important
parameters for the GTX 285 architecture and its CUDA programming model are listed in
Table I [13][14].

Each SM uses a 24-stage and in-order SIMD pipeline without forwarding [13]. Since there
are 8 SPs in one SM this implies that at least 192 active threads are needed to avoid stalling

Ha et al. Page 3

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

for true data dependencies between consecutive instructions from a single thread. All threads
in a SM are scheduled in the SIMD pipeline in a unit called warp. A warp is a collection of
32 threads, executing the same instruction with different data values over four consecutive
clock cycles in all pipelines. A warp has zero scheduling overhead on a fine-grained basis
[15] and so can be easily replaced by another, ready warp when one of its threads is stalled
due to a memory request. In the following subsections, we will discuss thread occupancy
and thread efficiency, as well as thread-level parallelism and instruction-level parallelism.
Since these are strongly related to the usage of GPU resources and so have a large impact on
the performance of a GPU application, it is important to have a good understanding of them.

A. Thread occupancy and efficiency
The thread occupancy is defined as the number of active threads per thread block (in percent
of the device’s full capacity); while the thread efficiency is defined as the overall
computational efficiency of the individual threads [16]. Running more threads in a thread
block results in higher thread occupancy, and this can hide long memory latencies thanks to
the fast context switching among warps. However, higher thread occupancy also requires
more memory to store state and data for all of these threads. Since there is only a very
limited amount of on-chip resources, this can then lead to an increased use of high-latency
off-chip memory, lowering thread efficiency. On the other hand, if a thread block fully
utilizes the on-chip resources to obtain higher thread efficiency the total number of threads
in the thread block will be restricted, lowering thread occupancy. Faced with this conflict, it
is important to finely tune the amount of on-chip resources allocated to each thread by
optimizing this trade-off.

B. Two forms of parallelism in CUDA: TLP and ILP
There are two forms of parallelism in CUDA: thread-level (TLP) and instruction-level (ILP)
parallelism. Both forms identically identify independent instructions but in different
granularities of parallelism [17]. As CUDA models the GPU architecture as a multi-core
system, it abstracts the TLP of the GPU into a hierarchy of threads [13]. The more threads a
thread block has the higher the TLP and therefore the higher the thread occupancy. TLP is
achieved by invoking the CUDA functions with a sufficiently large number of threads.

On the other hand, ILP can be achieved by executing multiple independent instructions in
each thread. Then, while a thread is waiting for long-latency memory, it executes another
independent instruction instead of switching its context. For example, unrolling a loop in a
kernel function can increase the ILP. It is obvious that increasing ILP will generate higher
usage of on-chip memory and thus will yield higher thread efficiency (but lower thread
occupancy). In our work, we explore both forms of parallelism for both projection operators
and the results are evaluated with time performance as well as thread occupancy measures
(see section V.A).

IV. Methods
We pre-compute a set of shift-variant SR kernels and store them in different types of GPU
memory to maximize memory cache performance. For this, we first create a shift-invariant
elliptical SR kernel that has maximum TOF and LOR resolution. The information of the
elliptical SR kernel is divided into location and value information (SR_loc and SR_val in
Fig. 2). Here, the location information refers to the Cartesian coordinate of the SR kernel’s
origin and the value information refers to the actual kernel values at a voxel in histo-image
space. To handle shift-variant SR kernels, the histo-image is segmented according to the
LOR distance, which is defined as the distance from the center of the image data to a voxel
in the LOR radial direction (SR_id in Fig. 2). The SR_id is a 2-D look-up table of the same

Ha et al. Page 4

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

size (width and height) as the image transverse slice. It only needs to be computed once, in
both non-tilt and tilt cases. As discussed in section II, the LOR resolution only varies in the
radial direction. Both SR_loc and SR_val arrays are stored in (linear) global memory such
that each thread can access them in a coalesced manner. Finally, while the accesses to the
SR_id for each thread are spread out, they are well localized within the shape of the
elliptical SR kernel. This kind of memory access pattern (called 2-D cloud) is very efficient
with texture memory and its cache [18]. The image data are also mapped to texture memory
for similar reasons.

This method has the following two advantages: (1) unlike our previous work [12], it does no
longer require an interpolation kernel, and (2) projection operations are much easier to
implement since the (enclosing maximum) outline of the elliptical SR kernels is always
symmetric and shift-invariant. Fig. 2 illustrates via a 2-D space example how the elliptical
SR kernel is modeled and utilized.

A. GPU implementation of the projection operations
In back-projection, each thread performs the gather operation for its target voxel as follows:
(1) compute the coordinate of the voxel and select SR_val by fetching SR_id, and (2) collect
the values of the voxel neighbors and multiply them by the values of the selected SR kernel
mapped to these voxels locations. In contrast, the forward projection is a scattering
operation. It is different from back-projection in that each voxel writes and updates its
neighbors weighted by the corresponding kernel value (see section II).

The GPU gather operations are more efficient than scatter operations because memory reads
can be cached and are therefore faster than memory writes. Moreover, gather operations can
avoid write hazards (or race conditions) by writing data in an orderly fashion, while scatter
operations require slower atomic operations to avoid such hazards [18]. For these reasons,
we converted the scatter operation of the forward-projection into a gather operation. Note
that this (forward-projection) gather operation is different from the back-projection gather
operation for the variant and/or asymmetric kernels in that the kernel itself is dependent on
the neighbor’s location and not just its looked-up value. Also, the SR kernels used here are
radially flipped versions of the SR kernels used for the backprojection operation.

We combine TLP with ILP to minimize the long memory latency associated with fetching
the SR_val, SR_loc, SR_id and image data within the gather operations. We add ILP to TLP
by assigning multiple voxels to each thread. The voxels are chosen along the axial direction
(z-axis) so that we can keep the same voxel access pattern for the SR_id and image data.
Also, the instructions for these voxels are unrolled to hide latencies among them. Fig. 3
gives the pseudo code for [TLP only] and for [TLP+ILP].

V. Analysis Of Projection Operations
A. Time performance analysis

Table II gives relevant CUDA statistics for the projection code and the average time
performance for a one of the views. As described in section IV, the projection code with ILP
consumes more registers per thread and it causes lower thread occupancy. However, the ILP
more efficiently handles the long latency associated with fetching the SR information and
the image data. This efficiency results in better time performance in ILP (about 2 times
faster than TLP only). There is also almost no difference between the times required for
forward projection and back projection. These findings impressively demonstrate that in
order to optimize the run time speed for a GPUs-accelerated application one must study the
performance of all available options and then pick the best.

Ha et al. Page 5

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We also compared the ILP CUDA projection code with a CPU-based FFT approach. Here
we used FFTW [19] – the fastest free FFT software implementation available – on a Mac
Pro 2.66 GHz Quad-Core Intel Xeon. While we report results for single-threaded FFTW,
experiments revealed that multithreading FFTW only yielded a speedup of a little more than
two for the 3D-FFT.

Fig. 4[top] shows the time performances with different SR kernel sizes. FFT-based
approaches are generally attractive since their time performance is not affected by the SR
kernel size, at least for a fixed grid size. This is not the case for the spatial-domain CUDA
approach. However, we find that given the characteristics of modern PET scanners (600 ps
and below), the CUDA approach in fact exhibits similar or faster time performance than the
FFT-based one. Our study is based on clinical data and a resolution size representative of a
state-of-the-art TOF scanner based on the LaBr3 detector [8][9].

Fig. 4[bottom] shows the effect of voxel size. Reducing the voxel size corresponds to an
increase of the total number of voxels within the image, but at the same time it also leads to
an increase of the number of voxels under the SR kernel. Both raise the computational
demands of the space domain operations. For a reduction of voxel size from 4 to 2 mm, the
number of operations for the space-based projection operations increases 23 x 23 = 64-times,
while for the FFT-based approach the number of operations grows only by a factor close to
23 = 8-times, because the FFT approach performance is affected only by the image
dimensions and not by the SR kernel size. In practice, the CUDA approach has a time
increase slightly less than predicted – about a factor of 54.3 – for a 4 to 2mm voxel size
reduction, while the FFT approach time grows by a factor of about 9.4. For 4mm voxels the
CUDA approach is about twice as fast as the FFT approach, while for 2mm voxels it is
about 2.7-times slower. However, it is crucial to realize that the CUDA approach can also
efficiently handle projection operations with variant and/or asymmetric SR kernels (shown
below), which is not possible with the FFT approach. This is the strength and motivation of
our effort.

B. Accuracy tests of GPU forward and back-projectors
Figs. 5 and 6 show the projection results for three point sources with identical intensity
values and placed along the y-axis in the same image slice but using different SR kernels.
The color scale of these images has been carefully chosen to best show the structure. In the
CUDA approach the SR kernel has been truncated to approximately three times of the kernel
FWHM (±3σ) to minimize the SR kernel truncation errors. The maximum error between the
two approaches is less than 1% of the maximum intensity value (Fig. 5a and b). With
symmetric invariant SR kernels, there is no difference between the forward- and back-
projections. The effects of the SR kernel truncation in the CUDA approach can be observed
in the difference images in Fig. 5c. We observe elliptical boundaries where the CUDA
approach drops to zero while the FFT approach still contains non-zero values (these effects
are less than 0.48% of the maximum value). On the other hand, the truncation of the
discretized SR kernel spectrum in the FFT approach causes small ripples (Gibbs artifacts)
especially in the directions of the short kernel axes (LOR radial and axial directions) (Fig.
5c). Furthermore, for the extra-large SR kernels used in this example, we can also observe
spatial aliasing effects in the FFT approach caused by the periodic nature of the discretized
image in the FFT, leading to cyclic convolution. For example, in Fig. 5c [transverse view],
the portion of the top of the SR kernel tail extending beyond (and truncated by) the top
image boundary is leaking back into the bottom part of the image (from the periodic repeats
of the image). To avoid such aliasing effects in the FFT approach, volume images can be
padded with zeros before 3D-FFTs in the x, y and z directions. For a practical SR kernel and
image sizes no or only a very small amount of zero-padding is usually needed.

Ha et al. Page 6

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

But in practice, the SR kernels have different LOR resolutions depending on their radial
locations. In the CUDA approach, such spatially varying SR kernels can be accurately
modeled and applied to the projection operations. With symmetric (spatially) variant SR
kernels, the results from forward- and back-projections are different, as shown in Fig. 6a.
More specifically, with symmetric variant SR kernels each voxel has a particular SR kernel
based on its radial location. Thus, the forward-projection spreads the intensity value at each
point source to its neighbors and results in symmetric ellipsoid-like shapes, each having a
different level of blurring (width) according to their radial distance from the central line of
the projection (Fig. 6a [top]). In contrast, during back-projection, voxels at various radial
distances from the projection center collect values from these same point sources but now
the contributing SR kernels have different widths (narrower at locations radially closer to the
center, and wider at locations radially closer to the FOV edge). This results in asymmetric
elliptical shapes (wider towards the FOV edge, Fig. 6a [bottom])..

Lastly, we tested the CUDA code for forward- and back-projection with asymmetric
invariant and variant SR kernels. To simulate asymmetric kernels the LOR resolutions in the
radial direction are generated using the sum of two Gaussians in which one has twice the
width. The wider Gaussian is shifted such that the sum can have a wider width on the side of
the kernel towards the center of the FOV. With asymmetric and/or invariant SR kernels, we
can observe different behaviors for forward- and back-projection operations which are by
nature scatter and gather operations, respectively. For the forward-projection (Fig. 6b and c
[top]), the results have an elongated response toward the FOV center, while during back-
projection (Fig. 6b and c [bottom]) the elongated response is in the opposite direction.
Especially with variant SR kernels, the elongation gets longer (or blurs more) as it goes
closer to the edge of the FOV (Fig. 6c). We note that the large SR kernels used in these tests
were not modeled based on real data—rather we sought to demonstrate the capability of our
CUDA code to handle any generic SR kernel resolutions, which are difficult (if not
impossible) to model with an FFT-based approach.

VI. Use of GPU Projectors Within DIRECT
In this section we test the performance of our CUDA forward- and back-projectors using
both symmetric invariant (for comparison to the compatible FFT case) and symmetric
variant SR kernels. The kernel parameters employed in this section are chosen to emulate (at
various degrees) the characteristics of a state-of-the-art whole body TOF PET scanner.

A. Methods
We tested the DIRECT TOF PET reconstruction with two different projection approaches
(FFT and CUDA), using measured data obtained from the University of Pennsylvania
prototype whole body LaBr3 TOF-PET scanner [8][9]. This scanner has a 57.6 cm FOV,
±10° axial acceptance angle, with 4x4x30 mm3 LaBr3 crystals (and with 4.3 mm crystal
pitch). The crystals are located within 24 detector flat modules, placed on a cylindrical
detector surface of diameter 93 cm. The intrinsic spatial resolution of the scanner is about
5.8 mm and the timing resolution is approximately 375–430 ps (depending on the count
rates). The measured data include attenuation, scatter and random events. The phantom
object we used is a 35 cm diameter cylinder with clinically relevant volume and attenuation
factors representative of a heavy patient. It contains six uniformly distributed 10 mm
diameter spheres at radial positions of about 7.5 cm (from the center) which are placed in the
central slice of the scanner. We acquired a relatively high number of counts (approximately
430M prompts) to enable us to see any differences between the approaches.

We use a block version of RAMLA (Row-Action Maximum Likelihood Algorithm). In
DIRECT, we group and deposit events into 40 x 3 views: 40 intervals in azimuthal angle and

Ha et al. Page 7

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3 intervals in co-polar angle. Each view represents one block of RAMLA, giving us 120
updates for one pass through the data in the 40 x 3 view case. We employ TOF kernels
representing 400 ps TOF resolution of measured data, and model spatially invariant and
variant detector resolution kernels; the data deposition effects are not implicitly modeled in
this particular study. The invariant LOR resolution kernel is applied for both approaches,
FFT and CUDA, while the variant LOR resolution kernels are applied only in CUDA. The
final image has a size of 144 x 144 x 48 with 4 mm3 voxels.

Fig. 7 shows the widths (FWHM) of the modeled detector LOR resolutions for both the
invariant and the variant cases. For the invariant case, we use a 5.8mm FWHM LOR
resolution over the entire FOV. We also model three variant kernels: (1) matching the LOR
resolution at the center of the scanner (variant2), (2) matching the LOR resolution at the
sphere locations at 7.5 cm radius (variant1), and (3) choosing a generic resolution functions
varying with the radius in a non-linear fashion (variant3).

We investigated the behavior of the variant and invariant resolution modeling in conjunction
with iterative reconstruction, using the contrast versus noise trade-off for a range of
iterations and reconstruction parameters. Contrast recovery coefficients (CRC) are
calculated for all spheres as: CRC=((ps−pb)/pb)/c, where ps is the mean value in a 2D
circular region of interest (ROI) axially and transversely centered over the sphere, pb is the
mean background value in the 2D annular region surrounding and centered over each
sphere, and c is the ideal contrast value. The reported CRC values are the average values
over all 10 mm spheres in the phantom. The noise is evaluated as the pixel-to-pixel noise
standard deviation inside a large 50 mm ROI located in the central uniform region of the
phantom and normalized by the background mean value.

B. Reconstruction results
Table III shows the time performance for the invariant and variant SR kernels with the LOR
widths based on the plots shown in Fig. 7. Similar to the evaluations of the projection
operations, the CUDA implementation shows slightly faster or comparable time
performance to the FFT for the invariant case. For the variant cases, the required time per
iteration is slightly longer compared to the FFT invariant case. Note that for the variant SR
kernels, the SR kernel’s physical (memory) size is defined by the longest LOR width, so the
practical CUDA time performance is determined by the LOR resolution at the radial
boundary of the FOV. The DIRECT iterative re-construction time includes all of the
reconstruction stages such as reading the data, data transfers to and from the GPU, forward-
and back-projection, and the discrepancy (computing the differences between the forward-
projected and measured deposited data) and update (updating the image estimation)
operators (Table IV). The forward- and back-projection operations still remain the
bottleneck of the reconstruction process even if they are implemented on the GPU and were
carefully optimized. The other operations take only about 10% (or less) of the total
reconstruction time. According to Amdahl’s law which governs the speedup that can be
obtained when only a fraction of the program is improved, the maximum possible speed-up
is 1/(1−0.1)=1.1. It is therefore not beneficial to optimize and/or implement these operations
on the GPU.

Fig. 8[top] illustrates the contrast versus noise trade-off curves for DIRECT reconstructions
using variant and invariant resolution models. Fig. 8[bottom] shows representative images of
individual cases for matched noise levels (about 8%). It is clear from both the graphs and the
visual image quality that the FFT and GPU approaches using invariant resolution models
provide nearly identical results. In the spatially variant case (variant1 in Fig. 7), the CRC
curve converges to slightly lower values compared to the invariant case. This is due to the
fact that in the variant case the actually modeled LOR resolution at each particular sphere

Ha et al. Page 8

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

location changes with the projected view based on the radial distance of the sphere from the
projection central line in each view. Thus, although this is a more accurate modeling, the
average modeled resolution is actually lower than that in the invariant case, and this leads to
a lower contrast values. For the other variant cases, having higher resolution models, the
contrast converges to higher values. This is accompanied by increased overshoots (Gibbs
artifacts) at the object boundaries (Fig. 8[bottom]), consistent with our previous experiences
(as well as that of others) with the resolution modeling approaches.

VII. DISCUSSION
In the work conducted so far we did not compare our GPU-based schemes with equivalently
optimized CPU implementations, both in terms of performance and in terms of accuracy.
While this is planned for the future, it is unlikely that it will change the outcome and
conclusions of our work.

First, it is doubtful that the performance of such a CPU-based scheme will match that of the
GPU. This is because (for shift-invariant kernels) a CPU-based spatial convolution scheme
will be naturally inferior to the more efficient divide-and-conquer strategy of an FFT-based
implementation. On the other hand, our GPU-implementation is nearly on par, at least for
problem sizes relevant to current clinical routine. In fact, we have observed this type of
situation before in the context of exact CT reconstruction via the inverse Radon transform
[20]. Then, modifying the shift-invariant CPU implementation to shift-variant kernels will
incur similar performance losses than the modification of our GPU-accelerated scheme.
Hence, the CPU implementation will still be significantly slower.

Second, when it comes to accuracy, with the emergence of GPU-based supercomputers
employed for serious scientific simulations, GPUs have become as accurate as high-end
CPUs. The recent NVIDIA Kepler GPU architecture fully complies with the IEEE 754
standard that governs single- and double-precision arithmetic. The work presented here has
used a slightly older GPU which deviates from this standard in that some rounding modes as
well as the NaN signal are not supported. But previous publications such as ours [11] have
shown that even CT reconstructions obtained with much older GPU architectures were
largely indistinguishable from their CPU-computed counterparts. Nevertheless, the GPU
code that is the basis of the work presented here will trivially port to a Kepler GPU board
and so honor the full IEEE standard.

VIII. Conclusion
We have implemented, optimized and evaluated an efficient framework for GPU-based
forward- and back-projection operations (at any tilt and view direction) for the DIRECT
TOF PET iterative reconstruction approach. Our framework is quite general and supports
very generic system kernels, including both symmetric and asymmetric spatially (shift)
variant and invariant kernels. We paid special attention to the memory access patterns for
off-aligned axes in GPU memory and subsequently devised CUDA code that achieves a high
level of performance by carefully balancing thread-level (TLP) and instruction-level (ILP)
parallelism. Our GPU accelerated scheme is particularly relevant because it supports
spatially variant and asymmetric kernels where algorithmically more efficient schemes
based on the FFT cannot be used. It thus provides an important contribution to the PET
reconstruction field since it allows for more accurate SR kernel modeling, particularly
within the DIRECT iterative reconstruction framework without impeding clinical time
performance.

Ha et al. Page 9

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Acknowledgments
This work was supported by NIH grant R01-EB-002131 and in part by NSF grants 1050477, 0959979 and
1117132.

References
1. Surti S, Karp J, Popescu L, Daube-Witherspoon M, Werner M. Investigation of time-of-flight

benefit for fully 3-D PET. IEEE Trans Medical Imaging. 2006; 25(5):529–538.

2. Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, Panin V. First experimental results
of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol. 2005; 50(19):4507–4526.
[PubMed: 16177486]

3. Watson C. An evaluation of image noise variance for time-of-flight PET. IEEE Trans Nuclear
Science. 2007; 54(5):1639–1647.

4. Karp J, Surti S, Daube-Witherspoon M, Muehllehner G. Benefit of time-of-flight in PET:
Experimental and clinical results. J Nuclear Medicine. 2008; 49(3):462–470.

5. Matej S, Surti S, Jayanthi S, Daube-Witherspoon M, Lewitt R, Karp J. Efficient 3D TOF PET
reconstruction using view-grouped histo-image: DIRECT-direct image reconstruction for TOF.
IEEE Trans Medical Imaging. 2009; 28(5):739–51.

6. Daube-Witherspoon M, Matej S, Werner M, Surti S, Karp J. Comparison of list-mode and DIRECT
approaches for time-of-flight PET reconstruction. IEEE Trans Medical Imaging. 2012; 31(7):1461–
71.

7. Popescu L, Matej S, Lewitt R. Iterative image reconstruction using geometrically ordered subsets
with list-mode data, “. IEEE Nuclear Science Symposium Conf Record. 2004; 6:3536–3540.

8. Karp J, Kuhn A, Perkins A, et al. Characterization of a time-of-flight PET scanner based on
lanthanum bromide. IEEE Nuclear Science Symposium Conf Record. 2005; 4:23–29.

9. Daube-Witherspoon ME, Surti S, Perkins A, Kyba CCM, Wiener R, Werner ME, et al. The imaging
performance of a LaBr3-based PET scanner. Phys Med Biol. 2010; 55:45–64. [PubMed: 19949259]

10. Xu F, Mueller K. Accelerating popular tomographic reconstruction algorithm on commodity PC
graphics hardware. IEEE Trans Nuclear Science. 2005; 52(3):654–663.

11. Xu F, Mueller K. Real-time 3D computed tomographic reconstruction using commodity graphics
hardware. Phys Med Biol. 2007; 52(12):3405–3419. [PubMed: 17664551]

12. Ha S, Zhang Z, Matej S, Mueller K. Efficiently GPU-accelerating long kernel convolutions in 3D
DIRECT TOF PET reconstruction via a kernel decomposition scheme. IEEE Nuclear Science
Symposium Conf Record. 2010:2866–2867.

13. NVIDIA Corporation. CUDA Programming Guide Version 40. 2011.

14. NVIDIA Corporation. NVIDIA GeForce GTX 200 GPU Architectural Overview. May. 2008
http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf

15. Bakhoda A, Yuan G, Fung W, Wong H, Aamodt T. Analyzing CUDA workloads using a detailed
GPU simulator. IEEE ISPASS. 2009:163–174.

16. Pratx G, Xing L. GPU computing in medical physics: a review. Medical Physics. 2011; 38(5):
2685–2698. [PubMed: 21776805]

17. Lo J, Emer J, Levy H, Stamm R, Tullsen D, Eggers S. Converting thread-level parallelism to
instruction-level parallelism via simultaneous multithreading. ACM Trans Computing Systems.
1997; 15(3):332–354.

18. Hakura Z, Gupta A. The design and analysis of a cache architecture for texture mapping. Proc
Symp on Computer Architecture. 1997:108–120.

19. Frigo M, Johnson S. The design and implementation of FFTW3. Proceedings of the IEEE. 2005;
93(2):216–231.

20. Neophytou, N.; Xu, F.; Mueller, K. Hardware acceleration vs. algorithmic acceleration: Can GPU-
based processing beat complexity optimization for CT?. SPIE Medical Imaging Conference;
February 2007;

Ha et al. Page 10

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nvidia.com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief.pdf

Fig. 1.
Forward- and backward-projection in DIRECT.

Ha et al. Page 11

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
Modeling spatially variant SR kernels. In this illustration, there are two regions (blue and
white) having different LOR resolution in the radial direction. In each region, the ellipsoid
SR kernel (red-dot boundary) shares the same location information (SR_loc) for the grid
points within the kernel. For example, SR_loc will return (0, 1) for all points in the kernels
(a, b, and c). This information can be used to fetch image data at those points by adding the
origin of each kernel. However, each kernel can have a different SR_val according to its
region. Assuming SR_loc is a following row-major order, for example, SR_val will return a′
and b′ for the points in a and b, respectively; but, for the point in c, SR_val will return c′ by
fetching it in reverse order.

Ha et al. Page 12

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
Pseudo CUDA code for projection operations. [top] TLP only. [bottom] TLP+ILP. In the
top, each thread does gathering operations for one output, while, in the bottom, the gathering
operations are performed for 16 outputs (experimentally chosen) per thread.

Ha et al. Page 13

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
Time performance for the FFT and the CUDA approach. [top] time performances for
different SR kernel resolutions and for a fixed voxel size and dimension (4 mm3, 144 x 144
x 48); [top-left] varying TOF resolution (300 to 1200 ps FWHM) with fixed LOR resolution
(10 mm and 5 mm radial and axial FWHM, respectively); [top-right] varying LOR
resolution in the radial direction (5 to 20 mm FWHM) with fixed TOF (300 ps) and axial (5
mm) resolutions. [bottom] time performances for different voxel sizes (4 to 2 mm), and
fixed SR kernel resolutions (375 ps FWHM for TOF and 6.5 mm for LOR) and voxel
dimension (144 x 144 x 48). The red rectangle indicates configurations with parameter
settings that are clinically practical.

Ha et al. Page 14

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
Comparison of the FFT and CUDA projector for the symmetric invariant case. The SR
kernel has a 900 ps TOF resolution, and 50 mm and 10 mm LOR resolution in the radial and
axial directions, respectively. (a) FFT (b) CUDA and (c) (FFT – CUDA) image. [top]
transverse, [middle] sagittal and [bottom] coronal view. The sagittal and coronal views are
zoomed-in to the center point source for better illustrations.

Ha et al. Page 15

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 6.
CUDA projector with generic SR kernel modeling. The SR kernels have 600 ps FWHM
TOF resolution, and a LOR resolution of 10 to 80 mm (spatially variant) or 50 mm (spatially
invariant) FWHM in the radial direction and 10 mm FWHM in the axial direction. (a)
spatially variant symmetric (b) spatially invariant asymmetric and (c) spatially variant
asymmetric. [top] forward projection and [bottom] back-projection.

Ha et al. Page 16

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 7.
Models of the spatially invariant and variant detector resolutions. The variant detector
resolutions are modeled to vary along the radial direction with different slopes.

Ha et al. Page 17

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 8.
[top] CRC vs. Noise trade-off curves. [bottom] Reconstructed images (transverse view) at
matched noise level (8%) (a) [FFT] invariant SR kernel, (b) [CUDA] invariant SR kernel,
(c) [CUDA] variant1, (d) [CUDA] variant2 and (e) [CUDA] variant3

Ha et al. Page 18

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ha et al. Page 19

TABLE I

NVIDIA GTX 285 GPU Parameters

GPU Organization

TPCs (Thread Processing Cluster) 10 total

SMs (Streaming Multiprocessor) 3 per TPC

Shader Clock 1.48 GHz

Memory (DRAM) Clock 1.24 GHz

Memory (DRAM) Bus Width 512-bit

Memory (DRAM) Latency 400 – 600 cycles

SM Resources (30 SMs total)

SPs (Scalar Processor) 8 per SM

SFUs (Special Function Unit) 2 per SM

DPUs (Double Precision Unit) 1 per SM

Registers 16,384 per SM

Shared Memory 16 KB per SM

Constant Cache 8 KB per SM

Texture Cache 6–8 KB per SM

Programming Model

Warps 32 threads

Max number of threads per block 512 threads

Max sizes of each dimension of a block 512 x 512 x 64

Max sizes of each dimension of a grid 65,535 x 65,535 x 1

Global Memory 1 GB total

Constant Memory 64 KB total

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ha et al. Page 20

TA
B

LE
 II

T
he

 P
ro

je
ct

io
n

C
U

D
A

 k
er

ne
l’

s
at

tr
ib

ut
es

 a
nd

 T
im

e
pe

rf
or

m
an

ce
 f

or
 o

ne
 v

ie
w

C
on

st
an

t
m

em
or

y
(B

yt
es

)
Sh

ar
ed

 m
em

or
y

pe
r

bl
oc

k
(B

yt
es

)

th
re

ad
s

pe
r

bl
oc

k

re
gi

st
er

s
pe

r
th

re
ad

T
hr

ea
d

oc
cu

pa
nc

y
(%

)
T

im
e

(s
ec

)

F
P

B
P

T
L

P
on

ly
36

64
51

2
14

 (
13

)
10

0
4.

94
4.

37

T
L

P+
IL

P
36

64
38

4
42

38
2.

59
2.

56

N
ot

e
1:

 T
es

t c
on

di
tio

ns
 a

re
 9

00
 p

s
FW

H
M

 o
f

T
O

F
re

so
lu

tio
n,

 a
nd

 1
0

to
 1

00
 m

m
 F

W
H

M
 (

ra
di

al
 d

ir
ec

tio
n)

 a
nd

 1
0

m
m

 F
W

H
M

 (
ax

ia
l d

ir
ec

tio
n)

 o
f

L
O

R
 r

es
ol

ut
io

ns
 w

ith
 1

44
 x

 1
44

 x
 4

8
(4

 m
m

3
vo

xe
ls

)
vo

lu
m

e
di

m
en

si
on

s.

N
ot

e
2:

 T
he

 c
om

pu
ta

tio
n

tim
e

fo
r

m
od

el
in

g
th

e
el

lip
so

id
 S

R
 k

er
ne

l (
SR

_l
oc

, S
R

_v
al

 a
nd

 S
R

_i
d)

 is
 tr

iv
ia

l a
nd

 le
ss

 th
an

 1
%

 o
f

th
e

pr
oj

ec
tio

n
op

er
at

io
ns

.

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ha et al. Page 21

TA
B

LE
 II

I

T
im

e
pe

rf
or

m
an

ce
 c

om
pa

ri
so

n
in

 D
IR

E
C

T
 T

O
F

PE
T

 r
ec

on
st

ru
ct

io
n

be
tw

ee
n

FF
T

 a
nd

 C
U

D
A

A
pp

ro
ac

h
F

F
T

 (
si

ng
le

 t
hr

ea
d)

C
U

D
A

L
O

R
 ty

pe
 a

t t
he

 e
dg

e
[m

m
]

in
va

ri
an

t
5.

8
in

va
ri

an
t

5.
8

va
ri

an
t1

10
va

ri
an

t2
12

va
ri

an
t3

11
.1

7

1
ite

ra
tio

n
[s

ec
]

21
.4

8
15

.6
3

22
.4

3
25

.6
6

24
.6

8

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ha et al. Page 22

TA
B

LE
 IV

M
ea

su
re

d
tim

e
at

 c
ri

tic
al

 s
ta

ge
 f

or
 in

va
ri

an
t a

nd
 v

ar
ia

nt
1

ca
se

s
w

ith
 G

PU
 in

 D
IR

E
C

T
 T

O
F

PE
T

 (
20

 it
er

at
io

ns
)

[m
in

:s
ec

]
F

or
w

ar
d-

pr
oj

ec
ti

on
 (

G
P

U
)

D
is

cr
ep

an
cy

 (
C

P
U

)
B

ac
k-

pr
oj

ec
ti

on
 (

G
P

U
)

U
pd

at
e

(C
P

U
)

T
ot

al
H

2D
F

P
D

2H
H

2D
B

P
D

2H

in
va

ri
an

t
0:

7.
53

1:
45

.2
7

0:
2.

85
0:

0.
32

0:
7.

59
1:

43
.1

8
0:

2.
85

0:
12

.5
9

5:
11

.9
7

va
ri

an
t1

0:
7.

55
2:

52
.8

8
0:

2.
86

0:
0.

32
0:

7.
59

2:
49

.8
1

0:
2.

85
0:

12
.5

8
7:

26
.2

1

N
ot

e)
 H

2D
: d

at
a

tr
an

sf
er

 f
ro

m
 C

PU
 to

 G
PU

, D
2H

: d
at

a
tr

an
sf

er
 f

ro
m

 G
PU

 to
 C

PU

IEEE Trans Nucl Sci. Author manuscript; available in PMC 2014 February 01.

