Skip to main content
. 2013 Mar 9;69(Pt 4):540–545. doi: 10.1107/S0907444912050548

Table 2. The 19 possible combinations of generators produce 15 distinct zipper groups.

Zipper-group names are based on the homosteric zipper classes described previously (Sawaya et al., 2007). Underlined positions are group generators. Each homosteric zipper class corresponds to two distinct zipper groups except for homosteric zipper classes 2, 3, 4, 8 and 9. The penultimate column indicates alternate symmetry that arises from the shift of one -sheet relative to the other along the z axis (described in the text). The last column indicates whether the symmetry of the zipper group requires the -sheets to be eclipsed, where neighboring -strands in the two -sheets are in the same plane.

Zipper group Positions Layer group Principal axis Alternate symmetry Eclipsed
2 E 1 (p111)     N
4 E, Ix 9 (p2111) x (21)   N
6a E, Iy 8 (p211) x (twofold) p2111 Y
4 E, Ixy 9 (p2111) x (21)   N
1a E, Jx 8 (p121) y (twofold)   Y
7a E, Jy 9 (p1211) y (21)   N
1b E, Jxy 9 (p1211) y (21)   N
3 E, Kx 3 (p112) z (twofold) p1121 N
9 E, Ky 3 (p112) z (twofold) c112 N
3 E, Kxy 3 (p112) z (twofold) p1121 N
6b E, Ix, Iy, xy 10 (c211) x (21 and twofold) p2111 Y
8 E, Ix, Jy, Kxy 21 (p21212)   p212121 N
10a E, Ix, Ky, Jxy 21 (p21212)     N
5a E, Jx, Iy, Kxy 19 (p222)   p121 Y
7b E, Jx, Jy, xy 10 (c121) y (21 and twofold)   Y
10b E, Jx, Ky, Ixy 20 (p2122)     Y
5b E, Kx, Iy, Jxy 20 (p2212)   p1211 Y
8 E, Kx, Jy, Ixy 21 (p21212)   p212121 N
9 E, Kx, Ky, xy 3 (b112) z (twofold) i112 N