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Abstract
Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/−)
mice, but the causal components of these complex mixtures are unresolved. In studies previously
reported, ApoE−/− mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple
dilutions of diesel or gasoline exhaust, wood smoke, or simulated “downwind” coal emissions. In
this study, the analysis of the combined four-study database using the Multiple Additive
Regression Trees (MART) data mining approach to determine putative causal exposure
components regardless of combustion source is reported. Over 700 physical–chemical components
were grouped into 45 predictor variables. Response variables measured in aorta included
endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9),
metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two
or three predictors typically explained most of the variation in response among the experimental
groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly
predictive of responses, although their rankings differed among the responses. Consistent with the
earlier finding that filtration of particles had little effect on responses, particulate components
ranked third to seventh in predictive importance for the eight response variables. MART proved
useful for identifying putative causal components, although the small number of pollution
mixtures (4) can provide only suggestive evidence of causality. The potential independent causal
contributions of these gases to the vascular responses, as well as possible interactions among them
and other components of complex pollutant mixtures, warrant further evaluation.
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Introduction
This paper is the first of various planned reports communicating the final results of the
National Environmental Respiratory Center (NERC) Program. NERC has been funded by
government and industry since 1998 as a step toward identifying the physical–chemical
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components driving various adverse health effects associated statistically with complex
mixtures of air pollutants, regardless of the source of the components (www.nercenter.org).
Intended as a departure from the historic single-pollutant, single-source orientation of air
quality health research, NERC undertook development of a novel composition–
concentration–response database by applying a consistent animal exposure and response
measurement protocol to multiple laboratory-generated complex mixtures of air
contaminants. Expert workshops guided selection of animal models, experimental design,
and methods for generating four exposure mixtures representative of typical combustion-
derived emissions: diesel (DE) and gasoline (GE) engine exhaust, wood smoke (WS), and a
mixture simulating “downwind” coal combustion emissions (CE). Animal models were
exposed to multiple concentrations of each mixture and to clean air as controls, and some
models were exposed to the mixtures with particles removed by filtration. The four studies
were conducted serially and study details and exposure–response results from each were
published as they were completed. NERC is now conducting integrative analyses of the
combined four-study database to identify the putative physical–chemical drivers of the
different health outcomes that demonstrated significant response trends with exposure. The
hypothesis underlying the program is that biological responses are caused by certain
pollutants, or combinations of pollutants, regardless of the sources of the pollutants.

Results from the ApoE−/− mouse model of hypercholesterolemic central vascular responses
to inhaled materials were selected as the trial data set for refining statistical analytical
strategies for identifying exposure components most closely associated with the animal
model’s various indicators. This animal model demonstrated different patterns of significant
responses to DE, GE, and WS, and little response to CE (Campen et al., 2010a, b; Lund et
al., 2007, 2009). Moreover, exposures with and without particles demonstrated that
nonparticulate components were largely responsible for responses of most indicators but
could not reveal which gases or vapors were primarily responsible. After exploration of
other analytical approaches, the Multiple Additive Regression Trees (MART) method
(Hastie et al., 2001) was applied to the ApoE−/− response data, and the results point toward
putative causal exposure components for evaluation by follow-on confirmatory studies.

Materials and methods
Animals

The animal protocol has been reported in detail (Campen et al., 2010a; Lund et al., 2007,
2009). Ten-week old male ApoE−/− mice (on C57BL/6J background, Taconic, Oxnard, CA,
USA) were fed a high-fat diet (No. 88137, Harlan Teklad, Madison, WI, USA) beginning at
the initiation of exposure. The mice were housed throughout the study in a facility fully
accredited by the Association for Assessment and Accreditation of Laboratory Animal Care
International in whole-body inhalation chambers (H2000, Hazleton, Maywood, NJ, USA) at
30–60% relative humidity, 20°C–24°C, and a 12 h light cycle. Exposure chambers were
maintained twice daily and washed weekly.

Exposures and characterization
The mice were exposed 6 h/day, 7 days/week for 50 consecutive days to one of three
dilutions of one of the four atmospheres, to the highest dilution with particles removed by
filtration or to clean air as study-specific negative controls. The generation, measurement,
and compositions of the exposure atmospheres have been reported in detail. DE was
generated by 2000 model Cummins 5.9L engines operated on the US Federal Test Procedure
certification cycle and burning circa 2000 certification fuel (McDonald et al., 2004).
Hardwood smoke was generated by burning split oak in a simple heating stove on a three-
phase daily cycle simulating home heating (McDonald et al., 2006). GE was generated by

Seilkop et al. Page 2

Inhal Toxicol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nercenter.org


1996 model General Motors 4.3L engines equipped with catalysts, operated on the
California Unified Driving Cycle and burning nonoxygenated fuel blended to 2001–2002
US average specifications (McDonald et al., 2008). A mixture simulating key components of
downwind (atmospherically processed) emissions from coal-fired power plants was
generated by burning low-sulfur sub-bituminous coal in an electric furnace and
supplementing with sulfate and gases (McDonald et al., 2011a). Diluting air and the control
atmosphere was charcoal and HEPA-filtered, conditioned ambient air.

Particle mass concentrations were measured gravimetrically and the particle size distribution
was measured using a micro-orifice uniform deposit impactor (MOUDI, MSP, Minneapolis,
MN, USA) or a fast mobility particle sizer (FMPS, TSI, St. Paul, MN, USA). Particle mass
collected on quartz filters was analyzed for elemental and organic carbon by thermal optical
reflectance and for inorganic ions by ion chromatography after aqueous extraction. Particle
mass on Teflon filters was analyzed for metals by inductively coupled mass spectrometry.
Semivolatile and particle-phase organics were analyzed by gas chromatography/mass
spectrometry (GC/MS) of organic extracts of an XAD resin-coated denuder followed by a
Teflon-coated glass filter. Inorganic gases were measured by chemiluminescence (NOx),
photoacoustic infrared spectroscopy (CO), ion chromatography of adsorbants (NH3, SO2),
liquid chromatography of adsorbants (volatile acids and carbonyls), and GC/MS of canister
samples (volatile organic hydrocarbons).

Over 700 different physical–chemical components were measured. These were grouped into
45 predictor variables (Table 1).

Measurement of responses
Measurements of the vascular responses have been described in detail (Campen et al.,
2010a, b; Lund et al., 2007, 2009). The mice were anesthetized with pentobarbital/phenytoin
and euthanized by exsanguination. The proximal aortas were dissected, weighed, and frozen
at −80°C until analysis. Total RNA was isolated (RNeasy fibrous tissue Mini Kit, Qiagen,
Valencia, CA, USA) and real-time polymerase chain reaction (PCR) was performed
(iCycler, Biorad, Hercules, CA; ABI 7500, Applied biosystems, Foster City, CA, USA)
using the appropriate primers for each endpoint (Lund et al., 2007). A melt curve was added
to each run to ensure product dimerization and absence of primer dimerization. Lipid
peroxidation was assessed using a thiobarbituric acid reactive substances (TBARS) assay
(OXItec, ZeptoMetrix, Buffalo, NY, USA). The eight response indicators listed in Table 2
all showed some evidence of response to one or more of the four exposure atmospheres and
were thus used in this analysis.

Statistical approach
Assay results for control animals differed across the four emissions studies (CE, DE, GE,
and WS); consequently, responses in each study were scaled (i.e., divided) by that study’s
control mean values. All endpoints exhibited skewed distributions, with treatment group
variability increasing with increasing mean values. In analyses which depended on
assumptions of homogeneity of variance and normality (e.g., standard regression-based lack
of fit tests) weighted least squares reflecting the differing variances was utilized. Weights
were calculated as the reciprocals of variance estimates obtained from fitted relationships
between standard deviations and mean values (Neter et al., 1996).

The primary focus of the analysis was to identify likely causal linkages between exposures
to the chemical components of emissions (irrespective of source) and observed pro-
atherosclerotic central vascular responses. Preliminary evaluations were based on pairwise
correlations between responses and individual chemical components. This was, however,
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deemed to be an insufficient approach to understanding the underlying structural exposure–
response associations due to the high degree of intercorrelation among chemical
components. Other statistical methods which might be used to identify the strongest
associations, such as stepwise regression, principal components, and partial least squares
analysis, were also considered to be suboptimal, if not inappropriate, due to their use of
inherently additive linear mathematical models to estimate underlying exposure–response
functions that may be either highly nonlinear or contain synergistic (multiplicative) effects
between chemical components. Although these additive linear model-based approaches
might produce reasonably accurate predictions, this success would potentially be the result
of using a linear combination of a given set of chemical components to model underlying
nonlinear exposure–responses to a different combination of chemical components. This
would result in misleading inferences concerning the relative importance of different
chemical component concentrations in describing response variability. An example obtained
from stepwise linear regression analysis of the present study’s atherosclerosis response
indicator/chemical component dataset is provided in Supplemental Material online.

A data mining technique known as Multiple Additive Regression Trees (MART) analysis, or
more generally as “boosted regression trees” analysis (Friedman, 2001, 2002), was used to
mitigate these problems. Discussions of the concepts and mathematical details underlying
this approach are provided by Hastie et al. (2001) and Friedman and Muelman (2003). A
good conceptual overview of boosted regression trees is given by Elith et al. (2008), and a
recent application of the method in air pollution analysis was conducted by Carslaw and
Taylor (2009). Another multiple regression tree data mining method known as Random
Forests (Breiman, 2001) was also considered and its results were compared with those
obtained from the MART analysis (see Supplemental Material online). The examination of
the Random Forests method indicated that it was substantially more sensitive to outlier data
than the MART approach; consequently the results of the MART analysis are provided here.

The main features of the MART method that are important to understand in using and
interpreting its results are: (1) The underlying structural relationships between outcome and
predictor variables that it uncovers are independent of any a priori mathematical model (this
differs from standard regression analysis, which is based on a model specifying a
mathematical functional relationship between response and explanatory variables, dependent
on unknown parameters); (2) it is resistant to the impacts of extreme observations (data
outliers); (3) it does not depend on data distributional assumptions; (4) it ranks predictor
variables by their relative importance in predicting the outcome variable (with a score of 100
for the highest ranking predictor and other variables scaled accordingly down to 0); and (5)
the influence of a predictor variable is characterized by a “partial dependence” function,
which measures the effect of a predictor after accounting for the average effects of all other
predictors. Partial dependence functions are typically represented as two-dimensional
graphs, representing the partial dependence of a response variable on a single predictor or
three-dimensional graphs showing the effects of two predictors (and possible interactions).
These functions show major features of the nature of the exposure–response function for a
given predictor (approximate linearity versus substantial nonlinearity, threshold-like
response, etc.).

MART analysis was applied using TreeNet (Salford Systems) software. A regression tree
analysis of each of the response indicators in Table 2 was conducted, specifying the
response indicators as “target” variables and all of the composition variables in Table 1 as
“predictor” variables. The software’s 10-fold cross-validation approach was used to test the
multiple additive regression trees that were constructed. Variable importance indices were
used to determine the most highly predictive chemical component variables, and two- and
three-dimensional partial dependence plots were examined to assess relationships between
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predictor and response indicators. As with any regression method, it is important to note that
the results, in terms of predictor variable importance scores and the shapes of estimated
exposure–response relationships (e.g., partial dependence functions) are invariant to linear
scale changes in the predictor variables. For example, the results would be the same
irrespective of whether chemical component measurements are expressed as mass
concentrations (as used here) or molar concentrations.

Generally, it was clear that two or three predictors had substantially more importance than
the remaining predictors in explaining the variability in responses. The amount of response
variance explained by these predictors was measured individually and together using partial
dependence functions as predictors of response. For each endpoint, the fits of the full MART
model (all 45 predictors), models based on the individual predictor variables, and a model
based on the three most important predictors were assessed by comparing their predictions
to the experimental group means for the 18 treatment groups listed in Table 3. Fractions of
response differences among the experimental groups explained by predictor variables (and
combinations of variables) were estimated. The p values from F-tests for lack of fit of the
models were used to assess the extent to which the deviations of model predictions from the
observed cell means were attributable to underlying random between-animal response
variation.

Results
Figure 1 summarizes the response indicator data from the emissions studies, reflecting clear
differences between the effects of the different exposures. For several endpoints (HO-1,
MMP3, MMP7, MMP9, TIMP2, TBARS, and VEGF), responses to GE and/or DE appear to
be exposure-related with less compelling evidence, if any, of effects associated with either
WS or CE. ET-1 exhibits significant exposure-related responses for GE, DE, and a
marginally significant (p = 0.1) trend across CE exposures. While this is interesting and
potentially useful information, it gives no direct insight into the chemical components of the
exposures (predictors) that potentially caused the responses. We use ET-1 as an example to
demonstrate the approach to finding and assessing the strength of associations between
predictors and responses, regardless of exposure atmosphere.

Example analysis for ET-1
ET-1 data from animals exposed to the four atmospheres (CE, DE, GE, and WS) were
matched to the corresponding concentrations of the chemical components in those
atmospheres (Table 1). The MART analysis predictor scoring results (Table 4) indicate that
SO2 was clearly the most important variable in predicting ET-1 response, followed by NO2,
and then several variables (CO, NO, ammonia [NH3], ammonium, etc.) with nearly equal
importance scores that were substantially less than those for SO2 or NO2.

“Partial dependence” plots for the three most important predictor variables are shown in
Figure 2. They depict the MART-estimated ET-1 exposure–response to these predictors
after accounting for the average effects of all the other chemical predictors across their
experimental exposure ranges. The points on the graphs correspond to MART-predicted
ET-1 values in the 18 experimental groups in Table 3 (the four control group estimates are
indistinguishable from each other, as the background exposure values were virtually equal −
near zero across studies). The lines between the points reflect an unsmoothed version of an
exposure–response relationship; thus, not every inflection of the resulting curve is
necessarily a meaningful indication of a true underlying feature of the exposure–response
function. Generally, it is not difficult to gain a sense of the shape of the function from these
unsmoothed curves, but here a spline fit (dashed curve) was applied to smooth the SO2
partial dependence plot as an additional aid for visualizing the shape of the function. This
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degree of smoothing appears to be reasonably consistent with the degree of uncertainty in
the mean values for the data shown in Figure 1.

As might be expected, the magnitudes of the exposure–response gradients reflected in the
partial dependence plots relate to differences in the importance scores of the predictors, that
is, increasing gradient with increasing importance score. The gradients can be used to
estimate exposure-specific effects of individual predictors on a response indicator. For
example, using the scale shown on the left vertical axis of Figure 2a, the MART-predicted
increase in ET-1 attributable to exposure to 500 µg/m3 of SO2 is computed as the difference
between the values at 500 µg/m3 and 0 µg/m3 (1.35 − 1.10 = 0.25), yielding an estimated
25% increase over the estimated baseline mean value for control animals at this SO2
exposure. The partial dependence values at zero concentration differ across predictors, as
well as from the expected value for control animals (1). The differences in the deviations
from 1 for the predictors reflect differences in the average effects of the remaining variables.
Each point on the graph reflects the estimated concentration-specific effect of the partial
dependence predictor plus the average of the estimated effects of the remaining predictors
calculated across the observed combinations of those predictors (in this case, 18
combinations corresponding to the experimental groups). Thus, the SO2 partial dependence
value at zero concentration (1.1) reflects the smaller average effects of NO2 and CO (as well
as the other predictors) across their exposure ranges, and the NO2 partial dependence at zero
concentration (1.2) reflects the larger effect of SO2 (and smaller effects of other variables).
CO’s relatively large partial dependence value at zero concentration (1.25) reflects the larger
average effects of both SO2 and NO2 (and smaller effects of other predictors) across their
concentration ranges.

Partial dependence plots are typically depicted with the alternative scaling provided on the
right vertical axis in Figure 2, namely as deviations from the predicted overall mean across
all observations (for ET-1, this is 1.25). These “scaled partial dependence” values have two
advantages over the unscaled values: (1) The magnitudes of exposure–response gradients are
more easily compared across predictor variables, as they are centered on zero; and (2) the
scaled values can be summed across predictors and then added to the overall mean to obtain
estimates of the “main” effects of several variables (i.e., independent of the effects of
interactions between predictors), simultaneously adjusted for the effects of the remaining
predictors. Although the scaled values were used in computations to ascertain the
explanatory power of predictors, the unscaled values are presented here in graphical
characterizations of the exposure–response functions for individual predictors of the
response indicators. This facilitates comparisons to the natural reference point for the
response indicators (mean value of 1 for control animals in the different studies, due to the
initial scaling of the data described above).

For ET-1, the SO2 and NO2 graphs increase monotonically (which makes intuitive sense).
From its partial dependence plot, one could interpret the exposure–response for SO2 to be
moderately supralinear. Similarly, ET-1 appears to exhibit a saturation-based response to
NO2 exposure. For CO, the exposure–response function can be interpreted as being either
flat (considering response indicator data uncertainty), or nonmonotonic (and counter-
intuitive).

The absence of monotonicity in the CO partial dependence function and its lack of a
substantial gradient (despite being deemed the third most important predictor) demonstrate
that the MART results should be interpreted judiciously. It is important to understand that
the method utilizes whatever exposure–response features it can detect in the data to improve
the accuracy of predictions, irrespective of their plausibility (either in direction or
smoothness). In particular, the covariation between outcome and predictor variables that
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MART identifies is not necessarily monotonic, as is typically expected of toxicological
exposure–response relationships. The method will often identify and accumulate minor
contributions of many (monotonic or nonmonotonic) associations between predictor
variables and predicted outcome response. The challenge in interpreting the results is to
determine when the contributions of a predictor (or predictors) are sufficiently small to be
considered inconsequential relative to the stronger associations between other predictors and
the outcome variable. In the analysis that follows, this is addressed by considering the
amount of variation explained by individual predictors and combinations of predictors.

Although the MART importance scores and partial dependence plots reveal potentially
important features of exposure–response relationships for individual atmospheric
components and combinations of these components, they are only semi-quantitative. This is
particularly true for the importance scores, which quantify the contributions of the predictor
variables on a relative scale. Furthermore, while the partial dependence functions give a
sense of the shapes of the exposure–response functions, they do not provide a direct
assessment of the degree to which the most important explanatory variables are capable of
accurately describing the response functions. To make this assessment, the partial
dependence functions were utilized as predictors of response and measured the extent to
which the most important variables describe the observed systematic variation in
experimental group mean values (shown in Figure 3a). First, however, the fit of the full
MART model (based on all of the predictor variables) was assessed by examining the
distributions of model error residuals (observed − predicted values) across the experimental
groups (Figure 3b). If the model fits the data perfectly, the expected values of the residuals
within experimental groups would be zero, with the observed averages varying around zero
subject to the underlying degree of between-animal random variation in response. As shown
in Figure 3b, in all of the experimental groups these residuals are distributed with average
values near zero, and (with the exception of WS3, which shows an inconsistent negative
response) the first and third quartiles all overlap zero. This indicates that the MART model
provides a good fit, and a statistical F-test comparing all of these mean values
simultaneously against zero confirms this with no evidence of lack of fit (p = 0.83; Table 5).

Although the MART model (using all 45 atmospheric components as predictors) provides
accurate predictions, it is of most interest to determine the extent to which the most
important predictors describe the differences among experimental group mean values shown
in Figure 3a. This can be assessed by examining model residual errors from the partial
dependence-based predictions of each of the top three MART predictors (SO2, NO2, and
CO) shown in Figure 3c–3e respectively. A further assessment of the joint effects of the
three predictors (under the assumption of no interaction between them) was obtained by
summing their partial dependency predictions and comparing them to the observed
responses (Figure 3f).

Figure 3c indicates that SO2 alone is substantially less reliable than the full MART model in
making predictions. Although it provides reasonably accurate predictions for CE and DE, it
shows evidence of lack of fit for experimental groups GE3 and WS3. Figure 3d shows that
NO2 alone is less reliable than SO2 as a predictor with further evidence of lack of fit for
groups GE4 and DE3. As would be expected from the lower importance score for CO,
relative to SO2 and NO2, it alone is the least reliable of the three predictors, with added
evidence of lack of fit for group DE2 and no substantial difference from the response pattern
for the data shown in Figure 3a. However, when applied together as predictors, the three
atmospheric components provide a reasonably good fit to the data, as shown in Figure 3f.
Although there is statistical evidence of lack of fit (p = 0.02), this is primarily due to the
error in predicting the statistically significant negative group WS3 response; there is no
evidence of lack of fit (p = 0.47) across the rest of the experimental groups. This brings into
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question whether the negative response in group WS3 (which is inconsistent with strong
evidence of positive response for other atmospheric exposures) is a chance finding, or
whether it is indeed real and explainable due to exposure to emissions components other
than SO2, NO2, or CO.

These results can be further quantified in terms of the amount of systematic variation that is
explained by the different models. In Figure 3a, systematic (potentially explainable)
variation is reflected by differences among experimental group means, while random
(unexplainable) variation is represented by the distributions of response data around these
group means. Table 5 (column 7) shows that differences in experimental group means for
ET-1 represent 36% of the total (systematic + random) observed variation; the fractional
representation of this percentage is typically denoted as R2. The full MART model explains
most (84%) of the systematic variation (column 5) and 31% of the total variation (column
7). SO2, NO2, and CO individually account for 55%, 17%, and 2% of the systematic
variation, respectively, while together in the full MART model they are estimated to explain
66% of the systematic variation. That the latter estimate (66%) is less than the sum of the
estimates for the three individual components (74%) is likely due to a modest degree of
imperfection in adjusting the effects of each of the variables for the effects of the others.
This is in contrast to standard regression, which is specifically designed to partition the
explained variance into nonoverlapping sources.

The foregoing assessment of the amount of variability explained by the predictor variables is
based on an assumption of additivity (i.e., lack of multiplicative interaction) among the
effects the three predictors. Single variable partial dependence plots, such as those shown in
Figure 2, are useful summaries of exposure– response when the effects of the predictor
variables are independent (additive), that is, there are no synergistic (multiplicative) joint
effects of the explanatory variables. With the sparse data available here, it is difficult to
definitively assess possible interaction effects, but the three-dimensional graphs shown in
Figure 4 give no obvious indication that the effects of NO2 and CO were synergistic with
those of SO2. If this had been the case, we would have expected the partial dependence
values for the solid bars to have been larger than those that are shown. These three-
dimensional plots also demonstrate the substantial correlation between the exposure
variables (0.63 for SO2 and NO2; 0.87 for SO2 and CO), which contributes to the challenge
of assessing the relative importance of individual exposure variables as well as interactions
between them.

The extent to which two-way interactions between the predictor variables affect the
assessment of explained variability was quantified by the calculated differences between
two-variable partial dependencies and their components (e.g., partial dependence [SO2,NO2]
− partial dependence [SO2] − partial dependence [NO2]). For the ET1 example, the
estimated effects of two-way interactions between variables were negligible (as suggested
by Figure 4a and b), with differences between the two-variable partial dependencies and
their summed components ranging between −0.01 and 0.01 for pairwise combinations of the
three predictors in all experimental groups. These differences are inconsequential relative to
the magnitudes of the predicted values, indicating no substantial evidence of two-way
interactions between predictor variables. This gives confidence in the assessment of
explained variability that was dependent on this assumption.

The essence of this analysis for ET-1 can then be summarized as follows:

SO2, NO2, and CO were determined to be the three strongest predictors of ET-1 response.
The estimated exposure–response functions for SO2 and NO2 are both nonlinear, with the
relationship for SO2 appearing to be supralinear, and the NO2 exhibiting evidence of a more
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distinct saturation-based response (linear to plateau). CO exhibited little, if any, evidence of
a clear monotonic exposure–response relationship. SO2 was the most highly predictive
variable, describing more than half of the systematic response variation across experimental
groups; together, SO2, NO2, and CO described 66% of the variation between experimental
group means. A substantial amount of the unexplained variation appeared to relate to a
possible spurious result in one of the experimental groups (WS3) that was inconsistent with
the rest of the data.

Results for all response indicators
Variable importance scores from the MART analysis of atmospheric component predictors
for the atherosclerosis markers are listed in Table 4. Across the response indicators, gases
(NH3, SO2, NO2, NO, and CO) predominate among the three most important predictors
(16/24), followed by nonmethane volatile organics (4/24), volatile carbonyl (2/24), a single
volatile acid (VOAALI), and a single particulate organic component (POHOP). Particulate
components ranked third to seventh in relative predictive importance for the eight response
indicators. Partial dependence plots for the three most important variables are shown in
Figure 5, and the amount of response variance explained by these predictors is provided in
Table 5. Partial dependence plots for the three most important predictors of each of the
response indicators are shown in Figure 5. Individual interpretations of the results for each
of the markers, similar in form to that provided for the ET-1 example follow:

VEGF—Table 4 indicates that NH3 was the most important predictor of VEGF response,
followed by NMVOOXY, which had a substantially lower importance score (41).
Importance scores for remaining variables, starting with a value of 29 for CO, declined
slowly. Partial dependence plots (Figure 5) for the three most important variables reflect the
reduction in VEGF shown in Figure 1. The plots suggest a strong nonlinear exposure–
response for NH3 and much weaker effects for NMVOOXY and CO. Table 5 indicates an
excellent fit for the full MART model (p = 0.87). Approximately 70% of systematic
variation in VEGF was explained by the three most important variables, and most of this
variation was explained by NH3 exposure. The lack of fit for the three variables model likely
relates to the exclusion of variables with scores similar to CO, which make individually
small contributions to predictions.

MMP3—NH3 was determined to be the most important predictive variable, followed by
NMVOALKE and NMVOALKY, with importance scores of ~50 (Table 4). Importance
scores for other variables were substantially lower. Although the full MART model
described only about 70% of the observed variation in experimental mean values, there was
no evidence of lack of fit due to the low signal-to-noise ratio (R2 = 0.18 for experimental
group means). Partial dependence plots indicated a nonlinear response for NH3, a weaker
linear response for NMVOOXY, and a weak threshold-like response for NMVOALKY.
Approximately 60% of the variation between experimental group means was attributed to
exposure to NH3, NMVOALKE, and NMVOALKY, with most response variation
associated with exposure to NH3.

MMP7—Importance scores for NH3 and VOALLI were both ~100, followed by a score of
45 for CARBDI; other predictors exhibited slowly declining scores from that point. There
was evidence of a monotonically increasing response function for NH3, but decreasing
response functions for VOALLI and CARBDI. Both functions were highly nonlinear,
exhibiting a hockey-stick form that bent sharply at values near zero. There was no
substantial evidence of lack of fit for the full MART model (p = 0.25), although it explained
only 33% of the systematic variability. This is likely to be related to the influence of
outlying observations on the estimated mean values for groups CE2 and CE4 (and
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corresponding inflation in the variation between mean values). Since the MART method
downplays the importance of such data in predictions, it fails to produce predictions that
come close to these mean values. The three predictors deemed to be the most important
variables explained the same amount of variation as the full model. Other predictors
exhibited partial dependence functions (data not shown), which became increasingly smaller
in magnitude with limited interpretability. The counter-intuitive partial dependence
functions for VOALLI and CARBDI act to increase predictions for experimental groups
with low levels of these substances (GE, CE) and are believed to relate to the poor fit of the
MART model.

MMP9—Ammonia and SO2 were found to be the most predictive atmospheric components,
with scores of 100 and 73, respectively. The next most important variable (CO) had a score
of 30, with other predictors exhibiting scores that diminished slowly from that point. The
partial dependence function for NH3 was an S-shaped function and the SO2 function was
approximately linear with a more modest slope than NH3 over the range of the observed
data. The partial dependence function for CO had a negative, but inconsequential slope with
respect to its impact on predictions. The full MART model had a good fit to the data, and the
three variables model (NH3, SO2, CO) explained 80% of the systematic variation. There was
evidence of lack of fit for the three variables model (p = 0.04), which related to its inability
to accurately predict a reduction in MMP9 in group WS3 and an aberrantly higher mean for
group CE2, relative to the monotonic trend shown across the remaining exposure groups.

TIMP2—The most predictive atmospheric components were NO2 and NO (importance
scores of 100 and 79, respectively). POHOP was the next most important predictor, with a
score of 45, closely followed by SVOALK (importance score 42). Partial dependence
functions for NO2 and NO were both nonlinear, rising steeply to a plateau. POHOP showed
small estimated increases in TIMP2 for the few experimental groups that had nonzero
exposures (all DE groups and GE3 and GE4). The full MART model fit was excellent, and
the three variables model described 65% of the systematic variation. There was marginal
evidence of lack of fit for the three variables model (p = 0.09), which reflected an inability
to predict reduced TIMP2 in group WS3.

HO-1—Ammonia was the strongest predictor of HO-1, followed by NMVOHAL and
CARBALI, both with importance scores of ~40. There were several other variables that also
had scores of nearly this magnitude. Ammonia had a strongly increasing nonlinear partial
dependence function, while both NMVOHAL and CARBALI had comparatively modest
decreasing functions. Although the full MART model explained only 63% of the differences
in experimental mean values, much of this variation related to uncertain mean values in
groups WS1 and WS3, consequently there was no evidence of lack of fit (p = 0.93). The
three variables model, however, explained only 22% of the differences in group mean
values, leading to some evidence of lack of fit (p = 0.13). The reduction in fit for the main
effects model relative to the full model was attributable primarily to an inability to
accurately predict increased HO-1 levels for groups WS1 and WS2. Both of these groups
exhibited unusually high between-animal variability and inconsistency with absence of
evidence of increased HO-1 at the highest exposure level (WS3). Overall, it appears that
NH3 exposure is the most reliable predictor of increased HO-1 response.

TBARS—The two most important predictors of TBARS response were SO2 and NO2
(scores of 100 and 90, respectively), followed by NO (75), NMVOALKE, CO (46), and
POHOP (46). Partial dependence plots indicated a threshold-like response for SO2 and
nonlinear saturation functions for NO2 and NO. The fit of the full MART model was
excellent, and the three variables model (SO2, NO2, NO) explained 70% of the variation

Seilkop et al. Page 10

Inhal Toxicol. Author manuscript; available in PMC 2013 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between experimental group means. However, because of the relatively low degree of
random variability (R2 = 0.57), the three variables model was found to exhibit significant
lack of fit (p < 0.01). This was due to an inability to accurately model the reduction in
TBARS observed in group CE1 (which is likely a spurious finding), but more importantly,
to underestimate the TBARS response in group DE3. It is interesting to note that the next
three variables in the importance hierarchy were NMVOALKE, CO, and POHOP, which
have their highest levels in group DE3 (see Table 1). When the predictive contributions of
these variables were considered in an additional analysis, there was considerable
improvement in the fit of the MART-based model (explaining 81% of the variation between
experimental groups) but still statistically significant (p < 0.01) underestimation of the
response in DE3. Thus, there is evidence that some of the remaining chemical components
may be causal agents in inducing at least a portion of the observed response.

The foregoing summaries of the results for the response indicators have been predicated
upon an assumption of additivity (as opposed to synergy) of effects associated with the
predictors. Examinations of the two-way pairwise interactions between the three most
important predictors for the response indicators gave no substantial indication of
nonadditivity. However, with the high degree of intercorrelation among the predictors, and
the relatively small number of experimental groups and their uneven and sparse coverage of
the predictor space (as demonstrated in Figure 4), synergistic effects would be difficult, if
not impossible to detect.

Discussion
The data mining technique (MART) used here to identify the strongest predictors of
response appears to be useful, but optimal application of this methodology requires: (1)
differential responses across different combinations of chemical components and (2) enough
different combinations to confidently discriminate between patterns of exposure–response
among the components. Clear differences among the patterns of response to the four
atmospheres facilitated the identification of components that contributed most strongly to
the responses. However, with only 18 experimental points in a 45-dimensional predictor
space, the study was at the low end of the discriminatory spectrum for confidently predicting
likely causal relationships.

Further experiments are required to validate the causality of the components that were most
predictive of the observed responses. First, it would be useful to determine, at least at a
qualitative level, whether or not the observed responses to a given component can be
replicated independent of the mixtures. It is possible that components that were not ranked
highly in importance were necessary to cause or enhance the effects of those that had more
systematic associations with the responses. Replication of the same quantitative exposure–
response for a given predictor administered alone would verify the independence of its
causal effect. This approach has already been taken to a very limited extent, as described
below, with mixed results. Some responses were duplicated quantitatively, but only at higher
concentrations of the single gases. However, exposures of the ApoE−/− model to single
gases have not yet encompassed a sufficient matrix of gas species and concentrations to
resolve their potential independent effects.

Second, it would be useful to determine whether or not a mixture of only the top few
predictors might reproduce the responses observed in this study. Based on the relative
importance scores in Table 4, one might select a mixture of SO2, NO, NO2, NH3, and CO at
concentrations indicated by partial dependence plots (Figure 5) to have exerted substantial
impact on responses. In conjunction with the single gas exposures, this step would reveal
whether or not a combination of major predictors was necessary to elicit the responses and/
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or how the response to a simple mixture differed quantitatively from responses to single
gases or the more complex mixtures. This step would be more practical than moving directly
into a full factorial study of the top predictors.

The vascular responses examined in this study include markers for pathways leading to
atherosclerosis, including inflammation (MMPs), angiogenesis (VEGF), oxidative stress
(HO-1, TBARS), and endothelial dysfunction (ET-1). These markers coincide with
atherosclerotic lesion development in ApoE−/− mice following exposures to ambient PM
(Sun et al, 2005), ultrafine PM (Araujo et al., 2008), and DE (Bai et al., 2011; Campen
2010b).

We do not have full pathology data for all exposure atmospheres. In a recent study of diesel
emissions (Campen et al., 2010b), the authors principally saw increases in plaque
inflammation and composition, not plaque size, but TBARS was the most robust endpoint in
terms of signal-to-noise ratio. More recently, in a large study sponsored by HEI, it was again
found that TBARS exhibited the highest degree of systematic exposure-related variation,
while only small effects on plaque size and inflammation were observed. The authors are not
aware of any study in the literature that has used plaque pathology to discriminate between
more than two exposure scenarios and doses. Araujo et al. (2008) found a small but
significant difference in plaque size between fine and ultrafine atmospheres in one
comparable study, but it was clear that the difference was too small in relative to the
underlying variability to productively characterize concentration–response trends. Quan et
al. (2010) used the ApoE model to explore differential effects between combinations of
concentrated PM and diesel emissions on plaque pathology but encountered a similar
problem − too little toxicological effect and too much individual variability. In the present
study, the pathology indices served to reinforce the trends observed in the biomarkers, but
because of the small effects and high interindividual variability in these indices, a greater
emphasis has been placed on the more dynamic exposure-related changes in qPCR and lipid
peroxidation metrics.

Moreover, we have observed cross-species coherence for MMP9 and ET-1 with acute
human responses to DE (Lund et al., 2009), as have others (Calderón-Garcidueñas et al.,
2007; Peretz et al., 2008). Thus, while more work is necessary to understand the impact of
individual components and combinations on plaque modification and vascular function, the
responses observed in the present study suggest that such outcomes would result from longer
exposure.

Several of the top chemical predictors of cardiovascular effects have been tested in the
ApoE−/− model, albeit after 1 week instead of 50-day exposures (Campen et al., 2010a). The
CO and NO were found to exhibit some effects, such as inducing increases in ET-1 and
MMP9, but the degree of induction was less than that seen for whole gasoline emissions.
Thus, it is not surprising that these two gases are represented in the top five predictors for
most of the endpoints analyzed. In that 1 week study, neither NOx nor CO independently
induced measurable lipid peroxidation (TBARS), yet they are among the top five predictors
in the present MART analysis. While it may be that the 1 week exposure was insufficient to
elicit an effect from the gases independently, the 1 week model was found to be responsive
in recent studies of combined gasoline and diesel emissions (Lund et al., 2011; McDonald et
al., 2011b). In addition to NOx and CO, MART analysis pointed toward SO2, PM-associated
hopanes, and nonmethane volatile alkenes as potential drivers of lipid peroxidation. These
predictions are consistent with the concept that particle–gas interactions can drive systemic
vascular lipid peroxidation.
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While exposure to vehicular emissions have been reported to be associated with increased
vascular expression of TBARS, ET-1, and various MMPs, the roles of individual
components (e.g., NH3, SO2, NO2, and NO) identified in this study in mediating the
expression of these vascular factors, and their subsequent role in vascular disease, have not
yet been fully elucidated. For example, NH3, which predicts expression of MMP3, -7, and
-9, and HO-1 and VEGF, is present in the body during normal homeostatic conditions and
plays a key role in DNA and protein synthesis. Inhalation of NH3 may impact the respiratory
tract in a manner that leads to secondary systemic vascular effects, but this effect has not
been studied. Based on preceding knowledge, no long-term effects of such low levels of
inhaled NH3 (maximum of ~2.6 ppm) was expected in the cardiovascular system. However,
the potential vascular effects of NH3 in combination with other gases and/or PM, as in the
present exposures, warrant further investigation.

Three key gases, NO, NO2, and NH3, may theoretically impact nitric oxide homeostasis. It
is plausible that the observed effects of subchronic NH3 exposure on expression of vascular
MMPs, HO-1, and VEGF in the animal model may have resulted from its ability to act as a
nitrogen donor, through involvement in nitric oxide (NO) production. In conditions of
increased vascular oxidative stress, as is the case with the hypercholesterolemic model, NO
is subsequently converted to peroxynitrite (ONOO·), a highly reactive protein-damaging
oxidant (Gryglewski et al., 1986). Decreased bioavailability of NO is known to impair
vasoreactivity and mediate endothelial dysfunction, which is associated with altered ET-1,
HO-1, and MMP production (Amiri et al., 2004; Bonetti et al., 2003; Lund et al., 2009;
Rajagopalan et al., 1996). The same rationale may apply to the role of NO2 and NO in
TIMP-2 expression, as TIMP-2 is the primary tissue-level inhibitor of MMP9, as well as
other MMPs (Brew et al., 2000), and is thus likely upregulated to attenuate effects of
increased MMP expression in the vasculature. Given that NO2 reacts in the pulmonary
surfactant layer (Postlethwait et al., 1991), it is likely that the role of NO2 is indirect via
biologically active intermediates that activate airway neural (Hazari et al., 2011) or
immunomodulatory receptors (Kampfrath et al., 2011; Lund et al., 2011).

The role of SO2 in mediating the increased vascular TBARS may be due, at least in part, to
the increase in reactive oxygen species (ROS) that are reported to result from inhaled SO2.
Increased ROS have been shown to interact with the polyunsaturated fatty acids in
biomembranes, thereby altering the structure of the lipid bilayer membrane, which can result
in increased lipid peroxidation (Yargicoglu et al., 2007). Importantly, SO2 is emerging as an
important gaseous signaling molecule in the cardiovascular system (Wang et al., 2011),
although its uptake and disposition from inhalation exposures complicate direct
consideration of a parallel effect. Multiple epidemiological studies have reported that SO2 is
associated with increased risk of developing cardiovascular disease (Chen et al., 2011) and
increased oxidative stress (TBARS), ET-1, and MMP9 expression in humans.

Conclusions
In summary, there is evidence that the most highly ranked chemical components in the
MART analysis could have plausibly mediated pathways involved in cardiovascular disease.
Further investigation is needed to elucidate the pathophysiologic significance of the
individual components and to determine the extent to which their effects are dependent on
co-exposure to other components (such as PM) that occur in environmental exposures. It is
important to recognize that the suite of combustion-derived mixtures used in the initial
NERC exposure matrix did not include many primary and secondary pollutants common in
the environment (e.g., ozone). The extent to which the key predictors identified in this study
would also be among the most important in the presence of additional pollutants is
unknown. Of course, it is also important to recognize that the present findings resulted from
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only one of the many disease models included in the NERC program and other air pollution
research. Nevertheless, the present results demonstrate the utility of the general research
strategy for apportioning causality among the components of complex exposures. Follow-on
experiments using much simpler combinations of the pollutants most highly ranked by
MART could test the practical utility of the MART results and determine the extent to which
the effects of the mixtures can be reproduced by only a few key components. A better
understanding of the extent to which effects of highly complex exposures can be attributed
to a few key pollutants would bolster the foundation for multipollutant air quality
management.
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Figure 1.
Observed response patterns for response indicators. Data are expressed as fractions of
individual study control mean values. Horizontal bars in boxes represent 25th and 75th
percentiles and medians; dots depict mean values. Narrow vertical lines depict data ranges
(maximum and minimum). Squares at maximum indicate a value above 8. Horizontal axis
provides experimental group (CE, GE, WS, DE) and exposure designations (0 = control, 1 =
low concentration, 2 = mid concentration, 3 = high concentration, 4 = high concentration
with particle filtration). Boxes without shading indicate a statistically significant (p < 0.05)
difference from the study control mean by Dunnett’s multiple comparison test.
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Figure 2.
Estimated partial dependence of ET-1 on (a) SO2 exposure, (b) NO2 exposure, and (c) CO
exposure. Partial dependence for each of these atmospheric constituents is adjusted for the
effects of all the remaining atmospheric components in the MART model (see text). Dashed
line in Figure 2a represents a smoothed spline fit of the partial dependence function.
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Figure 3.
(a) Observed response pattern for ET-1 expressed as deviation of fraction of control mean
from 1 ([experimental group mean/control mean] − 1); (b) Residual error of full MART
model based on all atmospheric components; (c) Residual error of MART predictions based
on effect of SO2 alone; (d) Residual error of MART predictions based on effect of NO2
alone; (e) Residual error of MART predictions based on effect of CO alone; and (f) Residual
error of MART predictions based on joint effects of SO2, NO2, and CO.
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Figure 4.
Estimated partial dependence of ET-1 on: (a) SO2 × NO2 exposure and (b) SO2 × CO
exposure. Solid bars indicate points in the predictor space which give little, if any, indication
of synergistic response.
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Figure 5.
Estimated partial dependence of response indicators on the three most important predictors
in the MART model for (a) VEGF, (b) MMP3, (c) MMP7, (d) MMP9, (e) TIMP2, (f) HO1,
and (g) TBARS. Partial dependence for each of the three predictors is adjusted for the
effects of all the remaining predictors in the MART model.
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Table 2

Response indicators of atherosclerosis.

Response indicator Variable name Description/relevance

Vascular endothelin-1 ET-1 Key mediator of vascular tone (vasoconstrictor); displays mitogenic properties in
cardiovascular system. Found upregulated in atherosclerosis.

Vascular endothelin growth factor VEGF Stimulates vasculogenesis and angiogenesis (including after injury); chemotatic for
leukocytes. Contributes to atherosclerotic plaque progression and destabilization.

Matrix metalloproteinase-3 MMP3 Collagenase involved in connective tissue remodeling and activation of other MMPs,
such as MMP-7 and -9. Genetic variants of MMP3 are associated with plaque rupture
and myocardial infarction.

Matrix metalloproteinase-7 MMP7 Degrades proteoglycans, fibronectin, elastin, and casein and is involved in tissue
remodeling and wound repair. Found upregulated in atherosclerosis.

Matrix metalloproteinase-9 MMP9 Gelatinase associated with tissue remodeling and mobilization of hematopoietic
progenitor cells. Found upregulated in atherosclerosis and activity is associated with
plaque destabilization/rupture.

Tissue inhibitor of
metalloproteinase-2

TIMP2 Tissue inhibitor of MMPs; found upregulated in atherosclerotic vessels.

Heme-oxygenase-1 HO-1 Enzyme that catalyzes degradation of heme; inducible in response to oxidative stress
and cytokine expression.

Thiobarbituric acid reactive
substances

TBARS Formed as a byproduct of lipid peroxidation; indicator of oxidative stress. Found
increased in atherosclerotic vessels.
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