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Abstract
Chemical shift encoded techniques have received considerable attention recently because they can
reliably separate water and fat in the presence of off-resonance. The insensitivity to off-resonance
requires that data be acquired at multiple echo times, which increases the scan time as compared to
a single echo acquisition. The increased scan time often requires that a compromise be made
between the spatial resolution, the volume coverage, and the tolerance to artifacts from subject
motion. This work describes a combined parallel imaging and compressed sensing approach for
accelerated water–fat separation. In addition, the use of multiscale cubic B-splines for B0 field
map estimation is introduced. The water and fat images and the B0 field map are estimated via an
alternating minimization. Coil sensitivity information is derived from a calculated k-space
convolution kernel and l1-regularization is imposed on the coil-combined water and fat image
estimates. Uniform water–fat separation is demonstrated from retrospectively undersampled data
in the liver, brachial plexus, ankle, and knee as well as from a prospectively undersampled
acquisition of the knee at 8.6x acceleration.
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Chemical shift-based water–fat separation methods are routinely used in the clinical MRI
setting to separate unwanted species from the signal of interest to provide a clear
visualization of pathology. These methods have been used for “fat-only” imaging to detect
fatty infiltration in the myocardium (1) and to measure adipose tissue volume (2).
Alternatively, these methods have been used for “water-only” imaging to visualize cartilage
injury and meniscal tears in the knee (3) and to detect disease in the spine (4). Fat saturation
techniques, such as chemical shift selective imaging (CHESS) (5), are a commonly used
chemical shift-based method. Although versatile and widely applicable, fat saturation
techniques are sensitive to B0 inhomogeneity, which can result in incomplete suppression in
regions of off-resonance (6). Chemical shift encoded techniques (7–10) have received
considerable attention because they can reliably separate water and fat in the presence of
off-resonance. These techniques acquire data at multiple (typically 2–3) echo times (TEs)
and estimate the water and fat signals by correcting for the phase errors caused by B0
inhomogeneity. Multiple works have demonstrated robust water–fat separation in the
presence of high off-resonance (11–18).
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The insensitivity to off-resonance of chemical shift encoded techniques requires that data be
collected at multiple TEs, which increases the scan time as compared to a single echo
acquisition. The increased scan time often requires that a compromise be made between the
spatial resolution, the volume coverage, and the tolerance to motion artifacts. To address this
compromise, scan time reduction techniques have been used. Both Hines et al. (19) and Yu
et al. (20) have reported using parallel imaging (21,22) to shorten the scan time. Reeder et
al. have developed a homodyne reconstruction technique for partial k-space acquisitions
(23), whereas Brodsky et al. (24) and Bornert et al. (25) have proposed reconstruction
methods for non-Cartesian acquisitions. Recent works from Doneva et al. (26) and Sharma
et al. (27) have applied compressed sensing (28) by estimating the B0 field map and the
water and fat images directly from the undersampled k-space measurements.

In this work, we introduce a combined parallel imaging and compressed sensing approach
for water–fat separation. The combination of these two techniques exploits complementary
pieces of information; specifically, parallel imaging uses the distinct spatial sensitivities of
the multiple receiver elements while compressed sensing makes use of the presumed
compressibility of the desired images. We also introduce the use of multiscale cubic B-
splines for estimating the B0 field map. The water and fat images and the B0 field map are
estimated in an alternating manner directly from the undersampled k-space measurements.
In the following section, we present the signal model and details of the reconstruction.
Results using the proposed approach are then shown on liver, brachial plexus, ankle, and
knee datasets, and these results are compared to those from an existing parallel imaging and
water–fat separation technique. Finally, we discuss the benefits and limitations of the
present work.

METHODS
Signal Model

We model, in Eq. 1, the undersampled k-space measurements from all receiver coils at all
TEs, ku, as a function of the unknown un-normalized coil sensitivities (C̃), unknown water
and fat spin density images (ρ̃), unknown B0 field map (represented in Ψ), known water–fat
chemical shift modeling matrix (A), and known k-space sampling (Fu), in the presence of
additive Gaussian noise with zero mean and unknown covariance matrix Σ.

[1]

The vector ρ̃ is a concatenation of the water spin density and the fat spin density images

(i.e., ), where the subscript denotes the species and the superscript
denotes the pixel index. The matrix A operates pixel-wise and we assume a six-peak fat
spectrum with known relative amplitudes and frequency shifts (29). The block diagonal
matrix Ψ contains exp(j2πψptn) on the pth diagonal of the nth block, where ψp is the field
map value (in Hertz) at the pth pixel and tn is the time (in seconds) of the nth echo.

In practice, the coil sensitivity maps are normalized such that the l2-norm taken across the
coil dimension is equal to one for all pixels. This is reflected by a slight modification of the
signal model (Eq. 2), where C represents the normalized coil sensitivities and ρ denotes the
coil-combined water and fat images, which are the water and fat spin density images
multiplied by the square root sum of squares of the coil sensitivities.
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[2]

Equation 2 presents the signal model that relates the unknowns (C, Ψ, ρ) to the
measurements (ku). Note that the product CΨAρ represents the echo time images from all
coils. The undersampled Fourier transform, Fu, is applied to each image to yield the k-space
measurements.

Sampling Considerations
The sampling of k-space should satisfy requirements for both parallel imaging and
compressed sensing. From a k-space-based parallel imaging perspective, the sampling
should avoid large regions of nonsampled points. This ensures that the k-space kernel can
use acquired k-space points to synthesize the neighboring nonacquired points. The theory
underlying compressed sensing suggests that the measurement vectors exhibit incoherence,
where the coherence of a measurement matrix M is defined as the maximum off-diagonal
absolute value of the matrix MH·M (30). The measurement matrix in this work is
FuCΨAW−1, where W represents the sparsifying transform. Because C will vary between
scans and Ψ will vary both between scan and within one reconstruction, a generally
applicable analysis of incoherence, and thus of the optimal k-space sampling, is infeasible.

For practicality, we adopt Poisson disk sampling for the joint parallel imaging and
compressed sensing framework. This sampling scheme has been proposed by Lustig et al.
(31) and has been used by Doneva et al. (26) in the context of compressed sensing and
water–fat separation. Poisson disk sampling was suggested by Cook in 1986 in the computer
graphics community as a way to avoid the structured aliasing artifacts that occur when
sampling at a regular interval under the Nyquist limit (32). The artifacts that result from
Poisson disk sampling appear much less visually objectionable than structured aliasing.

Figure 1 shows two grids that each are of size 192 × 160 pixels, one that is uniformly
undersampled and the other that is sampled with a Poisson disk scheme, along with their
corresponding point-spread function (PSF). The central 24 × 24 region is fully sampled as it
will be used for kernel calibration (discussed later). The net acceleration of each sampling
pattern is 7.7x. Similar to the uniform undersampling, the Poisson disk sampling does not
contain large regions of nonsampled points. In contrast, the PSF of the Poisson disk pattern
suggests that aliasing artifacts in the current context may appear incoherent.

Signal Reconstruction
The water and fat images and the B0 field map are estimated from the undersampled k-space
measurements using parallel imaging, compressed sensing, and multiscale cubic B-splines.
First, coil sensitivity maps are derived from the SPIRiT (31) k-space convolution kernel.
Next, the coil-combined water and fat images and the B0 field map are estimated in an
alternating manner. The water and fat images are estimated with an l1-regularization on their
respective transform coefficients and the B0 field map is estimated using multiscale cubic B-
splines. The following subsections describe in detail the three components of the
reconstruction. The components are then brought together in an algorithm that summarizes
the steps of the reconstruction.

Parallel Imaging
Traditionally, a distinction in parallel imaging has been made between image-domain
methods such as SENSE (21) and k-space methods such as GRAPPA (22). Recently, Lai et
al. (33) and Lustig et al. (34) have addressed the superficiality of this distinction.
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Specifically, they have shown that the coil sensitivity maps that are used in image-domain
methods can be derived from the convolution kernels that are used in k-space methods.
Thus, any “k-space” parallel imaging method can be equivalently implemented as an
“image-domain” method.

In this work, we use coil sensitivity maps that have been derived from the SPIRiT (31) k-
space kernel. An explanation of this derivation is presented in Appendix A. Figure 2 shows
the coil images and derived coil sensitivities for a liver dataset that will be presented later.
Once the coil sensitivity maps have been derived, they remain fixed throughout the
remainder of the reconstruction. An advantage of using the derived coil sensitivities is that
the calibration consistency constraint is implicitly imposed whereas imposing this constraint
in k-space would require an explicit calibration consistency expression in the reconstruction
(see Eq. 10 in Ref. 31). Lai et al. (33) have shown the benefit of using the derived coil
sensitivities because the absence of the explicit calibration consistency expression reduces
the computational complexity of the iterative reconstruction.

Compressed Sensing
The undersampled k-space measurements are modeled as a linear function of the coil-
combined water and fat images. The linear map (FuCΨA) is, in general, unknown because
the coil sensitivity maps (C) and B0 field map-dependent term (Ψ) are unknown. However,
given an estimate of C and Ψ, the linear mapping becomes known and the water and fat
images can be estimated using compressed sensing (28) by exploiting their presumed
compressibility in a predetermined linear transform.

Specifically, given C and Ψ, we estimate the water and fat images via Eq. 3, where W
represents the Daubechies-4 wavelet transform that operates separately on the water and fat
images. We impose sparsity constraints on the coil-combined water and fat images rather
than on the individual coil images because the latter potentially have less sparsity due to coil
sensitivity-dependent magnitude and phase variations.

[3]

We assume that the noise is independently and identically distributed (i.e., Σ = σ2I). The
parameter λ balances data fidelity with transform sparsity and was chosen empirically based
on subjective assessment of reconstructed image quality. The expression in Eq. 3 is a convex
optimization problem that is solved using conjugate gradients.

Multiscale Cubic B-splines
An accurate B0 field map is a vital prerequisite for uniform water–fat separation, however
estimating this parameter is challenging due to the nonconvexity of the least-squares cost as
a function of the field map value. To guide the reconstruction, the assumption of a smoothly
varying B0 field map is often made (12,15).

In this work, we propose to use multiscale cubic B-splines for B0 field map estimation.
Skare et al. have found that cubic B-splines provided a concise and accurate representation
of the B0 field inhomogeneity that arose from metallic implants (35). We extend their
finding by incorporating a multiscale element (15) to avoid converging to local minima B0
field map estimates. We first estimate a global value by restricting the B0 field map estimate
to one common value for all pixels. We then refine the field map estimate using the
multiscale cubic B-splines. Figure 3 shows 2-D cubic B-spline functions and the
corresponding B-spline set, from coarser to finer scale. The support size of the cubic B-
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spline changes by a factor of three-fourths in each dimension between successive scales. For
example, the coarsest scale B-spline in Fig. 3 has a support size of 256 × 256 pixels while
the support size at one finer level is 192 × 192 pixels. The B-splines are nonnegative
everywhere and the sum of the functions at any spatial position is one. Details on the
creation of the cubic B-spline functions and sets are presented in Appendix B.

The B0 field map estimate is updated gradually using cubic B-splines of successively finer
scales. The update expression at the mth scale is shown in Eq. 4. A full derivation appears in
Appendix C.

[4]

In Eq. 4, Δψ is the field map update term, Δρ is the error of the current water–fat image
estimates, r is the residual error between the k-space measurements and the current estimate
of acquired k-space, x is a linear function that relates the unknown error terms (Δψ, Δρ) to
the residual, and Bm represents the cubic B-spline set at the mth scale. Upon estimating Δψ,
it is added to the current field map estimate. The water–fat error term, Δρ, is discarded after
estimation. The expression in Eq. 4 is a convex function of both Δψ and Δρ that is also
solved using conjugate gradients.

Iterative Decomposition
The reconstruction steps are summarized in the following algorithm.

1. Derive coil sensitivities from SPIRiT k-space kernel (this will fix C)

2. Estimate global B0 field map value, then select the coarsest-level cubic B-spline set
(m = 1)

3. Estimate the water and fat images with fixed C and current Ψ (Eq. 3).

4. Estimate the B0 field map update term (Δψ) using cubic B-splines at the current
(i.e., mth) scale (Eq. 4), then add the update term to the current B0 field map
estimate (this will update Ψ)

5. IF max of |Δψ| < ε (e.g., 1 Hz)

Go to Step 6

ELSE

Go to Step 3

6. IF current scale is equal to the predefined finest-scale

Done

ELSE

Update cubic B-spline set to be one finer scale (m = m + 1)

Go to Step 3

Upon convergence, the water and fat estimates (ρ̂) and the B0 field map estimate (ψ̂) are a
local minimizer of the following cost function
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[5]

where Bmax is the set of finest-scale cubic B-splines. Note that this implies that all
intermediate B0 field map estimates are in the space spanned by Bmax, which in turn implies
that span{Bm} ⊆ span {Bmax} for all m ≤ max.

In Vivo Experiments
Experiments were conducted with volunteer consent on a GE Signa EXCITE HDx 3-T
system (GE Healthcare, Waukesha, WI) using an investigational GE IDEAL 3-D spoiled-
gradient-echo sequence. Fully sampled measurements were collected at three TEs using
unipolar readouts with one TE per TR and sampling bandwidth = ±125 kHz. Data were
collected from the liver, brachial plexus, ankle, and knee. Table 1 lists the acquisition
parameters for each of the datasets. In addition, a prospectively undersampled knee dataset
was collected using a custom-built in-house sequence at 8.6x acceleration factor using the
same prescription as the fully sampled knee dataset. This scan was done immediately after
the fully sampled knee scan.

To test the proposed approach, we retrospectively undersampled the datasets using a Poisson
disk sampling pattern. Table 2 lists the size of the calibration region and the net acceleration
factor that were used for each of the datasets. The coil sensitivity maps were derived from a
7 × 7 SPIRiT k-space kernel. The coarsest-scale cubic B-spline had a 1-D support size equal
to the size of the corresponding image dimension (i.e., for an M × N image, the coarsest-
scale B-spline was of size M × N). The support size of the B-spline functions was scaled by
a factor of three-fourths in each dimension between successive scales. For example, the next
coarsest-scale B-spline would be of size 3M/4 × 3N/4, followed by 9M/16 × 9N/16, and so
on. The finest-scale cubic B-spline (CBS) had a 1-D support size equal to 16. The proposed
approach will hereafter be referred to as PI-CS-CBS. The prospectively undersampled
dataset was reconstructed in the same manner as the fully sampled dataset. The
reconstruction time using the proposed approach depended on the matrix size of each slice
and was typically between 15 and 30 min (24 CPUs, 2.93-GHz, 48-GB RAM).

To compare our approach, we implemented an existing parallel imaging and water–fat
separation approach. The fully sampled data were uniformly undersampled using the
parameters listed in Table 2. The retrospectively undersampled k-space data were then
reconstructed using Autocalibrated Reconstruction for Cartesian Sampling (ARC) (36) with
a 7 × 7 ARC k-space kernel. Subsequently, the data were coil combined (37) and then
water–fat separation was done using IDEAL with region-growing (IDEAL-RG) (10,12).
This reconstruction will hereafter be referred to as ARC/IDEAL-RG. We used the ARC
implementation found in the SPIRiT software package (31). To serve as a reference, the
fully sampled data were first coil combined and then passed to the IDEAL-RG
reconstruction. This reconstruction will hereafter be referred to as IDEAL-RG. We also
reconstructed the fully sampled brachial plexus dataset using voxel-independent IDEAL
(IDEAL-VI) (38). Note that for the brachial plexus dataset, the proposed multiscale cubic B-
spline approach was used in place of IDEAL-RG, because the latter technique was not able
to overcome the significant off-resonance encountered in this anatomy.

RESULTS
Figure 4 shows the B0 field map and the water and fat image estimates of the liver using 1x
IDEAL-RG, 3.4x ARC/IDEAL-RG, and 3.4x PI-CS-CBS. The arrows in the ARC/IDEAL-
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RG estimates point to aliasing artifacts and the arrowheads highlight regions of noise
amplification.

Figure 5 shows the B0 field map and the water and fat image estimates of the brachial plexus
using 1x IDEAL-VI, 1x CBS, 6.4x ARC/CBS, and 6.4x PI-CS-CBS. The white ellipses in
the IDEAL-VI B0 field map outline areas of incorrect estimates that cause water–fat swaps.
The white arrowheads point to regions of noise amplification in the ARC/CBS estimates.

Figure 6 shows the B0 field map and the water and fat image estimates of the ankle using 1x
IDEAL-RG, 6.4x ARC/IDEAL-RG, and 6.4x PI-CS-CBS. The arrowheads highlight noise
amplification in the ARC/IDEAL-RG estimates.

Figure 7 shows the B0 field map and the water and fat image estimates of the knee using 1x
IDEAL-RG, 7.7x ARC/IDEAL-RG (retrospective), 8.6x PI-CS-CBS (retrospective), and
8.6x PI-CS-CBS (prospective). The same Poisson disk pattern was used for the retrospective
and prospective undersampling. The arrows and arrowheads in the ARC/IDEAL-RG
estimates highlight, respectively, artifacts and areas of noise amplification. Both the
retrospective and prospective results using the proposed method are presented to show that
system issues, such as eddy currents, associated with the k-space sampling order do not
affect the quality of the water–fat separation.

DISCUSSION
The proposed PI-CS-CBS approach yielded water, fat, and field map estimates of better
quality than ARC/IDEAL-RG. The ARC/IDEAL-RG estimates exhibited severe artifacts,
which were anticipated, because the outer acceleration factor was greater than the number of
coils along the dimension(s) of undersampling in all cases. In the proposed approach, the
Poisson disk sampling caused incoherent aliasing artifacts that were reduced by the l1-
regularization in the reconstruction. Any remaining artifacts appeared much more benign
than the structured artifacts in the ARC/IDEAL-RG estimates. The smaller number of slice
encodes in the brachial plexus and ankle datasets versus the knee dataset limited the degree
of wavelet compressibility along that dimension, and may have contributed to the slight loss
of subtle features in the brachial plexus and ankle estimates as compared to the knee
estimates.

The joint parallel imaging and compressed sensing approach imposed two complementary
constraints on the reconstruction; one was based on the distinct spatial sensitivities of the
receiver elements, the other on the presumed compressibility of the underlying images. By
using coil sensitivities that were derived from the SPIRiT k-space kernel, we were able to
impose the SPIRiT constraint without requiring an explicit calibration consistency
expression in the reconstruction. The use of coil sensitivities allowed for the reconstruction
of coil-combined images, which reduced the computational complexity as compared to
reconstructing one set of images (i.e., water, fat, B0 field map) for each coil. In addition,
reconstructing the coil-combined images freed the sparsifying transform from the
responsibility of capturing the magnitude and phase variations of the coil sensitivities.

The multiscale cubic B-splines provided an accurate and compact representation of the B0
field map. As an example of compactness, only 4489 (= 672) cubic B-splines were used at
the finest scale to represent the B0 field map of 65,536 (= 256 × 256) pixels in the liver
dataset. This equates to a 14.6x oversampling factor, which allowed the B0 field map to be
accurately recovered from an undersampled k-space acquisition. The multiscale element
gradually guided the estimate of the B0 field map. The benefit of this approach was most
apparent in the brachial plexus dataset in which the IDEAL-VI B0 field map estimate had
numerous errors that caused water–fat swaps. The estimates, from both fully sampled and
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undersampled data, using the cubic B-splines did not exhibit these swaps. A tradeoff when
using the cubic B-splines is a smoothing of the B0 field map estimate. We have calculated
that the full-width half-maximum of the point-spread function for field map estimation is
approximately eight pixels in one dimension. Empirically, this degree of smoothing does not
seem to affect the quality of the water–fat separation.

The current framework has some limitations. First, the topic of quantitation has not been
addressed. Accurate water–fat quantitation (19,39) requires compensation for confounding

factors, the most prominent of which is . Fortunately, the signal model that we

have proposed in Eq. 1 is easily amended to account for the  parameter. We are currently
investigating the necessary modifications to the reconstruction routine to account for this
confounding factor. In addition, the effect on water–fat quantitation caused by small errors
in the B0 field map estimate using cubic B-splines must be explored. It may be that an error
of only a few Hertz causes significant errors in quantitation. Second, we ignored the phase
accrual during the readout due to chemical shift off-resonance (24) because its effects were
minimal for the Cartesian trajectory and high sampling bandwidth that we used. If a non-
Cartesian trajectory was used, one would have to account for the distinct time that each k-
space point was sampled. Next, the regularization parameter λ was chosen empirically. This
is acceptable for showing feasibility of the proposed method but an automated procedure
would be required for wide acceptance. In addition, the reconstruction time would need to
be shortened to permit online reconstruction. Lastly, the pulse sequence that we used for
prospective undersampling was limited to sampling the same phase encode line for all TEs.
This limitation restricted the sampling incoherence to the ky–kz plane rather than the ky–kz-
TE volume. Blipping the phase encode between consecutive echoes would increase
sampling incoherence, which may slightly improve results.

CONCLUSION
We have demonstrated the feasibility of integrating parallel imaging and compressed
sensing for accelerated water–fat separation. In addition, we have introduced the use of
multiscale cubic B-splines, which provided a compact representation and accurate
estimation of the B0 field map. The proposed approach was compared to an existing parallel
imaging and water–fat separation method, and was found to yield image estimates of better
quality. In all cases, the outer acceleration factor was greater than the number of coils along
the dimension(s) of undersampling.
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APPENDIX A
Deriving coil sensitivity maps from the SPIRiT convolution kernel

The calibration consistency expression proposed by Lustig et al. (31) is:

[A1]

where ki represents the full k-space measured by the ith coil, gij is the convolution kernel,
Nc is the number of coils, and ⊗ denotes the circular convolution operation. In words, this
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expression enforces the constraint that each k-space point is a weighted sum of its k-space
neighbors from all coils. The weights, found in gij, are calculated using a fully sampled
calibration region.

Taking the inverse Fourier transform of Eq. A1 yields:

[A2]

where Ii is the ith coil image, Gij is the inverse Fourier transform of gij, and * denotes pixel-
wise multiplication. Equation A2 can be written in terms of each voxel rather than for each
coil image, as seen in Eq. A3.

[A3]

Notice that Eq. A3 is still a representation of the calibration consistency expression, but in a
different form than Eq. A1. At this point, there is no significant difference between the two
forms other than one involves a circular convolution while the other uses pixel-wise
multiplication.

Let us now focus on one particular pixel and drop the pixel indices in Eq. A3 for brevity’s
sake, which allows us to concisely write Eq. A3 as:

[A4]

According to Eq. A4, the calibration consistency expression says that v should be in the
space that is spanned by the eigenvectors of H that have associated eigenvalue equal to one.
With no FOV overlap, Lai et al. (33) have shown that H will have one eigenvalue that is
equal to one. In this case, v is a scaled version of e1, which is the eigenvector with
eigenvalue equal to one and where the scalar α ∈ C1, as seen in Eq. A5.

[A5]

The following equation can also be written for v (still omitting subscripts):

[A6]

where m is the magnetization and Ci denotes coil sensitivity value of the ith coil. Equating
the terms in Eqs. A5 and A6, we see that e1 contains the coil sensitivities.
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APPENDIX B

Cubic B-Splines
A 1-D cubic B-spline is defined as:

[B1]

This function is nonzero only on the interval (−2, 2). To create the base 1-D cubic B-spline,
b(t) is uniformly sampled on the interval (−2, 2) such that the number of sampled points
equals the desired support size s (e.g., 128 pixels). A knot spacing, ht, is defined as:

[B2]

To create a base 2-D cubic B-spline of size M × N, two cubic B-splines, one with length M
and the other with length N, and their associated knot spacing are first calculated. The base
2-D cubic B-spline is then created via an outer product of the two 1-D cubic B-spline
functions. The 2-D cubic B-spline set is created by spatially shifting the base 2-D cubic B-
spline by all combinations of the multiples (both positive and negative) of the knot spacing
in both dimensions. For a I × J (e.g., 256 × 192 pixels) field map, the base 2-D cubic B-
spline is shifted in both dimensions until it is entirely zero in the I × J image. Shifting by the
knot spacing ensures that the sum of the B-spline set at any spatial position is equal to one.
The creation of a base cubic B-spline and associated set in higher dimensions can be done
using a straightforward extension of the 2-D example presented here.

APPENDIX C

B0 Field Map Update
To derive the expression for the B0 field map update (Δψ), we begin by rewriting the signal
model (also found in Eq. 2)

[C1]

The unknown terms at this stage are the B0 field mapdependent term (Ψ) and the water and
fat images (ρ). However, we have current estimates for both of the terms, which we use to
rewrite Eq. C1 as:

[C2]

where, for example, ρ̂ denotes the current (known) water and fat estimates and Δρ
represents the error (unknown) in the estimate. The same convention is used for the B0 field
map-dependent term. Taking the first-order Taylor approximation for the exponential terms
in Δψ results in
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[C3]

where ΔT is a block diagonal matrix that contains 1 = j2π Δψptn on the pth diagonal of the
nth block, where Δψp is the field map update term at the pth pixel and tn is the time of the
nth echo.

At this point, Eq. C3 is modified by grouping the known terms on the left-hand side, the
unknown terms on the right-hand side, and discarding the ΔS·Δρ term where ΔS is a block
diagonal matrix that contains j2π Δψptn on the pth diagonal of the nth block.

[C4]

Notice that the left-hand side of Eq. C4 is the residual error between the measurements and
the current estimate while the right-hand side is a function of the errors in the water, fat, and
B0 field map estimates as well as noise. Denoting the left-hand side of Eq. C4 as r, the right-
hand side as x(Δψ, Δρ), and assuming that the noise is independently and identically
distributed (i.e., Σ = σ2I), we arrive at the expression for the B0 field map update in the mth
cubic B-spline set.

[C5]

The Δρ term does not need to be estimated but we have found that doing so speeds the
convergence of the estimate of Δψ. The Δρ term is discarded after estimation.
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FIG. 1.
Uniformly undersampled (US) and Poisson disk (PD) k-space sampling pattern and their
corresponding magnitude point-spread function (PSF). Both schemes sample the central 24
× 24 region for kernel calibration and result in 7.7x acceleration. Additionally, both schemes
avoid large gaps of nonsampled points in k-space, which is desirable for parallel imaging. In
contrast, the PSF of the Poisson disk pattern suggests that aliasing artifacts may appear
incoherent, which is beneficial when using compressed sensing.
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FIG. 2.
The top row in each set of images shows the fully sampled coil images and the bottom row
shows the corresponding coil sensitivities (magnitude) that were derived from the SPIRiT k-
space kernel using only the central 16 phase encode lines. Using the coil sensitivities
implicitly imposes the SPIRiT constraint, which avoids the need for an explicit calibration
consistency expression in the reconstruction.
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FIG. 3.
Single cubic B-spline functions from coarser scale (top) to finer scale (bottom) and their
corresponding cubic B-spline sets. The B-spline set is created by spatially shifting the single
cubic B-spline in both spatial directions by multiples of the knot spacing. The cubic B-
splines are nonnegative everywhere and the set sums to one at all spatial positions. The field
map update term at the mth scale is restricted to be in the space that is spanned by the mth
cubic B-spline set.
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FIG. 4.
B0 field map, water, and fat estimates of the liver using an eight-channel torso coil. The
ARC/IDEAL-RG estimates exhibit unresolved aliasing artifacts (arrows) and noise
amplification (arrowhead). These artifacts were anticipated because the outer acceleration
factor of 4 is greater than the number of coils along the axis of undersampling. In contrast,
the estimates using the proposed method exhibit only slight incoherent artifacts as a result of
the Poisson disk sampling and l1-regularization.
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FIG. 5.
B0 field map, water, and fat estimates of the brachial plexus using an eight-channel
neurovascular coil. Field map estimate errors using IDEAL-VI (white ellipses) cause water–
fat swaps. The CBS field map estimation approach correctly estimates the field map to avoid
the swaps. The ARC/CBS estimates exhibit noise artifacts (arrowheads), especially in the
brain. These artifacts were expected because the 3x by 3x outer acceleration factor is greater
than the number of receiver elements. The estimates using the proposed PI-CS-CBS
approach exhibit a relatively reduced level of artifacts. Slight loss of subtle features is seen
in the PI-CS-CBS estimate (black arrow).
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FIG. 6.
B0 field map, water, and fat estimates of the ankle using an eight-channel torso coil. The
arrowheads in the ARC/IDEAL-RG estimates indicate regions of noise amplification. The
outer acceleration factor (3x by 3x) was greater than the number of receiver channels so
these artifacts were expected. The estimates using the proposed PI-CS-CBS approach
exhibit incoherent artifacts that appear more benign than the artifacts in the ARC/IDEAL-
RG estimates.
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FIG. 7.
B0 field map, water, and fat estimates of the knee using an eight-channel knee coil. The
arrowheads and arrows in the ARC/IDEAL-RG estimates highlight, respectively, regions of
noise amplification and image artifacts. These artifacts were anticipated because the outer
acceleration factor of 3x by 3x is greater than the number of receiver elements. In contrast,
the estimates using the proposed method exhibit incoherent artifacts as a result of the
Poisson disk sampling and l1-regularization. System issues, such as eddy currents, that are
associated with the k-space sampling order do not affect the quality of the water–fat
separation as evidenced by the retrospective versus prospective results.
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Table 2

Undersampling Parameters

Anatomy Calibration Region (ky × kz) Outer Reduction (ky × kz) Net Acceleration

Liver 16 × N/A 4 × N/A 3.4x

Brachial Plexus 24 × 24 3 × 3 6.4x

Ankle 24 × 24 3 × 3 6.4x

Knee 24 × 24 3 × 3 7.7x/8.6x*

This table shows the size of the fully sampled calibration region, the outer reduction factor, and the net acceleration that was used to retrospectively
downsample each of the datasets. The outer reduction factor is only applicable to uniform undersampling.

*
The PI-CS-CBS estimates of the knee were reconstructed from datasets that had been downsampled (retrospective and prospective) by a factor of

8.6x.
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