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ABSTRACT Long-range migrations and the resulting admixtures between populations have been important forces shaping human
genetic diversity. Most existing methods for detecting and reconstructing historical admixture events are based on allele frequency
divergences or patterns of ancestry segments in chromosomes of admixed individuals. An emerging new approach harnesses the
exponential decay of admixture-induced linkage disequilibrium (LD) as a function of genetic distance. Here, we comprehensively
develop LD-based inference into a versatile tool for investigating admixture. We present a new weighted LD statistic that can be used
to infer mixture proportions as well as dates with fewer constraints on reference populations than previous methods. We define an LD-
based three-population test for admixture and identify scenarios in which it can detect admixture events that previous formal tests
cannot. We further show that we can uncover phylogenetic relationships among populations by comparing weighted LD curves
obtained using a suite of references. Finally, we describe several improvements to the computation and fitting of weighted LD curves
that greatly increase the robustness and speed of the calculations. We implement all of these advances in a software package, ALDER,
which we validate in simulations and apply to test for admixture among all populations from the Human Genome Diversity Project
(HGDP), highlighting insights into the admixture history of Central African Pygmies, Sardinians, and Japanese.

ADMIXTURE between previously diverged populations
has been a common feature throughout the evolution

of modern humans and has left significant genetic traces in
contemporary populations (Li et al. 2008; Wall et al. 2009;
Reich et al. 2009; Green et al. 2010; Gravel et al. 2011;
Pugach et al. 2011; Patterson et al. 2012). Resulting patterns
of variation can provide information about migrations, de-
mographic histories, and natural selection and can also be
a valuable tool for association mapping of disease genes in
admixed populations (Patterson et al. 2004).

Recently, a variety of methods have been developed to
harness large-scale genotype data to infer admixture events

in the history of sampled populations, as well as to estimate
a range of gene flow parameters, including ages, propor-
tions, and sources. Some of the most popular approaches,
such as STRUCTURE (Pritchard et al. 2000) and principal
component analysis (PCA) (Patterson et al. 2006), use clus-
tering algorithms to identify admixed populations as inter-
mediates in relation to surrogate ancestral populations. In
a somewhat similar vein, local ancestry inference methods
(Tang et al. 2006; Sankararaman et al. 2008; Price et al.
2009; Lawson et al. 2012) analyze chromosomes of admixed
individuals with the goal of recovering continuous blocks
inherited directly from each ancestral population. Because
recombination breaks down ancestry tracts through succes-
sive generations, the time of admixture can be inferred from
the tract length distribution (Pool and Nielsen 2009; Pugach
et al. 2011; Gravel 2012), with the caveat that accurate local
ancestry inference becomes difficult when tracts are short or
the reference populations used are highly diverged from the
true mixing populations.

A third class of methods makes use of allele frequency
differentiation among populations to deduce the presence
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of admixture and estimate parameters, either with likelihood-
based models (Chikhi et al. 2001; Wang 2003; Sousa et al.
2009; Wall et al. 2009; Laval et al. 2010; Gravel et al. 2011)
or with phylogenetic trees built by taking moments of the
site-frequency spectrum over large sets of SNPs (Reich et al.
2009; Green et al. 2010; Patterson et al. 2012; Pickrell and
Pritchard 2012; Lipson et al. 2012). For example, f-statistic-
based three- and four-population tests for admixture (Reich
et al. 2009; Green et al. 2010; Patterson et al. 2012) are
highly sensitive in the proper parameter regimes and when
the set of sampled populations sufficiently represents the phy-
logeny. One disadvantage of drift-based statistics, however, is
that because the rate of genetic drift depends on population
size, these methods do not allow for inference of the time that
has elapsed since admixture events.

Finally, Moorjani et al. (2011) recently proposed a fourth
approach, using associations between pairs of loci to make
inference about admixture, which we further develop in this
article. In general, linkage disequilibrium (LD) in a population
can be generated by selection, genetic drift, or population
structure, and it is eroded by recombination. Within a homo-
geneous population, steady-state neutral LD is maintained by
the balance of drift and recombination, typically becoming
negligible in humans at distances of more than a few hundred
kilobases (Reich et al. 2001; International HapMap Consor-
tium 2007). Even if a population is currently well mixed,
however, it can retain longer-range admixture LD (ALD) from
admixture events in its history involving previously separated
populations. ALD is caused by associations between nearby
loci co-inherited on an intact chromosomal block from one of
the ancestral mixing populations (Chakraborty and Weiss
1988). Recombination breaks down these associations, leav-
ing a signature of the time elapsed since admixture that can
be probed by aggregating pairwise LD measurements through
an appropriate weighting scheme; the resulting weighted LD
curve (as a function of genetic distance) exhibits an exponen-
tial decay with rate constant giving the age of admixture
(Moorjani et al. 2011; Patterson et al. 2012). This approach
to admixture dating is similar in spirit to strategies based on
local ancestry, but LD statistics have the advantage of a simple
mathematical form that facilitates error analysis.

In this article, we comprehensively develop LD-based
admixture inference, extending the methodology to several
novel applications that constitute a versatile set of tools for
investigating admixture. We first propose a cleaner func-
tional form of the underlying weighted LD statistic and
provide a precise mathematical development of its proper-
ties. As an immediate result of this theory, we observe that
our new weighted LD statistic can be used to infer mixture
proportions as well as dates, extending the results of Pickrell
et al. (2012). Moreover, such inference can still be per-
formed (albeit with reduced power) when data are available
from only the admixed population and one surrogate ancestral
population, whereas all previous techniques require at least
two such reference populations. As a second application, we
present an LD-based three-population test for admixture

with sensitivity complementary to the three-population
f-statistic test (Reich et al. 2009; Patterson et al. 2012) and
characterize the scenarios in which each is advantageous.
We further show that phylogenetic relationships between
true mixing populations and present-day references can be
inferred by comparing weighted LD curves using weights
derived from a suite of reference populations. Finally, we
describe several improvements to the computation and fit-
ting of weighted LD curves: we show how to detect con-
founding LD from sources other than admixture, improving
the robustness of our methods in the presence of such
effects, and we present a novel fast Fourier transform-
based algorithm for weighted LD computation that reduces
typical run times from hours to seconds. We implement all
of these advances in a software package, ALDER (Admix-
ture-induced Linkage Disequilibrium for Evolutionary
Relationships).

We demonstrate the performance of ALDER by using it to
test for admixture among all HGDP populations (Li et al.
2008) and compare its results to those of the three-population
test, highlighting the sensitivity trade-offs of each approach.
We further illustrate our methodology with case studies of
Central African Pygmies, Sardinians, and Japanese, reveal-
ing new details that add to our understanding of admixture
events in the history of each population.

Methods

Properties of weighted admixture LD

In this section we introduce a weighted LD statistic that uses
the decay of LD to detect signals of admixture given SNP
data from an admixed population and reference popula-
tions. This statistic is similar to, but has an important
difference from, the weighted LD statistic used in ROLLOFF
(Moorjani et al. 2011; Patterson et al. 2012). The formula-
tion of our statistic is particularly important in allowing us to
use the amplitude (i.e., y-intercept) of the weighted LD
curve to make inferences about history. We begin by deriv-
ing quantitative mathematical properties of this statistic that
can be used to infer admixture parameters.

Basic model and notation: We will primarily consider
a point-admixture model in which a population C9 descends
from a mixture of populations A and B to form C, n gener-
ations ago, in proportions a + b = 1, followed by random
mating (Figure 1). As we discuss later, we can assume for
our purposes that the genetic drift between C and C9 is
negligible, and hence we will simply refer to the descendant
population as C as well; we will state whether we mean the
population immediately after admixture vs. n generations
later when there is any risk of ambiguity. We are interested
in the properties of the LD in population C induced by ad-
mixture. Consider two biallelic, neutrally evolving SNPs x
and y, and for each SNP call one allele ‘0’ and the other ‘1’
(this assignment is arbitrary; ‘0’ and ‘1’ do not need to be

1234 P.-R. Loh et al.



oriented with regard to ancestral state via an outgroup).
Denote by pA(x), pB(x), pA(y), and pB(y) the frequencies of
the ‘1’ alleles at x and y in the mixing populations A and B
(at the time of admixture), and let d(x) := pA(x) 2 pB(x)
and d(y) := pA(y) 2 pB(y) be the allele frequency
differences.

Let d denote the genetic distance between x and y and
assume that x and y were in linkage equilibrium in popula-
tions A and B. Then the LD in population C immediately
after admixture is

D0 ¼ abdðxÞdðyÞ;

where D is the standard haploid measure of linkage disequi-
librium as the covariance of alleles at x and y (Chakraborty
and Weiss 1988). After n generations of random mating, the
LD decays to

Dn ¼ e2ndD0 ¼ e2ndabdðxÞdðyÞ

assuming infinite population size (Chakraborty and Weiss
1988). For a finite population, the above formula holds in
expectation with respect to random drift, with a small ad-
justment factor caused by post-admixture drift (Ohta and
Kimura 1971),

E½Dn� ¼ e2nde2n=2NeabdðxÞdðyÞ;

where Ne is the effective population size. In most applica-
tions the adjustment factor e2n=2Ne is negligible, so we will
omit it in what follows (Moorjani et al. 2012, Note S1).

In practice, our data consist of unphased diploid geno-
types, so we expand our notation accordingly. Consider
sampling a random individual from population C (n gener-
ations after admixture). We use a pair of {0, 1} random
variables X1 and X2 to refer to the two alleles at x and define
random variables Y1 and Y2 likewise. Our unphased SNP
data represent observations of the {0, 1, 2} random varia-
bles X := X1 + X2 and Y := Y1 + Y2.

Define z(x, y) to be the covariance

zðx; yÞ :¼ covðX; YÞ ¼ covðX1 þ X2; Y1 þ Y2Þ; (1)

which can be decomposed into a sum of four haplotype
covariances:

zðx; yÞ ¼ covðX1; Y1Þ þ covðX2; Y2Þ þ covðX1; Y2Þ
þ covðX2; Y1Þ: (2)

The first two terms measure D for the separate chromo-
somes, while the third and fourth terms vanish, since they
represent covariances between variables for different chro-
mosomes, which are independent. Thus, the expectation
(again with respect to random drift) of the total diploid co-
variance is simply

E½zðx; yÞ� ¼ 2e2ndabdðxÞdðyÞ: (3)

Relating weighted LD to admixture parameters: Moorjani
et al. (2011) first observed that pairwise LD measurements
across a panel of SNPs can be combined to enable accurate
inference of the age of admixture, n. The crux of their ap-
proach was to harness the fact that the ALD between two
sites x and y scales as e2nd multiplied by the product of allele
frequency differences d(x)d(y) in the mixing populations.
While the allele frequency differences d(�) are usually not
directly computable, they can often be approximated. Thus,
Moorjani et al. (2011) formulated a method, ROLLOFF, that
dates admixture by fitting an exponential decay e2nd to cor-
relation coefficients between LD measurements and surro-
gates for d(x)d(y). Note that Moorjani et al. (2011) define
z(x, y) as a sample correlation coefficient, analogous to the
classical LD measure r, as opposed to the sample covariance
(Equation 1) we use here; we find the latter more mathe-
matically convenient.

We build upon these previous results by deriving exact
formulas for weighted sums of ALD under a variety of
weighting schemes that serve as useful surrogates for
d(x)d(y) in practice. These calculations will allow us to in-
terpret the magnitude of weighted ALD to obtain additional
information about admixture parameters. Additionally, the
theoretical development will generally elucidate the behav-
ior of weighted ALD and its applicability in various phylo-
genetic scenarios.

Following Moorjani et al. (2011), we partition all pairs of
SNPs (x, y) into bins of roughly constant genetic distance,

SðdÞ :¼
n
ðx; yÞ : d2 e

2
, jx2 yj, dþ e

2

o
;

where e is a discretization parameter inducing a discretiza-
tion on d. Given a choice of weights w(�), one per SNP, we
define the weighted LD at distance d as

Figure 1 Notational diagram of phylogeny containing admixed popula-
tion and references. Population C9 is descended from an admixture be-
tween A and B to form C; populations A9 and B9 are present-day
references. In practice, we assume that postadmixture drift is negligible;
i.e., the C–C9 branch is extremely short and C9 and C have identical allele
frequencies. The branch points of A9 and B9 from the A–B lineage are
marked A$ and B$; note that in a rooted phylogeny, these need not be
most recent common ancestors (as in panel B; compare to panel A).
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aðdÞ :¼
P

SðdÞ
zðx; yÞwðxÞwð yÞ

jSðdÞj :

Assume first that our weights are the true allele fre-
quency differences in the mixing populations, i.e., w(x) =
d(x) for all x. Applying Equation 3,

E½aðdÞ� ¼ E

"P
SðdÞ
zðx; yÞdðxÞdðyÞ
jSðdÞj

#

¼
P

SðdÞ
2abE

h
dðxÞ2 dðyÞ2

i
e2nd

jSðdÞj
¼ 2abF2ðA;BÞ2e2nd;

(4)

where F2(A, B) is the expected squared allele frequency
difference for a randomly drifting neutral allele, as defined
in Reich et al. (2009) and Patterson et al. (2012). Thus, a(d)
has the form of an exponential decay as a function of d, with
time constant n giving the date of admixture.

In practice, we must compute an empirical estimator of
a(d) from a finite number of sampled genotypes. Say we
have a set of m diploid admixed samples from population
C indexed by i = 1, . . ., m, and denote their genotypes at
sites x and y by xi, yi 2 {0, 1, 2}. Also assume we have some
finite number of reference individuals from A and B with
empirical mean allele frequencies p̂Að�Þ and p̂Bð�Þ. Then our
estimator is

âðdÞ :¼
P

SðdÞ
bcovðX; YÞð p̂AðxÞ2 p̂BðxÞÞð p̂Að yÞ2 p̂Bð yÞÞ

jSðdÞj ;

(5)

where

bcovðX; YÞ ¼ 1
m2 1

Xm
i¼1

�
xi 2 �x

��
yi 2 �y

�

is the usual unbiased sample covariance, so the expectation
over the choice of samples satisfies E½âðdÞ� ¼ aðdÞ (assuming
no background LD, so the ALD in population C is indepen-
dent of the drift processes producing the weights).

The weighted sum
P

SðdÞzðx; yÞwðxÞwðyÞ is a natural
quantity to use for detecting ALD decay and is common to
our weighted LD statistic âðdÞ and previous formulations of
ROLLOFF. Indeed, for SNP pairs (x, y) at a fixed distance d,
we can think of Equation 3 as providing a simple linear re-
gression model between LD measurements z(x, y) and allele
frequency divergence products d(x)d(y). In practice, the lin-
ear relation is made noisy by random sampling, as noted
above, but the regression coefficient 2abe2nd can be inferred
by combining measurements from many SNP pairs (x, y). In
fact, the weighted sum

P
SðdÞẑðx; yÞd̂ðxÞd̂ðyÞ in the numera-

tor of Equation 5 is precisely the numerator of the least-
squares estimator of the regression coefficient, which is the

formulation of ROLLOFF given in Moorjani et al. (2012, Note
S1). Note that measurements of z(x, y) cannot be combined
directly without a weighting scheme, as the sign of the LD can
be either positive or negative; additionally, the weights tend
to preserve signal from ALD while depleting contributions
from other forms of LD.

Up to scaling, our ALDER formulation is roughly equiv-
alent to the regression coefficient formulation of ROLLOFF
(Moorjani et al. 2012, Note S1). In contrast, the original
ROLLOFF statistic (Patterson et al. 2012) computed a corre-
lation coefficient between z(x, y) and w(x)w(y) over S(d).
However, the normalization term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
SðdÞzðx; yÞ

2
q

in the denom-

inator of the correlation coefficient can exhibit an unwanted
d-dependence that biases the inferred admixture date if the
admixed population has undergone a strong bottleneck
(Moorjani et al. 2012, Note S1) or in the case of recent
admixture and large sample sizes. Beyond correcting the
date bias, the âðdÞ curve that ALDER computes has the ad-
vantage of a simple form for its amplitude in terms of mean-
ingful quantities, providing us additional leverage on admixture
parameters. Additionally, we will show that âðdÞ can be
computed efficiently via a new fast Fourier transform-
based algorithm.

Using weights derived from diverged reference popula-
tions: In the above development, we set the weights w(x) to
equal the allele frequency differences d(x) between the true
mixing populations A and B. In practice, in the absence of
DNA samples from past populations, it is impossible to mea-
sure historical allele frequencies from the time of mixture, so
instead, we substitute reference populations A9 and B9 that
are accessible, setting wðxÞ ¼ d9ðxÞ :¼ pA9ðxÞ2 pB9ðxÞ. In
a given data set, the closest surrogates A9 and B9 may be
somewhat diverged from A and B, so it is important to un-
derstand the consequences for the weighted LD a(d).

We show in Appendix A that with reference populations
A9 and B9 in place of A and B, Equation 4 for the expected
weighted LD curve changes only slightly, becoming

E½aðdÞ� ¼ 2abF2
�
A$;B$

�2
e2nd; (6)

where A$ and B$ are the branch points of A9 and B9 on the
A–B lineage (Figure 1). Notably, the curve still has the form
of an exponential decay with time constant n (the age of
admixture), albeit with its amplitude (and therefore signal-
to-noise ratio) attenuated according to how far A$ and B$
are from the true ancestral mixing populations. Drift along
the A9 2 A$ and B9 2 B$ branches likewise decreases signal-
to-noise but in the reverse manner: higher drift on these
branches makes the weighted LD curve noisier but does
not change its expected amplitude (Supporting Information,
Figure S1; see Appendix C for additional discussion). As
above, given a real data set containing finite samples, we
compute an estimator âðdÞ analogous to Equation 5 that has
the same expectation (over sampling and drift) as the ex-
pectation of a(d) with respect to drift (Equation 6).
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Using the admixed population as one reference: Weighted
LD can also be computed with only a single reference
population by using the admixed population as the other
reference (Pickrell et al. 2012, Supplement Sect. 4). Assum-
ing first that we know the allele frequencies of the ancestral
mixing population A and the admixed population C, the
formula for the expected curve becomes

E½aðdÞ� ¼ 2ab3F2ðA;BÞ2e2nd: (7)

Using C itself as one reference population and R9 as the
other reference (which could branch anywhere between A
and B), the formula for the amplitude is slightly more com-
plicated, but the curve retains the e2nd decay (Figure S2):

E½aðdÞ� ¼ 2ab
�
aF2

�
A;R$

�
2bF2

�
B;R$

��2
e2nd: (8)

Derivations of these formulas are given in Appendix A.
A subtle but important technical issue arises when com-

puting weighted LD with a single reference. In this case, the
true weighted LD statistic is

aðdÞ ¼ covðX; YÞðmx 2 pðxÞÞðmy 2 pðyÞÞ;

where

mx ¼ apAðxÞ þ bpBðxÞ and my ¼ apAð yÞ þ bpBð yÞ

are the mean allele frequencies of the admixed population
(ignoring drift) and p(�) denotes allele frequencies of the
reference population. Here a(d) cannot be estimated accu-
rately by the naïve formula

bcovðX; YÞðm̂x 2 p̂ðxÞÞðm̂y 2 p̂ð yÞÞ;

which is the natural analog of (5). The difficulty is that the
covariance term and the weights both involve the allele
frequencies mx and my; thus, while the standard estimators
for each term are individually unbiased, their product is a bi-
ased estimate of the weighted LD.

Pickrell et al. (2012) circumvents this problem by parti-
tioning the admixed samples into two groups, designating
one group for use as admixed representatives and the other
as a reference population; this method eliminates bias but
reduces statistical power. We instead compute a polyache
statistic (File S1) that provides an unbiased estimator âðdÞ
of the weighted LD with maximal power.

Affine term in weighted LD curve from population sub-
structure: Weighted LD curves computed on real popula-
tions often exhibit a nonzero horizontal asymptote contrary
to the exact exponential decay formulas we have derived
above. Such behavior can be caused by assortative mating
resulting in subpopulations structured by ancestry percent-
age in violation of our model. We show in Appendix A that if
we instead model the admixed population as consisting of
randomly mating subpopulations with heterogeneous amounts

a—now a random variable—of mixed ancestry, our equations
for the curves take the form

E½aðdÞ� ¼ Me2nd þ K; (9)

where M is a coefficient representing the contribution of
admixture LD and K is an additional constant produced by
substructure. Conveniently, however, the sum M + K/2 sat-
isfies the same equations that the coefficient of the exponen-
tial does in the homogeneous case: adjusting Equation 6 for
population substructure gives

M þ K=2 ¼ 2abF2
�
A$;B$

�2
(10)

for two-reference weighted LD, and in the one-reference
case, modifying Equation 8 gives

M þ K=2 ¼ 2ab
�
aF2

�
A;R$

�
2bF2

�
B;R$

��2
: (11)

For brevity, from here on we will take the amplitude of an
exponential-plus-affine curve to mean M + K/2.

Admixture inference using weighted LD

We now describe how the theory we have developed can be
used to investigate admixture. We detail novel techniques
that use weighted LD to infer admixture parameters, test for
admixture, and learn about phylogeny.

Inferring admixture dates and fractions using one or two
reference populations: As noted above, our ALDER formu-
lation of weighted LD hones the original two-reference
admixture dating technique of ROLLOFF (Moorjani et al.
2011), correcting a possible bias (Moorjani et al. 2012, Note
S1), and the one-reference technique (Pickrell et al. 2012),
improving statistical power. Pickrell et al. (2012) also ob-
served that weighted LD can be used to estimate ancestral
mixing fractions. We further develop this application now.

The main idea is to treat our expressions for the
amplitude of the weighted LD curve as equations that can
be solved for the ancestry fractions a and b = 1 2 a. First
consider two-reference weighted LD. Given samples from an
admixed population C and reference populations A9 and B9,
we compute the curve âðdÞ and fit it as an exponential decay
plus affine term: âðdÞ � M̂e2nd þ K̂. Let â0 :¼ M̂ þ K̂=2 de-
note the amplitude of the curve. Then Equation 10 gives us
a quadratic equation that we can solve to obtain an estimate
â of the mixture fraction a,

2âð12 âÞF2
�
A$;B$

�2 ¼ â0;

assuming we can estimate F2(A$, B$)2. Typically the branch-
point populations A$ and B$ are unavailable, but their F2
distance can be computed by means of an admixture tree
(Lipson et al. 2012; Patterson et al. 2012; Pickrell and
Pritchard 2012). A caveat of this approach is that a and
1 2 a produce the same amplitude and cannot be distin-
guished by this method alone; additionally, the inversion
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problem is ill-conditioned near a = 0.5, where the deriva-
tive of the quadratic vanishes.

The situation is more complicated when using the
admixed population as one reference. First, the amplitude
relation from Equation 11 gives a quartic equation in â:

2âð12 âÞ�âF2�A;R$�2ð12âÞF2
�
B;R$

��2 ¼ â0:

Second, the F2 distances involved are in general not possible
to calculate by solving allele frequency moment equations
(Lipson et al. 2012; Patterson et al. 2012). In the special case
that one of the true mixing populations is available as a ref-
erence, however—i.e., R9 = A—Pickrell et al. (2012) dem-
onstrated that mixture fractions can be estimated much
more easily. From Equation 7, the expected amplitude of
the curve is 2ab3F2(A, B)2. On the other hand, assuming
no drift in C since the admixture, allele frequencies in C
are given by weighted averages of allele frequencies in A
and B with weights a and b; thus, the squared allele fre-
quency differences from A to B and C satisfy

F2ðA;CÞ ¼ b2F2ðA;BÞ;

and F2(A, C) is estimable directly from the sample data.
Combining these relations, we can obtain our estimate â

by solving the equation

2â=ð12 âÞ ¼ â0=F2ðA;CÞ2: (12)

In practice, the true mixing population A is not available for
sampling, but a closely related population A9 may be. In this
case, the value of â given by Equation 12 with A9 in place of
A is a lower bound on the true mixture fraction a (see
Appendix A for theoretical development and Results for sim-
ulations exploring the tightness of the bound). This bound-
ing technique is the most compelling of the above mixture
fraction inference approaches, as prior methods cannot per-
form such inference with only one reference population. In
contrast, when more references are available, moment-
based admixture tree-fitting methods, for example, readily
estimate mixture fractions (Lipson et al. 2012; Patterson
et al. 2012; Pickrell and Pritchard 2012). In such cases we
believe that existing methods are more robust than LD-based
inference, which suffers from the degeneracy of solutions
noted above; however, the weighted LD approach can provide
confirmation based on a different genetic mechanism.

Testing for admixture: Thus far, we have taken it as given
that the population C of interest is admixed and developed
methods for inferring admixture parameters by fitting
weighted LD curves. Now we consider the question of
whether weighted LD can be used to determine whether
admixture occurred in the first place. We develop a
weighted LD-based formal test for admixture that is broadly
analogous to the drift-based three-population test (Reich
et al. 2009; Patterson et al. 2012) but sensitive in different
scenarios.

A complication of interpreting weighted LD is that certain
demographic events other than admixture can also produce
positive weighted LD that decays with genetic distance,
particularly in the one-reference case. Specifically, if pop-
ulation C has experienced a recent bottleneck or an
extended period of low population size, it may contain
long-range LD. Furthermore, this LD typically has some cor-
relation with allele frequencies in C; consequently, using
C as one reference in the weighting scheme produces a spu-
rious weighted LD signal.

In the two-reference case, LD from reduced population
size in C is generally washed out by the weighting scheme
assuming the reference populations A9 and B9 are not too
genetically similar to C. The reason is that the weights
dð�Þ ¼ pA9 ð�Þ2 pB9 ð�Þ arise from drift between A9 and B9 that
is independent of demographic events producing LD in C
(beyond genetic distances that are so short that the popula-
tions share haplotypes descended without recombination
from their common ancestral haplotype). Thus, observing
a two-reference weighted LD decay curve is generally good
evidence that population C is admixed. There is still a caveat,
however. If C and one of the references, say A9, share a recent
population bottleneck, then the bottleneck-induced LD in C
can be correlated to the allele frequencies of A9, resulting
once again in spurious weighted LD. In fact, the one-refer-
ence example mentioned above is the limiting case A9 = C of
this situation.

With these considerations in mind, we propose an LD-
based three-population test for admixture that includes
a series of pre-tests safeguarding against the pathological
demographies that can produce a non-admixture weighted
LD signal. We outline the test now; details are in Appendix B.
Given a population C to test for admixture and references A9
and B9, the main test is whether the observed weighted
LD âðdÞ using A9 2 B9 weights is positive and well-fit by
an exponential decay curve. We estimate a jackknife-based
p-value by leaving out each chromosome in turn and refit-
ting the weighted LD as an exponential decay; the jackknife
then gives us a standard error on the fitting parameters—
namely, the amplitude and the decay constant—that we use
to measure the significance of the observed curve.

The above procedure allows us to determine whether
there is sufficient signal in the weighted LD curve to reject
the null hypothesis (under which âðdÞ is random “colored”
noise in the sense that it contains autocorrelation). How-
ever, in order to conclude that the curve is the result of
admixture, we must rule out the possibility that it is being
produced by demography unrelated to admixture. We there-
fore apply the following pre-test procedure. First, we deter-
mine the distance to which LD in C is significantly correlated
with LD in either A9 or B9; to minimize signal from shared
demography, we subsequently ignore data from SNP pairs at
distances smaller than this correlation threshold. Then, we
compute one-reference weighted LD curves for population C
with A9–C and B9–C weights and check that the curves are
well-fit as exponential decays. In the case that C is actually
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admixed between populations related to A9 and B9, the one-
reference A9–C and B9–C curves pick up the same e2nd admix-
ture LD decay signal. If C is not admixed but has experienced
a shared bottleneck with A9 (producing false-positive admix-
ture signals from the A9 – B9 and B9–C curves), however, the
A9–C weighting scheme is unlikely to produce a weighted LD
curve, especially when fitting beyond the LD correlation
threshold.

This test procedure is intended to be conservative, so that
a population C identified as admixed can strongly be as-
sumed to be so, whereas if C is not identified as admixed,
we are less confident in claiming that C has experienced no
admixture whatsoever. In situations where distinguishing
admixture from other demography is particularly difficult,
the test will err on the side of caution; for example, even if C
is admixed, the test may fail to identify C as admixed if it has
also experienced a bottleneck. Also, if a reference A9 shares
some of the same admixture history as C or is simply very
closely related to C, the pre-test will typically identify long-
range correlated LD and deem A9 an unsuitable reference to
use for testing admixture. The behavior of the test and pre-
test criteria are explored in detail with coalescent simula-
tions in Appendix C.

Learning about phylogeny: Given a triple of populations (C;
A9, B9), our test can identify admixture in the test population
C, but what does this imply about the relationship of popula-
tions A9 and B9 to C? As with the drift-based three-population
test, test results must be interpreted carefully: even if C is
admixed, this does not necessarily mean that the reference
populations A9 and B9 are closely related to the true mixing
populations. However, computing weighted LD curves with
a suite of different references can elucidate the phylogeny of
the populations involved, since our amplitude Equations 10
and 11 provide information about the locations on the phy-
logeny at which the references diverge from the true mixing
populations.

More precisely, in the notation of Figure 1, the amplitude
of the two-reference weighted LD curve is 2abF2(A$, B$)2,
which is maximized when A$ = A and B$ = B and
is minimized when A$ = B$. So, for example, we can fix
A9 and compute curves for a variety of references B9; the
larger the resulting amplitude, the closer the branch point
B$ is to B. In the one-reference case, as the reference R9 is
varied, the amplitude 2ab(aF2(A, R$)2 bF2(B, R$))2 traces
out a parabola that starts at 2ab3F2(A, B)2 when R$ = A,
decreases to a minimum value of 0, and increases again to
2a3bF2(A, B)2 when R$ = B (Figure S2). Here, the proce-
dure is more qualitative because the branches F2(A, R$) and
F2(B, R$) are less directly useful and the mixture propor-
tions a and b may not be known.

Implementation of ALDER

We now describe some more technical details of the ALDER
software package in which we have implemented our weighted
LD methods.

Fast Fourier transform algorithm for computing weighted
LD: We developed a novel algorithm that algebraically
manipulates the weighted LD statistic into a form that can
be computed using a fast Fourier transform (FFT), dramat-
ically speeding up the computation (File S2). The algebraic
transformation is made possible by the simple form (Equa-
tion 5) of our weighted LD statistic along with a genetic
distance discretization procedure that is similar spirit to
ROLLOFF (Moorjani et al. 2011) but subtly different: in-
stead of binning the contributions of SNP pairs (x, y) by
discretizing the genetic distance |x 2 y| = d, we discretize
the genetic map positions x and y themselves (using a default
resolution of 0.05 cM) (Figure S3). For two-reference
weighted LD, the resulting FFT-based algorithm that we
implemented in ALDER has computational cost that is ap-
proximately linear in the data size; in practice, it ran three
orders of magnitude faster than ROLLOFF on typical data
sets we analyzed.

Curve fitting: We fit discretized weighted LD curves âðdÞ as
M̂e2nd þ K̂ from Equation 9, using least-squares to find best-
fit parameters. This procedure is similar to ROLLOFF, but
ALDER makes two important technical advances that signif-
icantly improve the robustness of the fitting. First, ALDER
directly estimates the affine term K that arises from the
presence of subpopulations with differing ancestry percen-
tages by using interchromosome SNP pairs that are effectively
at infinite genetic distance (Appendix A). The algorithmic
advances we implement in ALDER enable efficient computa-
tion of the average weighted LD over all pairs of SNPs on
different chromosomes, giving K̂ and, importantly, eliminat-
ing one parameter from the exponential fitting. In practice,
we have observed that ROLLOFF fits are sometimes sensitive
to the maximum inter-SNP distance d to which the weighted
LD curve is computed and fit; ALDER eliminates this
sensitivity.

Second, because background LD is present in real
populations at short genetic distances and confounds the
ALD signal (interfering with parameter estimates or pro-
ducing spurious signal entirely), it is important to fit
weighted LD curves starting only at a distance beyond
which background LD is negligible. ROLLOFF used a fixed
threshold of d . 0.5 cM, but some populations have longer-
range background LD (e.g., from bottlenecks), and more-
over, if a reference population is closely related to the test
population, it can produce a spurious weighted LD signal
due to recent shared demography. ALDER therefore esti-
mates the extent to which the test population shares corre-
lated LD with the reference(s) and fits only the weighted LD
curve beyond this minimum distance as in our test for ad-
mixture (Appendix B).

We estimate standard errors on parameter estimates by
performing a jackknife over the autosomes used in the
analysis, leaving out each in turn. Note that the weighted LD
measurements from individual pairs of SNPs that go into the
computed curve âðdÞ are not independent of each other;
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however, the contributions of different chromosomes can
reasonably be assumed to be independent.

Data sets

We primarily applied our weighted LD techniques to a data
set of 940 individuals in 53 populations from the CEPH–Hu-
man Genome Diversity Cell Line Panel (HGDP) (Rosenberg
et al. 2002) genotyped on an Illumina 650K SNP array (Li
et al. 2008). To study the effect of SNP ascertainment, we also
analyzed the same HGDP populations genotyped on the Affy-
metrix Human Origins Array (Patterson et al. 2012). For some
analyses we also included HapMap Phase 3 data (Interna-
tional HapMap Consortium 2010) merged either with the
Illumina HGDP data set, leaving �600,000 SNPs, or with
the Indian data set of Reich et al. (2009) including 16 Anda-
man Islanders (9 Onge and 7 Great Andamanese), leaving
�500,000 SNPs.

We also constructed simulated admixed chromosomes
from 112 CEU and 113 YRI phased HapMap individuals
using the following procedure, described in Moorjani et al.
(2011). Given desired ancestry proportions a and b, the age
n of the point admixture, and the number m of admixed
individuals to simulate, we built each admixed chromosome
as a composite of chromosomal segments from the source
populations, choosing breakpoints via a Poisson process with
rate constant n, and sampling blocks at random according to
the specified mixture fractions. We stipulated that no indi-
vidual haplotype could be reused at a given locus among the
m simulated individuals, preventing unnaturally long iden-
tical-by-descent segments but effectively eliminating postad-
mixture genetic drift. For the short time scales we study
(admixture occurring 200 or fewer generations ago), this
approximation has little impact. We used this method to
maintain some of the complications inherent in real data.

Results

Simulations

First, we demonstrate the accuracy of several forms of
inference from ALDER on simulated data. We generated
simulated genomes for mixture fractions of 75% YRI/25%
CEU and 90% YRI/10% CEU and admixture dates of 10, 20,
50, 100, and 200 generations ago. For each mixture scenario
we simulated 40 admixed individuals according to the
procedure above.

We first investigated the admixture dates estimated by
ALDER using a variety of reference populations drawn from
the HGDP with varying levels of divergence from the true
mixing populations. On the African side, we used HGDP
Yoruba (21 samples; essentially the same population as
HapMap YRI) and San (5 samples); on the European side,
we used French (28 samples; very close to CEU), Han (34
samples), and Papuan (17 samples). We computed two-
reference weighted LD curves using pairs of references, one
from each group, as well as one-reference curves using the

simulated population as one reference and each of the above
HGDP populations as the other.

For the 75% YRI mixture, estimated dates are nearly all
accurate to within 10% (Table S1). The noise levels of the
fitted dates (estimated by ALDER using the jackknife) are
the lowest for the Yoruba–French curve, as expected, fol-
lowed by the one-reference curve with French, consistent
with the admixed population being mostly Yoruba. The sit-
uation is similar but noisier for the 90% YRI mixture (Table
S2); in this case, the one-reference signal is quite weak with
Yoruba and undetectable with San as the reference, due to
the scaling of the amplitude (Equation 11) with the cube of
the CEU mixture fraction.

We also compared fitted amplitudes of the weighted LD
curves for the same scenarios to those predicted by
Equations 10 and 11; the accuracy trends are similar (Table
S3 and Table S4). Finally, we tested Equation 12 for bound-
ing mixture proportions using one-reference weighted LD
amplitudes. We computed lower bounds on the European
ancestry fraction using French, Russian, Sardinian, and
Kalash as successively more diverged references. As
expected, the bounds are tight for the French reference
and grow successively weaker (Table S5 and Table S6).
We also tried lower-bounding the African ancestry using
one-reference curves with an African reference. In general,
we expect lower bounds computed for the major ancestry
proportion to be much weaker (Appendix A), and indeed we
find this to be the case, with the only slightly diverged Man-
denka population producing extremely weak bounds. An
added complication is that the Mandenka are an admixed
population with a small amount of West Eurasian ancestry
(Price et al. 2009), which is not accounted for in the ampli-
tude formulas we use here.

Another notable feature of ALDER is that, to a much
greater extent than f-statistic methods, its inference quality
improves with more samples from the admixed test popula-
tion. As a demonstration of this, we simulated a larger set of
100 admixed individuals as above, for both 75% YRI/25%
CEU and 90% YRI/10% CEU scenarios, and compared the
date estimates obtained on subsets of 5–100 of these indi-
viduals with two different reference pairs (Table S7 and
Table S8). With larger sample sizes, the estimates become
almost uniformly more accurate, with smaller standard
errors. By contrast, we observed that while using a very
small sample size (say 5) for the reference populations does
create noticeable noise, using 20 samples already gives al-
lele frequency estimates accurate enough that adding more
reference samples has only minimal effects on the perfor-
mance of ALDER. This is similar to the phenomenon that the
precision of f-statistics does not improve appreciably with
more than a moderate number of samples and is due to
the inherent variability in genetic drift among different loci.

Robustness

A challenge of weighted LD analysis is that owing to various
kinds of model violation, the parameters of the exponential
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fit of an observed curve âðdÞ may depend on the starting
distance d0 from which the curve is fit. We therefore ex-
plored the robustness of the fitting parameters to the choice
of d0 in a few scenarios (Figure 2). First, in a simulated
75%/25% YRI–CEU admixture 50 generations ago, we find
that the decay constant and amplitude are both highly ro-
bust to varying d0 from 0.5 to 2.0 cM (Figure 2, top). This
result is not surprising because our simulated example rep-
resents a true point admixture with minimal background LD
in the admixed population.

In practice, we expect some dependence on d0 due to
background LD or longer-term admixture (either continu-
ously over a stretch of time or in multiple waves). Both of
these tend to increase the weighted LD for smaller values of
d relative to an exact exponential curve, so that estimates of
the decay constant and amplitude decrease as we increase
the fitting start point d0; the extent to which this effect
occurs depends on the extent of the model violation. We
studied the d0 dependence for two example admixed pop-
ulations, HGDP Uygur and HapMap Maasai (MKK). For

Uygur, the estimated decay constants and amplitudes are
fairly robust to the start point of the fitting, varying roughly
by 610% (Figure 2, middle). In contrast, the estimates for
Maasai vary dramatically, decreasing by a factor of .2 as d0
is increased from 0.5 to 2.0 cM (Figure 2, bottom). This
behavior is likely due to multiple-wave admixture in the
genetic history of the Maasai; indeed, it is visually evident
that the weighted LD curve for Maasai deviates from an
exponential fit (Figure 2) and is in fact better fit as a sum
of exponentials. (See Figure S4 and Appendix C for further
simulations exploring continuous admixture.)

It is also important to consider the possibility of SNP
ascertainment bias, as in any study based on allele frequen-
cies. We believe that for weighted LD, ascertainment bias
could have modest effects on the amplitude, which depends
on F2 distances (Lipson et al. 2012; Patterson et al. 2012),
but does not affect the estimated date. Running ALDER on
a suite of admixed populations in the HGDP under a variety
of ascertainment schemes suggests that admixture date esti-
mates are indeed quite stable to ascertainment (Table S9).

Figure 2 Dependence of date
estimates and weighted LD
amplitudes on fitting start point.
Rows correspond to three test
scenarios: simulated 75% YRI/
25% CEU mixture 50 genera-
tions ago with Yoruba–French
weights (A–C); Uygur with Han–
French weights (D–F); HapMap
Maasai with Yoruba–French
weights (G–I). (A, D, and G) The
weighted LD curve âðdÞ (blue)
with best-fit exponential decay
curve (red), fit starting from
d0 = 0.5 cM. The middle and
right columns show the date es-
timate (B, E, H) and amplitude
(C, F, I) as a function of d0. (We
note that our date estimates for
Uygur are somewhat more re-
cent than those in Patterson
et al. 2012, most likely because
of our direct estimate of the
affine term in the weighted LD
curve.)
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Meanwhile, the amplitudes of the LD curves can scale sub-
stantially when computed under different SNP ascertain-
ments, but their relative values are different only for
extreme cases of African vs. non-African test populations
under African vs. non-African ascertainment (Table S10; cf.
Patterson et al. 2012, Table 2).

Admixture test results for HGDP populations

To compare the sensitivity of our LD-based test for admix-
ture to the f-statistic-based three-population test, we ran
both ALDER and the three-population test on all triples of
populations in the HGDP. Interestingly, while the tests con-
cur on the majority of the populations they identify as
admixed, each also identifies several populations as
admixed that the other does not (Table 1), showing that
the tests have differing sensitivity to different admixture
scenarios.

Admixture identified only by ALDER: The three-population
test loses sensitivity primarily as a result of drift subsequent
to splitting from the references’ lineages. More precisely,
using the notation of Figure 1, the three-population test
statistic f3(C; A9, B9) estimates the sum of two directly com-
peting terms: 2abF2(A$, B$), the negative quantity arising
from admixture that we wish to detect, and a2F2(A$, A) +
b2F2(B$, B) + F2(C, C$), a positive quantity from the “off-
tree” drift branches. If the latter term dominates, the three-
population test will fail to detect admixture regardless of the
statistical power available. For example, Melanesians are
only found to be admixed according to the ALDER test;

the inability of the three-population test to identify them
as admixed is likely due to long off-tree drift from the Pap-
uan branch prior to admixture. The situation is similar for
the Pygmies, for whom we do not have two close references
available.

Small mixture fractions also diminish the size of the
admixture term 2abF2(A, B) relative to the off-tree drift,
and we believe this effect along with postadmixture drift
may be the reason Sardinians are detected as admixed only
by ALDER. In the case of the San, who have a small amount
of Bantu admixture (Pickrell et al. 2012), the small mixture
fraction may again play a role, along with the lack of a ref-
erence population closely related to the preadmixture San,
meaning that using existing populations incurs long off-tree
drift.

Admixture identified only by the three-population test:
There are also multiple reasons why the three-population
test can identify admixture when ALDER does not. For the
HGDP European populations in this category (Table 1), the
three-population test is picking up a signal of admixture
identified by Patterson et al. (2012) and interpreted as
a large-scale admixture event in Europe involving Neolithic
farmers closely related to present-day Sardinians and an
ancient northern Eurasian population. This mixture likely
began quite anciently (e.g., 7000–9000 years ago when ag-
riculture arrived in Europe; Bramanti et al. 2009; Soares
et al. 2010; Pinhasi et al. 2012), and because admixture
LD breaks down as e2nd, where n is the age of admixture,
there is nearly no LD left for ALDER to harness beyond the

Table 1 Results of ALDER and three-population tests for admixture on HGDP populations

Both No. LD No. f3 Only LD No. Only f3 No. Neither

Adygei 205 139 BiakaPygmy 81 French 99 Basque
Balochi 123 204 Colombian 5 Han 13 Dai
BantuKenya 30 182 Druze 128 Italian 46 Hezhen
BantuSouthAfrica 27 11 Japanese 1 Orcadian 1 Karitiana
Bedouin 300 63 Kalash 20 Tujia 8 Lahu
Brahui 363 16 MbutiPygmy 77 Tuscan 59 Mandenka
Burusho 450 377 Melanesian 96 Miao
Cambodian 266 158 Pima 489 Naxi
Daur 29 8 San 155 Papuan
Han-NChina 1 77 Sardinian 45 She
Hazara 699 593 Yakut 435 Surui
Makrani 173 163 Yi
Maya 784 124 Yoruba
Mongola 76 385
Mozabite 313 107
Oroqen 68 5
Palestinian 308 64
Pathan 113 348
Russian 158 153
Sindhi 264 366
Tu 22 315
Uygur 428 616
Xibo 101 335

We ran both ALDER and the three-population test for admixture on each of the 53 HGDP populations using all pairs of other populations as references. We group the
populations according to whether each test methodology produced at least one test identifying them as admixed; for each population, we list the number of reference pairs
with which with each method (abbreviated LD and f3) detected admixture. We used a significance threshold of P , 0.05 after multiple-hypothesis correction.
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correlation threshold d0. An additional factor that may in-
hibit LD-based testing is that to prevent false-positive iden-
tifications of admixture, ALDER typically eliminates reference
populations that share LD (and in particular, admixture his-
tory) with the test population, whereas the three-population
test can use such references.

To summarize, the ALDER and three-population tests
both analyze a test population for admixture using two
references, but they detect signal based on different “genetic
clocks.” The three-population test uses signal from genetic
drift, which can detect quite old admixture but must over-
come a counteracting contribution from postadmixture and
off-tree drift. The LD-based test uses recombination, which
is relatively unaffected by small population size-induced
long drift and has no directly competing effect, but has lim-
ited power to detect chronologically old admixtures because
of the rapid decay of the LD curve. Additionally, as discussed
above in the context of simulation results, the LD-based test
may be better suited for large data sets, since its power is
enhanced more by the availability of many samples. The
tests are thus complementary and both valuable. (See Figure
S5 and Appendix C for further exploration.)

Case studies

We now present detailed results for several human pop-
ulations, all of which ALDER identifies as admixed but are
not found by the three-population test (Table 1). We infer
dates of admixture and in some cases gain additional histor-
ical insights.

Pygmies: Both Central African Pygmy populations in the
HGDP, the Mbuti and Biaka, show evidence of admixture
(Table 1), about 28 6 4 generations (800 years) ago for
Mbuti and 38 6 4 generations (1100 years) ago for Biaka,
estimated using San and Yoruba as reference populations
(Figure 3, A and C). The intrapopulation heterogeneity is
low, as demonstrated by the negligible affine terms. In each
case, we also generated weighted LD curves with the Pygmy
population itself as one reference and a variety of second
references. We found that using French, Han, or Yoruba as
the second reference gave very similar amplitudes, but the
amplitude was significantly smaller with the other Pygmy
population or San as the second reference (Figure 3, B
and D). Using the amplitudes with Yoruba, we estimated
mixture fractions of at least 15.9 6 0.9% and 28.8 6
1.4% Yoruba-related ancestry (lower bounds) for Mbuti
and Biaka, respectively.

The phylogenetic interpretation of the relative ampli-
tudes is complicated by the fact that the Pygmy populations,
used as references, are themselves admixed, but a plausible
coherent explanation is as follows (see Figure 3E). We sur-
mise that a proportion b (bounds given above) of Bantu-
related gene flow reached the native Pygmy populations
on the order of 1000 years ago. The common ancestors of
Yoruba or non-Africans with the Bantu population are genet-
ically not very different from Bantu, due to high historical

population sizes (branching at positions X1 and X2 in Figure
3E). Thus, the weighted LD amplitudes using Yoruba or non-
Africans as second references are nearly 2a3bF2(A, B)2,
where B denotes the admixing Bantu population. Meanwhile,
San and Western (resp. Eastern) Pygmies split from the
Bantu–Mbuti (resp. Biaka) branch toward the middle or
the opposite side from Bantu (X3 and X4), giving a smaller
amplitude (Figure S2).

Our results are in agreement with previous studies that
have found evidence of gene flow from agriculturalists to
Pygmies (Quintana-Murci et al. 2008; Verdu et al. 2009;
Patin et al. 2009; Jarvis et al. 2012). Quintana-Murci et al.
(2008) suggested based on mtDNA evidence in Mbuti that
gene flow ceased several thousand years ago, but more re-
cently, Jarvis et al. (2012) found evidence of admixture in
Western Pygmies, with a local-ancestry-inferred block-
length distribution of 3.1 6 4.6 Mb (mean and standard
deviation), consistent with our estimated dates.

Sardinians: We detect a very small proportion of sub-
Saharan African ancestry in Sardinians, which our ALDER
tests identified as admixed (Table 1 and Figure 4A). To in-
vestigate further, we computed weighted LD curves with
Sardinian as the test population and all pairs of the HapMap
CEU, YRI, and CHB populations as references (Table 2). We
observed an abnormally large amount of shared long-range
LD in chromosome 8, likely because of an extended inver-
sion segregating in Europeans (Price et al. 2008), so we
omitted it from these analyses. The CEU–YRI curve has the
largest amplitude, suggesting both that the LD present is
due to admixture and that the small non-European ancestry
component, for which we estimated a lower bound of 0.6 6
0.2%, is from Africa. (For this computation we used single-
reference weighted LD with YRI as the reference, fitting the
curve after 1.2 cM to reduce confounding effects from cor-
related LD that ALDER detected between Sardinian and
CEU. Changing the starting point of the fit does not quali-
tatively affect the results.) The existence of a weighted LD
decay curve with CHB and YRI as references provides fur-
ther evidence that the LD is not simply due to a population
bottleneck or other nonadmixture sources, as does the fact
that our estimated dates from all three reference pairs are
roughly consistent at about 40 generations (1200 years)
ago. Our findings thus confirm the signal of African ancestry
in Sardinians reported in Moorjani et al. (2011). The date,
small mixture proportion, and geography are consistent with
a small influx of migrants from North Africa, who them-
selves traced only a fraction of their ancestry ultimately to
sub-Saharan Africa, consistent with the findings of Dupanloup
et al. (2004).

Japanese: Genetic studies have suggested that present-day
Japanese are descended from admixture between two waves
of settlers, responsible for the Jomon and Yayoi cultures
(Hammer and Horai 1995; Hammer et al. 2006; Rasteiro
and Chikhi 2009). We also observed evidence of admixture
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in Japanese, and while our ability to learn about the history
was limited by the absence of a close surrogate for the orig-
inal Paleolithic mixing population, we were able to take
advantage of the one-reference inference capabilities of
ALDER. More precisely, among our tests using all pairs of
HGDP populations as references (Table 1), one reference
pair, Basque and Yakut, produced a passing test for Japa-
nese. However, as we have noted, the reference populations
need not be closely related to the true mixing populations,
and we believe that in this case this seemingly odd reference
pair arises as the only passing test because the data set lacks
a close surrogate for Jomon.

In the absence of a reference on the Jomon side, we
computed single-reference weighted LD using HapMap JPT
as the test population and JPT–CHB weights, which confer
the advantage of larger sample sizes (Figure 4B). The
weighted LD curve displays a clear decay, yielding an esti-
mate of 45 6 6 generations, or about 1300 years, as the age
of admixture. To our knowledge, this is the first time ge-
nome-wide data have been used to date admixture in Japa-
nese. As with previous estimates based on coalescence of
Y-chromosome haplotypes (Hammer et al. 2006), our date
is consistent with the archeologically attested arrival of
the Yayoi in Japan �2300 years ago (we suspect that our

Figure 3 Weighted LD curves for
Mbuti using San and Yoruba as
reference populations (A) and us-
ing Mbuti itself as one reference
and several different second
references (B), and analogous
curves for Biaka (C and D). Ge-
netic distances are discretized in-
to bins at 0.05 cM resolution.
Data for each curve are plotted
and fit starting from the corre-
sponding ALDER-computed LD
correlation thresholds. Different
amplitudes of one-reference
curves (B and D) imply different
phylogenetic positions of the
references relative to the true
mixing populations (i.e., different
split points X$i ), suggesting
a sketch of a putative admixture
graph (E). Relative branch lengths
are qualitative, and the true root
is not necessarily as depicted.
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estimate is from later than the initial arrival because admix-
ture may not have happened immediately or may have taken
place over an extended period of time). Based on the am-
plitude of the curve, we also obtain a (likely very conserva-
tive) genome-wide lower bound of 41 6 3% “Yayoi”
ancestry using Equation 12 (under the reasonable assump-
tion that Han Chinese are fairly similar to the Yayoi popu-
lation). It is important to note that the observation of
a single-reference weighted LD curve is not sufficient evi-
dence to prove that a population is admixed, but the exis-
tence of a pair of references with which the ALDER test
identified Japanese as admixed, combined with previous
work and the lack of any signal of reduced population size,
makes us confident that our inferences are based on true
historical admixture.

Onge: Finally, we provide a cautionary example of weighted
LD decay curves arising from demography and not admixture.

We observed distinct weighted LD curves when analyzing the
Onge, an indigenous population of the Andaman Islands.
However, this curve is present only when using Onge
themselves as one reference; moreover, the amplitude is
independent of whether CEU, CHB, YRI, GIH (HapMap
Gujarati), or Great Andamanese is used as the second
reference (Figure 5), as expected if the weighted LD is due
to correlation between LD and allele frequencies in the test
population alone (and independent of the reference allele
frequencies). Correspondingly, ALDER’s LD-based test does
not identify Onge as admixed using any pair of these refer-
ences. Thus, while we cannot definitively rule out admix-
ture, the evidence points toward internal demography (low
population size) as the cause of the elevated LD, consistent
with the current census of ,100 Onge individuals.

Discussion

Strengths of weighted LD for admixture inference

The statistics underlying weighted LD are quite simple,
making the formula for the expectation of âðdÞ, as well as
the noise and other errors from our inference procedure,
relatively easy to understand. By contrast, local ancestry-
based admixture dating methods (e.g., Pool and Nielsen
(2009) and Gravel (2012)) are sensitive to imperfect ances-
try inference, and it is difficult to trace the error propagation
to understand the ultimate effect on inferred admixture
parameters. Similarly, the wavelet method of Pugach et al.
(2011) uses reference populations to perform (fuzzy) ances-
try assignment in windows, for which error analysis is
challenging.

Another strength of our weighted LD methodology is that
it has relatively low requirements on the quality and
quantity of reference populations. Our theory tells us exactly
how the statistic behaves for any reference populations, no
matter how diverged they are from the true ancestral mixing
populations. In contrast, the accuracy of results from
clustering and local ancestry methods is dependent on the
quality of the reference populations used in ways that are
difficult to characterize. On the quantity side, previous
approaches to admixture inference require a surrogate for
each ancestral population, whereas as long as one is
confident that the signal is truly from admixture, weighted
LD can be used with only one available reference to infer

Figure 4 Weighted LD curves for HGDP Sardinian using Italian–Yoruba
weights (A) and HapMap Japanese (JPT) using JPT itself as one reference
and HapMap Han Chinese in Beijing (CHB) as the second reference (B).
The exponential fits are performed starting at 1 cM and 1.2 cM, respec-
tively, as selected by ALDER based on detected correlated LD.

Table 2 Amplitudes and dates from weighted LD curves for
Sardinian using various reference pairs

Ref 1 Ref 2 Weighted LD amplitude Date estimate

CEU YRI 0.00003192 6 0.00000903 48 6 10
CHB YRI 0.00001738 6 0.00000679 34 6 8
CEU CHB 0.00000873 6 0.00000454 52 6 21

Data are shown from ALDER fits to weighted LD curves computed using Sardinian
as the test population and pairs of HapMap CEU, YRI, and CHB as the references.
Date estimates are in generations. We omitted chromosome 8 from the analysis
because of anomalous long-range LD. Curves âðdÞ were fit for d . 1.2 cM, the
extent of LD correlation between Sardinian and CEU computed by ALDER.
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times of admixture (as in our analysis of the Japanese) and
bound mixing fractions (as in our Pygmy case study and
Pickrell et al. (2012)), problems that were previously
intractable.

Weighted LD also advances our ability to test for
admixture. As discussed above, ALDER offers complemen-
tary sensitivity to the three-population test and allows the
identification of additional populations as admixed. Another
formal test for admixture is the four-population test (Reich
et al. 2009; Patterson et al. 2012), which is quite sensitive
but also has trade-offs; for example, it requires three dis-
tinctly branching references, whereas ALDER and the
three-population test need only two. Additionally, the phy-
logeny of the populations involved must be well understood
to allow interpretation of a signal of admixture from the
four-population test properly (i.e., to determine which pop-
ulation is admixed). Using weighted LD, on the other hand,
largely eliminates the problem of determining the destina-
tion or direction of gene flow, since the LD signal of admix-
ture is intrinsic to a specified test population.

One-reference vs. two-reference curves

In practice, it is often useful to compute weighted LD curves
using both the one-reference and two-reference techniques,
as both can be used for inferences in different situations.
Generally, we consider two-reference curves to be more
reliable for parameter estimation, since using the test
population as one reference is more prone to introducing
unwanted signals, such as recent admixture from a different
source, nonadmixture LD from reduced population size, or
population structure among samples. In particular, popula-
tions with more complicated histories and additional sources
of LD beyond the specifications of our model often have
different estimates of admixture dates with one- and two-
reference curves. There is a small chance that date disagree-

ment can reflect a false-positive admixture signal, but this is
very unlikely if both one- and two-reference curves exist
beyond the correlated LD threshold (see Appendix B). Two-
reference curves also allow for direct estimation of mixture
fractions, although, as discussed above, we prefer instead to
use the method of single-reference bounding.

A number of practical considerations make the one-
reference capabilities of ALDER desirable. Foremost is the
possibility that one may not have a good surrogate available
for one of the ancestral mixing populations, as in our
Japanese example. Also, while our method of learning about
phylogenetic relationships is best suited to two-reference
curves because of the simpler form of the amplitude in terms
of branch lengths, it is often useful to begin by computing
a suite of single-reference curves, both because the data
generated will scale linearly with the number of references
available and because observing a range of different ampli-
tudes gives an immediate signal of the presence of admixture
in the test population.

Overall, then, a sample sequence for applying ALDER to
a new data set might be as follows: (1) test all populations
for admixture using all pairs of references from among the
other populations; (2) explore admixed populations of
interest by comparing single-reference weighted LD curves;
(3) learn more detail by analyzing selected two-reference
curves alongside the one-reference ones; and (4) estimate
parameters using one- or two-reference curves as applicable.
Of course, step 1 itself involves the complementary useful-
ness of both one- and two-reference weighted LD, since our
test for admixture requires the presence of exponential
decay signals in both types of curves.

Effect of multiple-wave or continuous admixture

As discussed in our section on robustness of results, in the
course of our data analysis, we observed that the weighted
LD date estimate almost always becomes more recent when
the exponential decay curve is fit for a higher starting
distance d0. Most likely, this is because admixtures in human
populations have taken place over multiple generations,
such that our estimated times represent intermediate dates
during the process. To whatever extent an admixture event
is more complicated than posited in our point-admixture
model, removing low-d bins will lead the fitting to capture
proportionately more of the more recent admixture. By de-
fault, ALDER sets d0 to be the smallest distance such that
nonadmixture LD signals can be confidently discounted for
d . d0 (see Methods, Testing for admixture, and Appendix B),
but it should be noted that the selected d0 varies for differ-
ent sets of populations, and in each case the true admixture
signal at d , d0 is also excluded. Theoretically, this pattern
could allow us to learn more about the true admixture his-
tory of a population, since the value of a(d) at each d repre-
sents a particular function of the amount of admixture that
took place at each generation in the past. However, in our
experience, fitting becomes difficult for any model involving
more than two or three parameters. Thus, we made the

Figure 5 Weighted LD curves for Onge using Onge itself as one refer-
ence and several different second references.
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decision to restrict ourselves to assuming a single-point ad-
mixture, fit for a principled threshold d . d0, accepting that
the inferred date n represents some form of average value
over the true history.

Other possible complications

In our derivations, we have assumed implicitly that the
mixing populations and the reference populations are related
through a simple tree. However, it may be that their history is
more complicated, for example, involving additional admix-
tures. In this case, our formulas for the amplitude of the ALD
curve will be inaccurate if, for example, A and A9 have differ-
ent admixture histories. However, if our assumptions are vi-
olated only by events occurring before the divergences
between the mixing populations and the corresponding refer-
ences, then the amplitude will be unaffected. Moreover, no
matter what the population history is, as long as A and B are
free of measurable LD (so that our assumption of indepen-
dence of alleles conditional on a single ancestry is valid),
there will be no effect on the estimated date of admixture.

Conclusions and future directions

In this study, we have shown how LD generated by pop-
ulation admixture can be a powerful tool for learning about
history, extending previous work that showed how it can be
used for estimating dates of mixture (Moorjani et al. 2011;
Patterson et al. 2012). We have developed a new suite of
tools, implemented in the ALDER software package, that
substantially increases the speed of admixture LD analysis,
improves the robustness of admixture date inference, and
exploits the amplitude of LD as a novel source of informa-
tion about history. In particular, (a) we show how admixture
LD can be leveraged into a formal test for mixture that can
sometimes find evidence of admixture not detectable by
other methods, (b) we show how to estimate mixture pro-
portions, and (c) we show that we can even use this infor-
mation to infer phylogenetic relationships. A limitation of
ALDER at present, however, is that it is designed for a model
of pulse admixture between two ancestral populations. Im-
portant directions for future work will be to generalize these
ideas to make inferences about the time course of admixture
in the case that it took place over a longer period of time
(Pool and Nielsen 2009; Gravel 2012) and to study multi-
way admixture. In addition, it would be valuable to be able
to use the information from admixture LD to constrain mod-
els of history for multiple populations simultaneously, either
by extending ALDER itself or by using LD-based test results
in conjunction with methods for fitting phylogenies incorpo-
rating admixture (Lipson et al. 2012; Patterson et al. 2012;
Pickrell and Pritchard, 2012).

Software

Executable and C++ source files for our ALDER software
package are available online at the Berger and Reich Lab
websites: http://groups.csail.mit.edu/cb/alder/, http://genetics.
med.harvard.edu/reich/Reich_Lab/Software.html.
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Appendix A: Derivations of Weighted LD Formulas

Expected Weighted LD Using Two Diverged Reference Populations

We now derive Equation 6 for the expected weighted LD (with respect to random drift) using references A9 and B9 in place
of A and B, retaining the notation of Figure 1. Let A9 and B9 have allele frequencies pA9ð�Þ and pB9ð�Þ, and let
d9ð�Þ :¼ pA9ð�Þ2 pB9ð�Þ denote the allele frequency divergences with which we weight the LD z(x, y), giving the two-site
statistic

aðdÞ :¼ zðx; yÞd9ðxÞd9ðyÞ:

[For brevity, we drop the binning procedure of averaging over SNP pairs (x, y) at distance |x2 y| � d here.] The value of the
random variable z(x, y) is affected by sampling noise as well as genetic drift between A and B, while the random variables
d9(x) and d9(y) are outcomes of genetic drift between A9 and B9. These random variables are uncorrelated conditional on the
allele frequencies of x and y in A$ and B$. We also assume that x and y are distant enough to have negligible background LD
and hence the drifts at the two sites are independent. We then have
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E½aðdÞ� ¼ E
h
zðx; yÞd9ðxÞd9ðyÞ

i
¼ E

h
E
�
zðx; yÞd9ðxÞd9ðyÞjpA$ðxÞ; pB$ðxÞ; pA$ðyÞ; pB$ðyÞ

�i
¼ E

h
2abdðxÞdðyÞd9ðxÞd9ðyÞe2nd

i
¼ 2abe2ndF2

�
A$;B$

�2
;

where in the last step the relation E[d(x)d9(x)] = E[d(y)d9(y)] = F2(A$, B$) follows from the fact that the intersection of the
drift paths d(�) and d9(�) is the branch between A$ and B$ (Reich et al. 2009).

Expected Weighted LD Using One Diverged Reference Population

Using the admixed population C as one reference and a population A9 as the other, we have pC(�) = apA(�) + bpB(�)
(assuming negligible postadmixture drift), giving weights

dA9Cð�Þ ¼ pA9ð�Þ2apAð�Þ2bpBð�Þ ¼ adA9Að�Þ þ bdA9B ð�Þ;

where dPQ denotes the allele frequency difference between populations P and Q. Arguing as above, the expected weighted LD
is given by

E½aðdÞ� ¼ E
h
2abdðxÞdðyÞdA9CðxÞdA9CðyÞe2nd

i
:

To complete the calculation, we compute

E½dð�ÞdA9Cð�Þ� ¼ aE½dð�ÞdA9Að�Þ� þ bE½dð�ÞdA9Bð�Þ�:

For the first term, the intersection of the A–B and A9–A drift paths is the A–A$ branch, so E½dð�ÞdA9Að�Þ� ¼ 2 F2ðA;A$Þ with the
negative sign arising because the paths traverse this branch in opposite directions. For the second term, the intersection of
the A–B and A9–B drift paths is the A$–B branch (traversed in the same direction), so E½dð�ÞdA9Bð�Þ� ¼ F2ðB;A$Þ. Combining
these results gives Equation 8. (Note that a slight subtlety arises now that we are using population C in our weights: sites x
and y can exhibit admixture LD at appreciable distances, so dA9CðxÞ and dA9CðyÞ are not independent. However, only the
portions of dA9CðxÞ and dA9CðyÞ arising from postadmixture drift are correlated, and this drift is negligible for typical scenarios
we study in which admixture occurred 200 or fewer generations ago.)

Bounding Mixture Fractions Using One Reference

We now establish our claim in the main text that the estimator â given in Equation 12 for the mixture fraction a is a lower
bound when the reference population A9 is diverged from A. Equation 12 gives a correct estimate when A9 = A but becomes
an approximation when there is genetic drift between A and A9 or between C and C9. (For accuracy, in this section we relax
our usual assumption of negligible drift from C to C9.)

Rearranging Equation 12, we have by definition

2â
12 â

:¼ â0
F2ðA9;C9Þ2

: (A1)

From Equation 7, the amplitude â0 is in truth given by

â0 ¼ 2ab
�
2aF2

�
A;A$

�þ bF2
�
B;A$

��2
e2n=2Ne ;

where we have included the postadmixture drift multiplier e2n=2Ne from the C–C9 branch. It follows that

â0�
2abF2ðA;A$Þ þ b2F2ðB;A$Þ

�2 ¼ 2a
b

e2n=2Ne ,
2a

12a
: (A2)

We claim that F2(A9, C9)2 . (2abF2(A, A$) + b2F2(B, A$))2, in which case combining (A1) and (A2) gives
â=ð12 âÞ,a=ð12aÞ and hence â,a. Indeed, we have
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F2
�
A9;C9

�
. F2

�
A$;C

�
¼ a2F2

�
A;A$Þ þ b2F2

�
B;A$

�
. 2abF2

�
A;A$

�þ b2F2
�
B;A$

�
:

Squaring both sides appears to give our claim, but we must be careful because it is possible for the final expression to be
negative. We assume that A9 is closer to A than B, i.e., F2(A, A$) , F2(B, A$). Then, if a , b, the final expression is clearly
positive. If a . b, we have a2F2(A, A$) . abF2(A, A$) and so

F2
�
A9;C9

�
.a2F2

�
A;A$Þ þ b2F2

�
B;A$

�
.abF2

�
A;A$Þ2b2F2

�
B;A$

�
:

Thus, squaring the inequality is valid in either case, establishing our bound. From the above we also see that the accuracy of
the bound depends on the sizes of the terms that are lost in the approximation—aF2(A, A$), F2(A9, A$), and F2(C, C9)—
relative to the term that is kept, b2F2(B, A$). In particular, aside from the bound being tighter the closer A9 is to A, it is also
more useful when the reference A9 comes from the minor side a , 0.5.

Affine Term from Population Substructure

In the above, we have assumed that population C is homogeneously admixed; i.e., an allele in any random admixed
individual from C has a fixed probability a of having ancestry from A and b of having ancestry from B. In practice, many
admixed populations experience assortative mating such that subgroups within the population have varying amounts of each
ancestry. Heterogeneous admixture among subpopulations creates LD that is independent of genetic distance and not broken
down by recombination: intuitively, knowing the value of an allele in one individual changes the prior on the ancestry
proportions of that individual, thereby providing information about all other alleles (even those on other chromo-
somes). This phenomenon causes weighted LD curves to exhibit a nonzero horizontal asymptote, the form of which we
now derive.

We model assortative mating by taking a to be a random variable rather than a fixed probability, representing the fact that
individuals from different subpopulations of C have different priors on their A ancestry. As before we set b := 1 2 a and we
now denote by �a and �b the population-wide mean ancestry proportions; thus, mx ¼ �apAðxÞ þ �bpBðxÞ. We compute the
expected diploid covariance E[z(x, y)], which we saw in Equation 2 splits into four terms corresponding to the LD between
each copy of the x allele and each copy of the y allele.

Previously, the cross-terms cov(X1, Y2) and cov(X2, Y1) vanished because a homogeneously mixed population does not
exhibit interchromosome LD. Now, however, writing cov(X1, Y2) = E[(X1 2 mx)(Y2 2 my)] as an expectation over individuals
from C in the usual way, we find if we condition on the prior a for A ancestry,

E
h
ðX1 2mxÞðY2 2myÞj pðA ancestryÞ ¼ a

i
¼ E½X12mxj pðA ancestryÞ ¼ a� � E

h
Y2 2myj pðA ancestryÞ ¼ a

i
¼ ðapAðxÞ þ bpBðxÞ2mxÞðapAðyÞ þ bpBðyÞ2myÞ
¼ ðða2 �aÞpAðxÞ þ ðb2 �bÞpBðxÞÞðða2 �aÞpAðyÞ þ ðb2 �bÞpBðyÞÞ
¼ ðða2 �aÞpAðxÞ2 ða2 �aÞpBðxÞÞðða2 �aÞpAðyÞ2 ða2 �aÞpBðyÞÞ
¼ ða2�aÞ2dðxÞdðyÞ:

That is, subpopulations with different amounts of A ancestry make nonzero contributions to the covariance. We can now
compute cov(X1, Y2) by taking the expectation of the above over the whole population (i.e., over the random variable a)

covðX1; Y2Þ ¼ E
h�
a2�a

�2
dðxÞdðyÞ

i
¼ varðaÞdðxÞdðyÞ (A3)

and likewise for cov(X2, Y1).
To compute the same-chromosome covariance terms, we split into two cases according to whether or not

recombination has occurred between x and y since admixture. In the case that recombination has not occurred—i.e., the
ancestry of the chromosomal region between x and y can be traced back as one single chunk to the time of admixture, which
occurs with probability e2nd—the region from x to y has ancestry from A with probability a and from B with probability b.
Thus,
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E
h
ðX12mxÞðY1 2myÞjno  recomb; pðA ancestryÞ ¼ a

i
¼ aE

h
ðX1 2mxÞðY1 2myÞjA ancestry

i
þ bE

h
ðX1 2mxÞðY12myÞjB ancestry

i
¼ aðpAðxÞ2mxÞðpAðyÞ2myÞ þ bðpBðxÞ2mxÞðpBðyÞ2myÞ
¼ að�bpAðxÞ2 �bpBðxÞÞð�bpAðyÞ2 �bpBðyÞÞ þ bð�apBðxÞ2 �apaðxÞÞð�apBðyÞ2 �apAðyÞÞ
¼ ða�b2 þ b�a2ÞdðxÞdðyÞ:

Taking the expectation over the whole population,

E
h
ðX12mxÞðY12myÞjno recomb

i
¼ �

�a�b
2 þ �b�a2�dðxÞdðyÞ ¼ �a�bdðxÞdðyÞ (A4)

as without assortative mating.
In the case where there has been a recombination, the loci are independent conditioned upon the ancestry proportion a,

as in our calculation of the cross-terms; hence,

E
h
ðX1 2mxÞðY1 2myÞj recomb

i
¼ varðaÞdðxÞdðyÞ; (A5)

and this occurs with probability 1 2 e2nd.
Combining Equations A3, A4, and A5, we obtain

E½zðx; yÞ� ¼ E½ðX2mxÞðY 2myÞ�
¼ 2 varðaÞdðxÞdðyÞ þ 2e2nd�a�bdðxÞdðyÞ
þ 2

�
12 e2nd�varðaÞdðxÞdðyÞ

¼ �
e2ndð2�a�b2 2 varðaÞÞ þ 4 varðaÞ�dðxÞdðyÞ:

Importantly, our final expression for E[z(x, y)] still factors as the product of a d-dependent term—now an exponential
decay plus a constant—and the allele frequency divergences d(x)d(y). Because it is the product d(x)d(y) that interacts
with our various weighting schemes, the formulas that we have derived for the weighted LD curve E[a(d)]—Equations
4, 6, 7, and 8—retain the same factors involving F2 distances and change only in the replacement of 2abe2nd with
e2ndð2�a�b2 2 varðaÞÞ þ 4 varðaÞ.

Appendix B: Testing for Admixture

Here we provide details of the weighted LD-based test for admixture we implement in ALDER. The test procedure is
summarized in the main text; we focus here on technical aspects not given explicitly in Methods.

Determining the Extent of LD Correlation

The first step of ALDER estimates the distance to which LD in the test population is correlated with LD in each reference
population. Such correlation suggests shared demographic history that can confound the ALD signal, so it is important to
determine the distance to which LD correlation extends and analyze weighted LD curves âðdÞ only for d greater than this
threshold. Our procedure is as follows. We successively compute LD correlation for SNP pairs (x, y) within distance bins dk ,
|x 2 y| , dk+1, where dk = kr for some bin resolution r (0.05 cM by default). For each SNP pair (x, y) within a bin, we
estimate the LD (i.e., sample covariance between allele counts at x and y) in the test population and the LD in the reference
population. We then form the correlation coefficient between the test LD estimates and reference LD estimates over all SNP
pairs in the bin. We jackknife over chromosomes to estimate a standard error on the correlation, and we set our threshold
after the second bin for which the correlation is insignificant (P . 0.05). To reduce dependence on sample size, we then
repeat this procedure with successively increasing resolutions up to 0.1 cM and set the final threshold as the maximum of the
cutoffs obtained.

Determining Significance of a Weighted LD Curve

To define a formal test for admixture based on weighted LD, we need to estimate the significance of an observed weighted
LD curve âðdÞ. This question is statistically subtle for several reasons. First, the null distribution of the curve âðdÞ is complex.
Clearly the test population C should not be admixed under the null hypothesis, but as we have discussed, shared demog-
raphy—particularly bottlenecks—can also produce weighted LD. We circumvent this issue by using the pretests described in
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the next section and assume that if the test triple (C; A9, B9) passes the pretests, then under the null hypothesis, non-
admixture demographic events have negligible effect on weighted LD beyond the correlation threshold computed above.
Even so, the âðdÞ curve still cannot be modeled as random white noise: because SNPs contribute to multiple bins, the curve
typically exhibits noticeable autocorrelation. Finally, even if we ignore the issue of colored noise, the question of distinguish-
ing a curve of any type—in our case, an exponential decay—from noise is technically subtle: the difficulty is that a singularity
arises in the likelihood surface when the amplitude vanishes, which is precisely the hypothesis that we wish to test (Davies
1977).

In light of these considerations, we estimate a P-value using the following procedure, which we feel is well justified
despite not being entirely theoretically rigorous. We perform jackknife replicates of the âðdÞ curve computation and fitting,
leaving out one chromosome in each replicate, and estimate a standard error for the amplitude and decay constant of the
curve using the usual jackknife procedure. We obtain a “z-score” for the amplitude and the decay constant by dividing each
by its estimated standard error. Finally, we take the minimum (i.e., less significant) of these z-scores and convert it to
a P-value assuming it comes from a standard normal; we report this P-value as our final significance estimate.

Our intuition for this procedure is that checking the z-score of the decay constant essentially tells us whether or not the
exponential decay is well determined: if the âðdÞ curve is actually just noise, then the fitting of jackknife replicates should
fluctuate substantially. On the other hand, if the âðdÞ curve has a stable exponential decay constant, then we have good
evidence that âðdÞ is actually well fit by an exponential—and in particular, the amplitude of the exponential is nonzero,
meaning we are away from the singularity. In this case the technical difficulty is no longer an issue and the jackknife estimate
of the amplitude should in fact give us a good estimate of a z-score that is approximately normal under the null. The z-score
for the decay constant certainly is not normally distributed—in particular, it is always positive—but taking the minimum of
these two scores makes the test only more conservative.

Perhaps most importantly, we have compelling empirical evidence that our z-scores are well behaved under the null. We
applied our test to nine HGDP populations that neither ALDER nor the three-population test identified as admixed; for each
test population, we used as references all populations with correlated LD detectable to no more than 0.5 cM. These test
triples thus comprise a suite of approximately null tests. We computed Q–Q plots for the reported z-scores and observed that
for z . 0 (our region of interest), our reported z-scores follow the normal distribution reasonably well, generally erring
slightly on the conservative side (Figure S6). These findings give strong evidence that our significance calculation is
sufficiently accurate for practical purposes; in reality, model violation is likely to exert stronger effects than the approxima-
tion error in our P-values, and although our empirical tests cannot probe the tail behavior of our statistic, for practical
purposes the precise values of P-values less than, say, 1026 are generally inconsequential.

Pretest Thresholds

To ensure that our test is applicable to a given triple (C; A9, B9), we need to rule out the possibility of demography producing
non-admixture-related weighted LD. We do so by computing weighted LD curves for C with weights A9–B9, A9–C, and B9–C
and fitting an exponential to each curve. To eliminate the possibility of a shared ancestral bottleneck between C and one of
the references, we check that the three estimated amplitudes and decay constants are well determined; explicitly, we
compute a jackknife-based standard error for each parameter and require the implied P-value for the parameter being
positive to be ,0.05. If so, we conclude that whatever LD is present is due to admixture, not other demography, and we
report the P-value estimate defined above for the significance of the A9–B9 curve as the P-value of our test.

We are aware of one demographic scenario in which the ALDER test could potentially return a finding of admixture when
the test population is not in fact admixed. As illustrated in Figure S7, this would occur when A9 and C have experienced
a shared bottleneck and C has subsequently had a further period of low population size. We do not believe that we have ever
encountered such a false-positive admixture signal, but to guard against it, we note that if it were to occur, the three decay
time constants for the reference pairs A9–B9, A9–C, and B9–C would disagree. Thus, along with the test results, ALDER returns
a warning whenever the three best-fit values of the decay constant do not agree to within 25%.

Multiple-Hypothesis Correction

In determining statistical significance of test results when testing a population using many pairs of references, we apply
a multiple-hypothesis correction that takes into account the number of tests being run. Because some populations in the
reference set may be very similar, however, the tests may not be independent. We therefore compute an effective number nr
of distinct references by running PCA on the allele frequency matrix of the reference populations; we take nr to be the
number of singular values required to account for 90% of the total variance. Finally, we apply a Bonferroni correction to the
P-values from each test using the effective number

� nr
2

�
of reference pairs.
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Appendix C: Coalescent Simulations

Here we further validate and explore the properties of weighted LD with entirely in silico simulations using the Markovian
coalescent simulator MaCS (Chen et al. 2009). These simulations complement the exposition in the main text in which we
constructed simulated admixed chromosomes by piecing together haplotype fragments from real HapMap individuals.

Effect of Divergence and Drift on Weighted LD Amplitude

To illustrate the effect of using reference populations with varying evolutionary distances from true mixing populations, we
performed a set of four simulations in which we varied one reference population in a pair of dimensions: (1) time depth of
divergence from the true ancestor and (2) drift since divergence. In each case, we simulated individuals from three
populations A9, C9, and B9, with 22% of C9s ancestry derived from a pulse of admixture 40 generations ago from B, where A9
and B9 diverged 1000 generations ago. We simulated five chromosomes of 100 Mb each for 20 diploid individuals from each
of A9 and B9 and 30 individuals from C9, with diploid genotypes produced by randomly combining pairs of haploid chro-
mosomes. We assumed an effective population size of 10,000 and set the recombination rate to 1028. We set the mutation
rate parameter to 1029 to have the same effect as using a mutation rate of 1028 and then thinning the data by a factor of 10
(as it would otherwise have produced an unnecessarily large number of SNPs). Finally, we set the MaCS history parameter
(the Markovian order of the simulation, i.e., the distance to which the full ancestral recombination graph is maintained) to
104 bases.

For the first simulation (Figure S1A), we set the divergence of A9 and C9 to be immediately prior to the gene flow event,
altogether resulting in the following MaCS command:

macs 140 1e8 -i 5 -h 1e4 -t 0:00004 -r 0:0004 -I 3 40 40 60 -em 0:001
3 2 10000 -em 0:001025 3 2 0 -ej 0:001025 1 3 -ej 0:025 2 3

For the second simulation (Figure S1B), we increased the drift along the A9 terminal branch by reducing the population size
by a factor of 20 for the past 40 generations:

-en 0 1 0:05 -en 0:001 1 1

For the third and fourth simulations (Figure S1, C and D), we changed the divergence time of A9 and C9 from 41 to 520
generations, half the distance to the root:

-ej 0:001025 1 3 / -ej 0:013 1 3

We computed weighted LD curves using A9–B9 references (Figure S1), and the results corroborate our derivation and
discussion of Equation 6. In all cases, the estimated date of admixture is within statistical error of the simulated 40-
generation age. The amplitude of the weighted LD curve is unaffected by drift in A9 but is substantially reduced by the
shorter distance F2(A$, B$) in the latter two simulations. Increased drift to A9 does, however, make the weighted LD curves in
the right side somewhat noisier than those on the left.

Validation of Pretest Criteria in Test for Admixture

To understand the effects of the pretest criteria stipulated in our LD-based test for admixture, we simulated a variety of
population histories with and without mixture. In each case we used the same basic parameter settings as above, except we
set the root of each tree to be 4000 generations ago and we simulated 10 chromosomes for each individual instead of 5.

Scenario 1: True admixture 40 generations ago; reference A9 diverged 400 generations ago (similar to Figure S1C). All
pretests pass and our test correctly identifies admixture.

Scenario 2: True admixture 40 generations ago; reference A9 diverged 41 generations ago (similar to Figure S1A). Because of
the proximity of the admixed population C9 and the reference A9, the test detects long-range correlated LD and concludes
that using A9 as a reference may produce unreliable results.

Scenario 3: True admixture 40 generations ago; contemporaneous gene flow (of half the magnitude) to the lineage of the
reference population A9 as well. Again, the pretest detects long-range correlated LD and concludes that A9 is an unsuitable
reference.

Scenario 4: No admixture; A and C simply form a clade diverging at half the distance to the root (similar to Figure S1C
without the gene flow). The test finds no evidence for admixture; weighted LD measurements do not exhibit a decay
curve.
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Scenario 5: No admixture; A and C diverged 40 generations ago. As above, the test finds no decay in weighted LD. In this
scenario the pretest does detect substantial correlated LD to 1.95 cM because of the proximity of A and C.

Scenario 6: No admixture; same setup as scenario 4 with addition of recent bottleneck in population C (100-fold reduced
population size for the past 40 generations). Here, the test finds no weighted LD decay in the two-reference curve and
concludes that there is no evidence for admixture. It does, however, detect decay curves in both one-reference curves
(with A–C and B–C weights); these arise because of the strong bottleneck-induced LD within population C.

Scenario 7: No admixture; shared bottleneck: A and C diverged 40 generations ago and their common ancestor underwent
a bottleneck of 100-fold reduced population size for the preceding 40 generations. In this case the pretest detects an
enormous amount of correlated LD between A and C and deems A an unsuitable reference.

Sensitivity Comparison of Three-Population Test and LD-Based Test for Admixture

Here we compare the sensitivities of the allele frequency moment-based three-population test (Reich et al. 2009; Patterson et al.
2012) and our LD-based test for admixture. We simulated a total of 450 admixture scenarios in which we varied three
parameters: the age of the branch point A$ (1000, 2000, and 3000 generations), the date n of gene flow (20–300 in increments
of 20), and the fraction a of A ancestry (50–95% in increments of 5%), as depicted in Figure S5. In each case we simulated 40
admixed individuals, otherwise using the same parameter settings as in the scenarios above. Explicitly, we ran the commands:

macs 160 1e8 -i 10 -h 1e4 -t 0:00004 -r 0:0004 -I 3 40 40 80 -em
tMix 3 2 migRate -em tMixStop 3 2 0 -ej tSplit 1 3 -ej 0:1 2 3

where tMix and tSplit correspond to n and the age of A$, while migRate and tMixStop produce a pulse of gene flow from the
B9 branch giving C9 a fraction a of A ancestry.

We then ran both the three-population test (f3) and the ALDER test on C9 using A9 and B9 as references (Figure S5). The
results of these simulations show clearly that the two tests do indeed have complementary parameter ranges of sensitivity.
We first observe that the f3 test is essentially unaffected by the age of admixture (up to the 300 generations we investigate
here). As discussed in the main text, its sensitivity is constrained by competition between the admixture signal of magnitude
abF2(A$, B$) and the “off-tree drift” arising from branches off the lineage connecting A9 and B9 (Reich et al. 2009)—in this
case, essentially the quantity a2F2(A$, C9). Thus, as the divergence point A$ moves up the lineage, the threshold value of a
below which the f3 test can detect mixture decreases.

The ALDER tests behave rather differently, exhibiting a drop-off in sensitivity as the age of admixture increases, with
visible noise near the thresholds of sufficient sensitivity. The difference between the f3 and ALDER results is most notable in
Figure S5, bottom, where the reference A9 is substantially diverged from C9. In this case, ALDER is still able to identify small
amounts of admixture from the B9 branch, whereas the f3 test cannot. Also notable are the vertical swaths of failed tests
centered near a = 0.9, 0.75, and 0.65 for A$ respectively located at distances 0.75, 0.5, and 0.25 along the branch from the
root to A9. This feature of the results arises because the amplitude of the single-reference weighted LD curve with A9–C9
weights vanishes near those values of a (see Equation 8 and Figure S2), causing the ALDER pretest to fail. (The two-
reference weighted LD exhibits a clear decay curve, but the pretest is being overly conservative in these cases.) Finally, we
also observe that for the smallest choice of mixture age (20 generations), many ALDER tests fail. In these cases, the pretest
detects long-range correlated LD with the reference B9 and is again overly conservative.

Effect of Protracted Admixture on Weighted LD

The admixture model that we analyze in this article treats admixture as occurring instantaneously in a single pulse of gene flow;
however, in real human populations, admixture typically occurs continuously over an extended period of time. Here we explore
the effect of protracted admixture on weighted LD curves by simulating scenarios involving continuous migration. We used
a setup nearly identical to the simulations above for comparing the f3 and ALDER tests, except here we modified the migration
rate and start and end times to correspond to 40% B ancestry that continuously mixed into population C over a period of 0–200
generations ending 40 generations ago. We varied the duration of admixture in increments of 20 generations.

For each simulation, we used ALDER to compute the two-reference weighted LD curve and fit an exponential decay. In each
case the date of admixture estimated by ALDER (Figure S4A) falls within the time interval of continuous mixture, as expected
(Moorjani et al. 2011). For shorter durations of admixture spanning up to 50 generations or so, the estimated date falls very near
the middle of the interval, while it is downward biased for mixtures extending back to hundreds of generations. The amplitude of
the fitted exponential also exhibits a downward bias as the mixture duration increases (Figure S4B). This behavior occurs because
unlike the point admixture case, in which the weighted LD curve follows a simple exponential decay (Figure S4C), continuous
admixture creates weighted LD that is an average of exponentials with different decay constants (Figure S4D).

1254 P.-R. Loh et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1/genetics.112.147330-19.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1/genetics.112.147330-19.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1/genetics.112.147330-19.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1/genetics.112.147330-12.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1/genetics.112.147330-9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1/genetics.112.147330-9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1/genetics.112.147330-9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1/genetics.112.147330-9.pdf


GENETICS
Supporting Information

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.112.147330/-/DC1

Inferring Admixture Histories of Human Populations
Using Linkage Disequilibrium

Po-Ru Loh, Mark Lipson, Nick Patterson, Priya Moorjani, Joseph K. Pickrell,
David Reich, and Bonnie Berger

Copyright © 2013 by the Genetics Society of America
DOI: 10.1534/genetics.112.147330



0 10 20 30 40 50
−5

0

5

10

15

20
x 10−6 Divergence = LO, Drift = LO

d (cM)

W
ei

gh
te

d 
LD

A

0 10 20 30 40 50
−5

0

5

10

15

20
x 10−6 Divergence = LO, Drift = HI

d (cM)

W
ei

gh
te

d 
LD

B

0 10 20 30 40 50
−5

0

5

10

15

20
x 10−6 Divergence = HI, Drift = LO

d (cM)

W
ei

gh
te

d 
LD

C

0 10 20 30 40 50
−5

0

5

10

15

20
x 10−6 Divergence = HI, Drift = HI

d (cM)

W
ei

gh
te

d 
LD

D

Exp fit: 43±5 gen Exp fit: 42±2 gen

Exp fit: 47±4 gen Exp fit: 33±4 gen

A’ C’ B’

A’’
B = B’’

A’
C’ B’

B = B’’
A’’

A’ C’ B’

B = B’’

A’’

A’

C’ B’

B = B’’

A’’

Figure S1. Weighted LD curves from four coalescent simulaƟons of admixture scenarios with varying divergence
Ɵmes and driŌ between the reference populaƟon A′ and the true mixing populaƟon. In each case, gene flow
occurred 40 generaƟons ago. In the low-divergence scenarios, the split point A′′ is immediately prior to gene flow,
while in the high-divergence scenarios, A′′ is halfway up the tree (520 generaƟons ago). The high-driŌ scenarios are
disƟnguished from the low-driŌ scenarios by a 20-fold reducƟon in populaƟon size for the past 40 generaƟons.
Standard errors shown are ALDER's jackknife esƟmates of its own error on a single simulaƟon.
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Figure S2. Dependence of single-reference weighted LD amplitude on the reference populaƟon. When taking
weights as allele frequency differences between the admixed populaƟon and a single reference populaƟon R′, the
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point along the A--B lineage at which the reference populaƟon branches. Note in parƟcular that as R′′ varies from
A toB, the amplitude traces out a parabola that starts at 2αβ3F2(A,B)2, decreases to a minimum value of 0, and
increases to 2α3βF2(A,B)2.
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Figure S3. Comparison of binning procedures used by ROLLOFF and ALDER. Instead of discreƟzing inter-SNP
distances, ALDER discreƟzes the geneƟc map before subtracƟng SNP coordinates.
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Figure S4. Weighted LD curve parameters from coalescent simulaƟons of conƟnuous admixture. In each simulaƟon
the mixed populaƟon receives 40% of its ancestry through conƟnuous gene flow over a period of 0--200 generaƟons
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ALDER's jackknife esƟmates of its own error on a single simulaƟon.
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Figure S6. Q-Q plots comparing ALDER z-scores to standard normal on null examples. We show results from nine
HGDP populaƟons that neither ALDER nor the 3-populaƟon test found to be admixed. We are interested in values of
z > 0; the Q-Q plots show that these values follow the standard normal reasonably well, tending to err on the
conservaƟve side.
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bottleneck

Figure S7. Non-admixture-related demography producing weighted LD curves. The test populaƟon is C and
references areA′ andB′; the common ancestor of A′ and C experienced a recent boƩleneck from which C has not
yet recovered, leaving long-range LD in C that is potenƟally correlated to all three possible weighƟng schemes
(A′--B′, A′--C, andB′--C).
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Table S1. Dates of admixture esƟmated for simulated 75% YRI / 25% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 9±1 20±1 49±2 107±5 195±9

Yoruba Han 9±1 21±1 50±2 107±6 191±12

Yoruba Papuan 9±1 21±1 49±3 118±8 223±23

San French 9±1 20±1 50±2 109±4 197±15

San Han 9±0 21±1 51±3 111±4 194±16

San Papuan 9±1 21±1 51±3 115±6 209±16

Yoruba 9±1 21±1 48±2 107±5 181±17

San 9±1 20±2 56±7 139±22 213±97

French 9±1 20±1 50±2 108±3 194±9

Han 9±0 21±1 52±2 110±6 192±17

Papuan 9±1 21±1 53±3 125±8 217±26

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generaƟons ago and show results from

runs of ALDER using various references. Rows in which only one reference is listed indicate runs using the admixed

populaƟon itself as one reference. Note that standard errors shown are ALDER's jackknife esƟmates of its own error

on a single simulaƟon (not standard errors from averaging over mulƟple simulaƟons).
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Table S2. Dates of admixture esƟmated for simulated 90% YRI / 10% CEU mixtures.

Ref 1 Ref 2 10 20 50 100 200

Yoruba French 10±0 21±1 50±2 107±7 193±19

Yoruba Han 10±0 20±1 51±2 109±10 220±32

Yoruba Papuan 10±0 22±1 53±3 111±11 233±65

San French 10±0 21±1 51±2 112±6 223±19

San Han 10±0 21±1 52±3 121±5 254±40

San Papuan 11±0 23±1 53±3 126±8 287±56

Yoruba 9±1 20±2 55±7 100±27 363±183

San 98±87 56±28 94±69 2±0 9±5

French 10±0 21±1 51±2 107±5 217±13

Han 11±0 21±1 52±2 111±7 234±25

Papuan 11±0 23±1 56±3 117±8 256±47

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generaƟons ago and show results from

runs of ALDER using various references. Rows in which only one reference is listed indicate runs using the admixed

populaƟon itself as one reference. Note that standard errors shown are ALDER's jackknife esƟmates of its own error

on a single simulaƟon (not standard errors from averaging over mulƟple simulaƟons).
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Table S3. Amplitudes of weighted LD curves (mulƟplied by 106) for simulated 75% YRI / 25% CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 1173 1139±20 1203±40 1188±54 1283±100 1202±88

Yoruba Han 693 678±17 717±28 711±43 774±73 716±74

Yoruba Papuan 602 598±13 631±23 595±34 775±96 835±152

San French 1017 981±23 1028±34 1044±49 1128±70 1037±130

San Han 574 556±18 590±24 604±42 667±39 626±65

San Papuan 491 487±17 514±20 503±34 589±45 574±60

Yoruba 75 77±2 81±4 74±4 83±6 71±13

San 40 40±3 42±3 50±6 66±13 43±34

French 655 626±12 660±21 666±31 721±42 656±49

Han 312 304±10 324±14 332±23 364±25 332±36

Papuan 252 256±9 273±13 267±17 331±34 314±55

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generaƟons ago and show results from

runs of ALDER using various references. Rows in which only one reference is listed indicate runs using the admixed

populaƟon itself as one reference. Expected amplitudes were computed according to formulas (10) and (11). Note

that standard errors shown are ALDER's jackknife esƟmates of its own error on a single simulaƟon (not standard

errors from averaging over mulƟple simulaƟons).
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Table S4. Amplitudes of weighted LD curves (mulƟplied by 106) for simulated 90% YRI / 10% CEU mixtures.

Ref 1 Ref 2 Expected 10 gen 20 gen 50 gen 100 gen 200 gen

Yoruba French 563 587±27 579±26 550±25 600±43 562±96

Yoruba Han 333 353±20 336±15 339±17 381±49 456±128

Yoruba Papuan 289 307±19 303±16 309±18 343±54 426±248

San French 488 522±25 512±22 488±25 519±28 625±89

San Han 276 305±18 291±12 289±16 338±23 464±132

San Papuan 236 266±18 262±13 254±12 306±38 486±186

Yoruba 6 6±1 6±1 7±1 7±3 44±89

San 1 16±15 8±3 10±7 -0±0 -1±1

French 454 473±19 471±18 450±19 481±19 566±55

Han 250 268±13 261±10 264±11 288±23 369±68

Papuan 212 231±14 233±13 243±11 276±35 366±125

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generaƟons ago and show results from

runs of ALDER using various references. Rows in which only one reference is listed indicate runs using the admixed

populaƟon itself as one reference. Expected amplitudes were computed according to formulas (10) and (11). Note

that standard errors shown are ALDER's jackknife esƟmates of its own error on a single simulaƟon (not standard

errors from averaging over mulƟple simulaƟons).
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Table S5. Mixture fracƟon lower bounds on simulated 75% YRI / 25% CEU mixtures.

Ref 10 20 50 100 200

French 24.6±0.3 25.7±0.5 25.7±0.7 27.0±1.0 25.2±1.3

Russian 23.8±0.3 24.9±0.5 24.8±0.7 25.6±0.8 25.3±1.0

Sardinian 21.3±0.3 21.9±0.5 22.0±0.6 23.6±0.9 22.3±1.1

Kalash 14.7±0.2 15.5±0.4 15.5±0.5 16.4±0.6 15.6±0.9

Yoruba 73.6±0.7 74.8±0.4 74.0±0.6 76.2±1.3 73.8±3.4

Mandenka 50.5±0.6 51.2±1.0 50.4±1.4 54.9±2.0 60.8±5.6

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generaƟons ago and show results from

runs of ALDER using various single references. The first four rows are European surrogates and give lower bounds on

the amount of CEU ancestry (25%); the last two are African surrogates and give lower bounds on the amount of YRI

ancestry (75%). Note that standard errors shown are ALDER's jackknife esƟmates of its own error on a single

simulaƟon (not standard errors from averaging over mulƟple simulaƟons).
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Table S6. Mixture fracƟon lower bounds on simulated 90% YRI / 10% CEU mixtures.

Ref 10 20 50 100 200

French 10.5±0.4 10.5±0.3 9.9±0.3 10.6±0.4 12.3±1.0

Russian 10.2±0.3 10.0±0.3 9.7±0.3 10.3±0.5 11.8±0.9

Sardinian 9.3±0.3 9.2±0.3 8.7±0.3 9.5±0.4 10.3±1.2

Kalash 7.2±0.3 7.0±0.3 6.8±0.2 7.4±0.4 8.9±0.8

Yoruba 89.1±1.0 89.1±1.1 90.1±1.5 89.4±3.7 98.5±2.0

Mandenka 18.2±2.3 17.3±2.5 19.5±4.8 63.1±25.5 30.7±220.4

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generaƟons ago and show results from

runs of ALDER using various single references. The first four rows are European surrogates and give lower bounds on

the amount of CEU ancestry (10%); the last two are African surrogates and give lower bounds on the amount of YRI

ancestry (90%). Note that standard errors shown are ALDER's jackknife esƟmates of its own error on a single

simulaƟon (not standard errors from averaging over mulƟple simulaƟons).
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Table S7. Dates of admixture esƟmated for simulated 75% YRI / 25% CEU mixtures.

Yoruba--French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 12±2 18±2 55±3 103±7 258±24

10 10±1 19±2 50±2 105±7 236±24

20 10±1 20±1 52±2 104±5 223±16

50 9±0 20±1 52±1 96±2 186±10

100 10±0 20±0 52±1 101±2 210±9

San--Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 12±2 18±2 58±5 107±11 283±73

10 10±1 19±2 54±3 114±8 219±64

20 10±1 21±1 55±2 115±6 219±46

50 9±0 21±1 54±1 107±5 213±20

100 9±0 21±1 53±1 105±5 216±13

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generaƟons ago and show results from

runs of ALDER using varying numbers of admixed samples. Note that standard errors shown are ALDER's jackknife

esƟmates of its own error on a single simulaƟon (not standard errors from averaging over mulƟple simulaƟons).
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Table S8. Dates of admixture esƟmated for simulated 90% YRI / 10% CEU mixtures.

Yoruba--French references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 11±2 21±2 52±6 101±17 253±42

10 11±1 19±1 48±4 94±8 241±46

20 11±1 21±1 48±3 102±8 209±30

50 11±0 21±1 48±2 98±5 202±21

100 10±0 20±1 50±1 99±4 185±15

San--Han references

Samples 10 gen 20 gen 50 gen 100 gen 200 gen

5 14±2 22±3 63±8 110±30 335±91

10 12±1 20±2 54±4 110±15 265±55

20 12±1 21±1 52±4 131±15 234±33

50 11±0 20±1 53±4 122±8 221±23

100 11±0 20±0 53±3 109±5 219±10

We simulated scenarios in which admixture occurred 10, 20, 50, 100, or 200 generaƟons ago and show results from

runs of ALDER using varying numbers of admixed samples. Note that standard errors shown are ALDER's jackknife

esƟmates of its own error on a single simulaƟon (not standard errors from averaging over mulƟple simulaƟons).
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Table S9. Effect of SNP ascertainment on date esƟmates.

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 47±12 51±13 56±10 41±10

Uygur French Han 15±2 14±2 13±2 16±2

Hazara French Han 22±2 22±3 23±2 22±3

Melanesian Dai Papuan 93±24 62±15 76±13 70±18

Bedouin French Yoruba 27±3 23±3 23±3 24±3

MbuƟPygmy San Yoruba 33±12 33±6 41±14 30±8

BiakaPygmy San Yoruba 39±6 50±14 35±6 36±7

We compared dates of admixture esƟmated by ALDER on a variety of test triples from the HGDP using SNPs

ascertained as heterozygous in full genome sequences of one French, Han, San, and Yoruba individual (Panels 1, 2, 4,

and 5 of the Affymetrix Human Origins Array (P�ãã�ÙÝÊÄ et al. 2012)). Standard errors are from a jackknife over the

22 autosomes.
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Table S10. Effect of SNP ascertainment on weighted LD curve amplitudes (mulƟplied by 106).

Mixed pop Ref 1 Ref 2 French asc Han asc San asc Yoruba asc

Burusho French Han 180±44 171±53 61±11 65±15

Uygur French Han 360±28 304±29 102±7 161±19

Hazara French Han 442±31 436±48 146±10 203±21

Melanesian Dai Papuan 868±277 559±150 207±51 312±91

Bedouin French Yoruba 227±32 196±25 104±11 146±13

MbuƟPygmy San Yoruba 64±23 78±14 83±26 82±18

BiakaPygmy San Yoruba 104±19 133±46 90±15 103±22

We compared amplitudes of weighted LD curves fiƩed on a variety of test triples from the HGDP using SNPs

ascertained as heterozygous in full genome sequences of one French, Han, San, and Yoruba individual (Panels 1, 2, 4,

and 5 of the Affymetrix Human Origins Array (P�ãã�ÙÝÊÄ et al. 2012)). Standard errors are from a jackknife over the

22 autosomes.
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File S1. Unbiased polyache esƟmator for weighted LD using the admixed populaƟon itself as one reference.
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Printed by Mathematica for Students

MathemaƟca code and output are shown for compuƟng the polyache staƟsƟc that esƟmates the one-reference

weighted LD, E[(X − µx)(Y − µy)(µx − pA(x))(µy − pA(y))], where pA(·) are allele frequencies of the single

reference populaƟon and µx and µy denote allele frequencies of the admixed populaƟon. In the above, S(k)
0 :=

m(m− 1) · · · (m− k + 1) and Sr,s :=
∑m

i=1 X
r
i Y

s
i , wherem is the number of admixed samples and i ranges over

the admixed individuals, which have allele countsXi and Yi at sites x and y.
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File S2. FFT computaƟon of weighted LD.

In this note we describe how to compute weighted LD (aggregated over distance bins) in Ɵme

O(m(S +B logB)),

wherem is the number of admixed individuals, S is the number of SNPs, andB is the number of bins needed to span

the chromosomes. In contrast, the direct method of compuƟng pairwise LD for each individual SNP pair requires

O(mS2) Ɵme. In pracƟce our approach offers speedups of over 1000x on typical data sets. We further describe a

similar algorithm for compuƟng the single-reference weighted LD polyache staƟsƟc that runs in Ɵme

O(m2(S +B logB))

with the slight trade-off of ignoring SNPs with missing data.

Our method consists of three key steps: (1) split and factorize the weighted LD product; (2) group factored terms

by bin; and (3) apply fast Fourier transform (FFT) convoluƟon. As a special case of this approach, the first two ideas

alone allow us to efficiently compute the affine term (i.e., horizontal asymptote) of the weighted LD curve using inter-

chromosome SNP pairs.

TWO-REFERENCE WEIGHTED LD

We first establish notaƟon. Say we have an S × m genotype array {cx,i} from an admixed populaƟon. Assume for

now that there are no missing values, i.e.,

cx,i ∈ {0, 1, 2}

for x indexing SNPs by posiƟon on a geneƟc map and i = 1, . . . ,m indexing individuals. Given a set of weights wx,

one per SNP, we wish to compute weighted LD of SNP pairs aggregated by inter-SNP distance d:

R(d) :=
∑

|x−y|≈d
x<y

D2(x, y)wxwy =
1

2

∑
|x−y|≈d

D2(x, y)wxwy

whereD2 is the sample covariance between genotypes at x and y, the diploid analog of the usual LD measureD:

D2(x, y) :=
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)

m∑
i=1

cx,i

m∑
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cy,j

=
1
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m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy, (1)

where we have defined

sx :=
m∑
i=1

cx,i.

SubsƟtuƟng forD2(x, y), we have

R(d) =
1

2

∑
|x−y|≈d

(
1

m− 1

m∑
i=1

cx,icy,i −
1

m(m− 1)
sxsy

)
wxwy

=

 m∑
i=1

1

2(m− 1)

∑
|x−y|≈d

cx,iwx · cy,iwy

− 1

2m(m− 1)

∑
|x−y|≈d

sxwx · sywy. (2)
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We have thus rewriƩenR(d) as a linear combinaƟon ofm+ 1 terms of the form∑
|x−y|≈d

f(x)f(y).

(The sum over i consists ofm such terms, and the final term accounts for one more.)

In general, sums of the form ∑
|x−y|≈d

f(x)g(y)

can be efficiently computed by convoluƟon if we first discreƟze the geneƟc map on which the SNP posiƟons x and y

lie. For notaƟonal convenience, choose the distance scale such that a unit distance corresponds to the desired bin

resoluƟon. We will compute ∑
⌊x⌋−⌊y⌋=d

f(x)g(y). (3)

That is, we divide the chromosome into bins of unit distance and aggregate terms f(x)g(y) by the distance between

the bin centers of x and y. Note that this procedure does not produce exactly the same result as first subtracƟng the

geneƟc posiƟons and then binning by |x− y|: with our approach, pairs (x, y) that map to a given bin can have actual

distances that are off by as much as one full bin width, versus half a bin width with the subtract-then-bin approach.

However, we can compensate simply by doubling the bin resoluƟon.

To compute expression (3), we write∑
⌊x⌋−⌊y⌋=d

f(x)g(y) =
B∑

b=0

∑
⌊x⌋=b

∑
⌊y⌋=b−d

f(x)g(y)

=
B∑

b=0

 ∑
⌊x⌋=b

f(x)

 ∑
⌊y⌋=b−d

g(y)

 . (4)

WriƟng

F (b) :=
∑

⌊x⌋=b

f(x), G(b) :=
∑

⌊x⌋=b

g(x),

expression (4) becomes
B∑

b=0

F (b)G(b− d) = (F ⋆ G)(d),

a cross-correlaƟon of binned f(x) and g(y) terms.

ComputaƟonally, binning f and g to form F andG takesO(S) Ɵme, aŌer which the cross-correlaƟon can be per-

formed inO(B logB) Ɵme with a fast Fourier transform. The full computaƟon of them+1 convoluƟons in equaƟon

(2) thus takes O(m(S + B logB)) Ɵme. In pracƟce we oŌen have B logB < S, in which case the computaƟon is

linear in the data sizemS.

One addiƟonal detail is that we usually want to compute the average rather than the sum of the weighted LD

contribuƟons of the SNP pairs in each bin; this requires normalizing by the number of pairs (x, y) thatmap to each bin,

which can be computed in an analogous manner with one more convoluƟon (seƫng f ≡ 1, g ≡ 1). Finally, we note

that our factorizaƟon and binning approach immediately extends to compuƟng weighted LD on inter-chromosome

SNP pairs (by puƫng all SNPs in a chromosome in the same bin), which allows robust esƟmaƟon of the horizontal

asymptote of the weighted LD curve.
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Missing Data The calculaƟons above assumed that the genotype array contained no missing data, but in pracƟce a

fracƟon of the genotype values may be missing. The straighƞorward non-FFT computaƟon has no difficulty handling

missing data, as each pairwise LD term D2(x, y) can be calculated as a sample covariance over just the individuals

successfully genotyped at both x and y. Our algebraic manipulaƟon runs into trouble, however, because if k individu-

als have amissing value at either x or y, then the sample covariance contains denominators of the form 1/(m−k−1)

and 1/(m− k)(m− k − 1)---and k varies depending on x and y.

One way to get around this problem is simply to restrict the analysis to sites with no missing values at the cost

of slightly reduced power. If a fracƟon p of the SNPs contain at least one missing value, this workaround reduces the

number of SNP pairs available to (1− p)2 of the total, which is probably already acceptable in pracƟce.

We can do beƩer, however: in fact, with a liƩle more algebra (but no addiƟonal computaƟonal complexity), we

can include all pairs of sites (x, y) for which at least one of the SNPs x, y has no missing values, bringing our coverage

up to 1− p2.

We will need slightly more notaƟon. AdopƟng eigenstrat format, we now let our genotype array consist of

values

cx,i ∈ {0, 1, 2, 9}

where 9 indicates a missing value. (Thus, {cx,i} is exactly the data that would be contained in a .geno file.) For

convenience, we write

c
(0)
x,i :=


cx,i if cx,i ∈ {0, 1, 2}

0 otherwise.

That is, c(0)x,i replaces missing values with 0s. As before we set

sx :=
∑

i:cx,i ̸=9

cx,i =
m∑
i=1

c
(0)
x,i

to be the sum of all non-missing values at x, which also equals the sum of all c(0)x,i because the missing values have

been 0-replaced. Finally, define

kx := #{i : cx,i = 9}

to be the number of missing values at site x.

We now wish to compute aggregated weighted LD over pairs (x, y) for which at least one of kx and ky is 0. Being

careful not to double-count, we have:

R(d) :=
∑

|x−y|≈d
x<y

kx=0 or ky=0

D2(x, y)wxwy

=
1

2

∑
|x−y|≈d

kx=0 and ky=0

D2(x, y)wxwy +
∑

|x−y|≈d
kx=0 and ky ̸=0

D2(x, y)wxwy

=
∑

|x−y|≈d

I[kx = 0]

1 + I[ky = 0]
D2(x, y)wxwy, (5)
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where the shorthand I[·] denotes a {0, 1}-indicator.

Now, for a pair of sites (x, y) where x has no missing values and y has ky missing values,

D2(x, y) =
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i −

1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy. (6)

Indeed, we claim the above equaƟon is actually just a rewriƟng of the standard covariance formula (1), appropriately

modified now that the covariance is overm− ky values rather thanm:

• In the sum
∑m

i=1 cx,ic
(0)
y,i , missing values in y have been 0-replaced, so those terms vanish and the sum effec-

Ɵvely consists of the desiredm− ky products cx,icy,i.

• Similarly, sy is equal to the sum of them− ky non-missing cy,i values.

• Finally, sx −
∑m

i=1 I[cy,i = 9]cx,i represents the sum of cx,i over individuals i successfully genotyped at y,

wriƩen as the sum sx over allm individuals minus a correcƟon.

SubsƟtuƟng (6) into expression (5) for R(d) and rearranging, we have

R(d) =
∑

|x−y|≈d

I[kx = 0]

1 + I[ky = 0]

(
1

m− ky − 1

m∑
i=1

cx,ic
(0)
y,i

− 1

(m− ky)(m− ky − 1)

(
sx −

m∑
i=1

I[cy,i = 9]cx,i

)
sy

)
wxwy

=
m∑
i=1

∑
|x−y|≈d

(I[kx = 0]cx,iwx) ·
(

1

1 + I[ky = 0]

(
c
(0)
y,i +

I[cy,i = 9]sy
m− ky

)
wy

m− ky − 1

)

−
∑

|x−y|≈d

(I[kx = 0]sxwx) ·
(

sywy

(1 + I[ky = 0])(m− ky)(m− ky − 1)

)
.

The key point is that we once again have a sum ofm+ 1 convoluƟons of the form
∑

|x−y|≈d f(x)g(y) and thus can

compute them efficiently as before.

ONE-REFERENCE WEIGHTED LD

When compuƟng weighted LD using the admixed populaƟon itself as a reference with one other reference popula-

Ɵon, a polyache staƟsƟc must be used to obtain an unbiased esƟmator (File S1). The form of the polyache causes

complicaƟons in our algebraic manipulaƟon; however, if we restrict our aƩenƟon to SNPs with no missing data, the

computaƟon can sƟll be broken into convoluƟons quite naturally, albeit now requiringO(m2) FFTs rather thanO(m).

As in the two-reference case, the key idea is to split and factorize the weighted LD formula. We treat the terms

in the polyache separately and observe that each term takes the form of a constant factor mulƟplied by a product of

sub-terms of the form Sr,s, pA(x), or pA(y). We can use convoluƟon to aggregate the contribuƟons of such a term

if we can factor it as a product of two pieces, one depending only on x and the other only on y. Doing so is easy for

some terms, namely those that involve only pA(x), pA(y), Sr,0, and S0,s, as the laƩer two sums depend only on x

and y, respecƟvely.
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The terms involving Sr,s with both r and s nonzero are more difficult to deal with but can be wriƩen as con-

voluƟons by further subdividing them. In fact, we already encountered S1,1 =
∑m

i=1 cx,icy,i in our two-reference

weighted LD computaƟon: the trick there was to split the sum into its m components, one per admixed individual,

each of which could then be factored into x-dependent and y-dependent parts and aggregated via convoluƟon.

Exactly the same decomposiƟon works for all of the polyache terms except the one involving S2
1,1. For this term,

we write

S2
1,1 =

m∑
i=1

cx,icy,i

m∑
j=1

cx,jcy,j =
m∑
i=1

m∑
j=1

cx,icx,j · cy,icy,j ,

from which we see that spliƫng the squared sum intom2 summands allows us to split the x- and y-dependence as

desired. The upshot is that at the expense ofO(m2) FFTs (and restricƟng our analysis to SNPs without missing data),

we can also accelerate the one-reference weighted LD computaƟon.

24 SI P.-R. Loh et al.


