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A monaural binary time-frequency (T-F) masking technique is proposed for suppressing reverberation.

The mask is estimated for each T-F unit by extracting a variance-based feature from the reverberant

signal and comparing it against an adaptive threshold. Performance of the estimated binary mask is

evaluated in three moderate to relatively high reverberant conditions (T60¼ 0.3, 0.6, and 0.8 s) using

intelligibility listening tests with cochlear implant users. Results indicate that the proposed T-F mask-

ing technique yields significant improvements in intelligibility of reverberant speech even in relatively

high reverberant conditions (T60 ¼ 0.8 s). The improvement is hypothesized to result from the recov-

ery of the vowel/consonant boundaries, which are severely smeared in reverberation.
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I. INTRODUCTION

Reflections and diffractions of sounds from the walls

and objects in an acoustic enclosure are called reverberation.

A distant microphone collects, in addition to direct sound,

the early and late reflections arriving after the direct sound.

The early and late reflections fill the gaps in the temporal en-

velope of speech and reduce envelope modulation depth

(Assmann and Summerfield, 2004). Although speech intelli-

gibility is not affected much by reverberation for normal

hearing (NH) listeners, it is degraded significantly for hear-

ing impaired, cochlear implant (CI) users, and elderly people

(Nabelek and Letowski, 1988; Kokkinakis et al., 2011;

Nabelek and Letowski, 1985). Reverberation also poses a

detrimental impact on the performance of automatic speech

recognition (ASR) (Palom€aki et al., 2004), and speaker iden-

tification (SID) systems (Sadjadi and Hansen, 2011). Sup-

pressing reverberation is a challenging task because of its

non-stationary nature and being correlated with speech.

Several speech dereverberation techniques have been

proposed, some of which consist of multiple stages treating

early and late reverberations differently (Wu and Wang,

2006; Furuya and Kataoka, 2007). Inverse filtering is one of

the commonly used techniques for speech dereverberation

which removes the reverberation by passing the reverberant

signal through a finite impulse response (FIR) filter (Miyoshi

and Kaneda, 1988). The main drawbacks of these techniques

are (1) the room impulse response (RIR) should be known in

advance or needs to be blindly estimated, (2) the RIRs

should be minimum phase to be invertible. With the use of

multiple microphones, an exact inverse of the RIR can be

obtained assuming there are no common zeros among the

RIRs. Several “blind” multichannel dereverberation algo-

rithms have also been proposed, such as beamforming

(Habets et al., 2010), and blind deconvolution techniques

(Furuya and Kataoka, 2007). Although less effective, single

microphone dereverberation algorithms are usually more

practical and desirable. A few examples of such algorithms

are spectral subtraction (Lebart et al., 2001), and excitation

source information based (Yegnarayana and Murthy, 2000)

techniques. However, these techniques are still far from per-

fect, and some do not result in acceptable performance in

practice.

In this study, an alternative dereverberation algorithm

based on binary time-frequency (T-F) masking is proposed.

Binary masking refers to algorithms that decompose the sig-

nal into T-F units and select those units satisfying a given

criterion (e.g., SNR > 0 dB, for noise suppression), while

discarding the rest by applying a binary mask to the units of

the decomposed signal, i.e., the mask for a given T-F unit is

set to 0 if it does not satisfy a given criterion or is set to 1 if

it satisfies the criterion (Wang and Brown, 2006). Binary

masks have been widely used for different speech enhance-

ment as well as sound separation applications resulting in

gains in intelligibility and quality of the processed noisy

speech (Wang and Brown, 2006; Kim et al., 2009; Li and

Loizou, 2008). Use of the binary masks for dereverberation,

which was only evaluated by a few studies, is attractive as it

does not rely on the inversion of the RIR. Palom€aki et al.
(2004) introduced a reverberant (a priori) binary mask pri-

marily for ASR applications. Mandel et al. (2010) evaluated

a number of oracle reverberant (binary and soft) masks using

source-separation algorithms and human listeners. All masks

were constructed based on several combinations of the ratio

of the target direct signal energy to either the target late-

reverberant signal energy and/or the masker (direct-path

and) late-reverberant energy. The masks, however, were

based on the decomposition of the reverberant signal to its

direct-path, early echo and late reflection components, i.e.,

they assumed access to the RIR which is unknown in

practice.

The ideal reverberant mask (IRM) proposed by Kokki-

nakis et al. (2011), has previously been shown to result in

substantial intelligibility gains for both CI users and NH lis-

teners (Kokkinakis et al., 2011; Hazrati and Loizou, 2012).
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Motivated by the intelligibility gains obtained by applying

IRM to reverberant speech, a blind (non-ideal) T-F masking

technique is proposed for improving the intelligibility of

reverberant speech. A nonparametric and unsupervised

method of automatic threshold selection (Otsu, 1979), which

was originally used for image segmentation, is adopted as

the local criterion in decision making for each T-F unit. A

feature based on the ratio of signal variances is computed for

each T-F unit and the local criterion is constructed using this

feature. Intelligibility listening tests are used to assess the

performance of the proposed dereverberation algorithm.

The NH listeners generally perform well even in

extremely reverberant conditions, while on the other hand,

the intelligibility of reverberant speech drops significantly in

hearing-impaired listeners and CI users even at moderately

reverberant conditions. Therefore, in the current study CI lis-

teners are tested to evaluate the proposed dereverberation

algorithm in terms of intelligibility improvement. The results

from IRM are also presented as an upper level for intelligi-

bility assessments.

II. BINARY MASKING OF REVERBERANT SPEECH

In the implementation of binary reverberant masking

algorithms described in this section, a total of 64 fourth order

Gammatone filters are used to decompose the signal band-

width of 50 to 8000 Hz (half of sampling frequency) into

quasi-logarithmically spaced bands with center frequencies

equally spaced on the equivalent rectangular bandwidth

(ERB) scale. The bandpass filtered signals are divided into

20-ms frames with a 50% overlap between adjacent frames.

A. Blind reverberant mask

1. Algorithm overview

The block diagram of the proposed dereverberation

algorithm is shown in Fig. 1. As depicted in the figure, the

proposed algorithm consists of four stages. The first stage

provides time-frequency representation of the speech signal

by passing it through a set of bandpass filters and blocking

the bandpass filtered outputs to short time overlapping

frames, where each short time frame at each frequency bin

corresponds to a T-F unit. In order to make decisions for

classifying the T-F units as speech or (late) reverberation

dominant, features are extracted in the second stage for all

T-F units. After passing the features to the next stage, the

threshold value for each unit is computed, the T-F units are

classified as speech or reverberation dominant, and their cor-

responding mask value is set to 1 or 0 accordingly. This bi-

nary mask provides an estimate of the IRM (ideal case) and

is applied to the T-F representation of the reverberant signal

in the last stage. The binary-masked bandpass filtered rever-

berant speech signals are summed across different frequency

bins to re-synthesize the dereverberated speech.

2. Feature extraction

The input reverberant speech, r(n), is decomposed into

T-F units by passing it through a J-channel (here, J is set to

64) Gammatone filterbank, with quasi-logarithmically

spaced center frequencies, and applying short-time frame

blocking. This T-F decomposed signal is denoted by r(t, j)
where t and j represent time frame and frequency band indi-

ces, respectively. In order to reliably classify the T-F units,

the peaks and valleys in each band need to be identified.

This is accomplished via the use of a discriminative feature

computed as the ratio of the variance of the signal raised to a

power and the variance of the absolute value of the signal.

Accordingly, the feature is computed as follows:

fMðt; jÞ ¼ 10log10

r2
r0 ðt; jÞ

r2
jrjðt; jÞ

0
BB@

1
CCA; (1)

where r0ðt; jÞ ¼ jrðt; jÞja, and jrðt; jÞj is the absolute value of

the L (frame size) dimensional reverberant vector in frame t,
and frequency band j. The parameter a in Eq. (1) is set to 2.1

experimentally.

The feature is smoothed across time using a 3-point me-

dian filter. Figure 2(c) shows features extracted from a band-

pass filtered reverberant signal (fc ¼ 0.5 kHz). As can be

seen, the peaks/valleys of the features are aligned with

speech presence/absence in anechoic quiet condition [com-

pare panels in Figs. 2(a) and 2(c)]. Therefore, an adaptive

threshold (dashed line) is needed to make accurate decision

on whether the short-time frame is speech or reverberation

dominant.

The rationale behind the use of such feature is its simi-

larity to the fourth moment of speech which is known as kur-

tosis. Kurtosis has been found to reduce as the reverberation

increases or in other words, the kurtosis of reverberant

speech is lower than that of the anechoic speech (Gillespie

et al., 2001; Wu and Wang, 2006). Motivated by this fact,

the above proposed feature was found to behave in a similar

manner to kurtosis of speech and its use as the input to the

histogram-based threshold estimation stage resulted in a reli-

able threshold estimation.

3. Binary mask estimation

In order to make decision on the features extracted using

(1), as to whether they are reverberation-dominant or

speech-dominant, they are compared against a threshold.

Here, a nonparametric and unsupervised method for auto-

matic threshold estimation (previously used for image seg-

mentation) is adopted (Otsu, 1979). The input to this

histogram-based threshold estimation technique at time

frame t and frequency band j is the following feature vector

containing features of Lp previous and Lf future frames:
FIG. 1. Block diagram of the proposed binary mask estimation technique

for dereverberation.
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fhistðt; jÞ ¼ ffMðt� Lp; jÞ;…; fMðtþ Lf ; jÞg: (2)

Here, features from 10 previous and 2 future frames are used

for the histogram calculation. If we define the global inten-

sity mean, mG, the cumulative mean, m(tr), and the cumula-

tive sum, Ps(tr) as follows:

mG ¼
XTr

i¼1

i � pi; (3)

mðtrÞ ¼
Xtr

i¼1

i � pi; (4)

PsðtrÞ ¼
Xtr

i¼1

pi; (5)

where pi denotes the normalized histogram of the feature

vector [Eq. (2)], the between-class variance with distinct

intensity level index, tr, can be expressed as

r2
BðtrÞ ¼

ðmG:PsðtrÞ � mðtrÞÞ2

PsðtrÞð1� PsðtrÞÞ
; (6)

which is used to find the optimum threshold level tr* in the

following manner:

r2
Bðtr�Þ ¼ max

tr¼1;…;Tr
ðr2

BðtrÞÞ; (7)

where Tr is the total number of distinct levels of the histo-

gram of the input feature vector (fhist).

If the long-term windowed feature vector contains

only silence, the algorithm will compute inaccurate threshold

levels resulting in incorrect decisions. Therefore, a minimum

threshold level (tr0) is considered to discriminate silence

from speech. Use of the long-term windowed feature vectors

along with tr0 results in a robust and effective adaptive

threshold level estimation. In the T-F classification stage, if

the feature value for a T-F unit is greater than the adaptive

threshold of that specific T-F unit, the frame is classified as

reverberation-free, otherwise it is considered as

reverberation-dominant. Frames classified as reverberation-

free are retained, while reverberation-dominant frames are

zeroed out. This forms a binary blind reverberant mask

(BRM) which is defined as

BRM ðt; jÞ ¼ 1; fMðt; jÞ > maxðtr�ðt; jÞ; tr0Þ
0; otherwise

;

�
(8)

where fM(t,j) is the feature extracted in Eq. (1). The enhanced

signal [Fig. 2(d)] is obtained after applying the binary mask,

estimated based on comparing features and threshold levels

[Fig. 2(c)], to the reverberant signal [Fig. 2(b)]. Note that

this technique removes the reverberation-dominant T-F units

resulting in restoration of the word/syllable boundaries [see

Fig. 2(d)]. Our hypothesis is that having access to the clear

location of those boundaries is very important for good

speech understanding in reverberant environments.

B. Ideal reverberant mask

In IRM estimation, both reverberant and clean signals

are decomposed into T-F units as described in Sec. II A 2.

The speech-to-reverberant ratio (SRR) features which are

the ratio of the short-time energy of the clean signal to that

of the reverberant signal are computed at each T-F unit and

the IRM for that unit is obtained by comparing its SRR value

with a preset threshold (T0) (Kokkinakis et al., 2011) as

IRM ðt; jÞ ¼ 1; SRRðt; jÞ > T
0

0; otherwise:

(
(9)

The IRM is implemented and evaluated in this study for

comparative purposes, as it provides the upper bound in per-

formance. The threshold used in Eq. (15) is set to �8 dB.

III. EXPERIMENT: EVALUATION OF THE PROPOSED
BLIND REVERBERANT MASK

A. Methods

1. Subjects

A total of six CI listeners with Nucleus devices partici-

pated in this study. All participants were native speakers of

American English with postlingual deafness, who received

no benefit from hearing aids preoperatively. The participants

used their CI devices routinely and had a minimum of 1 year

experience with their CIs. Biographical data for the subjects

FIG. 2. (Color online) Band-pass filtered (fc¼ 0.5 kHz) waveforms of the

IEEE sentence: “The stitch will serve but needs to be shortened,” for (a)

clean, (b) reverberant (T60¼ 0.6 s), and (d) BRM-processed reverberant

signals. Panel (c) shows the instantaneous threshold (dashed line) and the

features (solid line).
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is detailed in Table I. All subjects were paid for their partici-

pation in this research study.

2. Research processor

Four of the subjects tested were using the Nucleus 5 and

two were using the Nucleus Freedom speech processor on a

daily basis. Subjects were tested using a personal digital as-

sistant (PDA)-based cochlear implant research platform (Ali

et al., 2011). The signals were streamed off-line via the PDA

platform and sent directly to the subject’s cochlear implant.

The PDA processor was programmed for individual subjects

using their threshold and comfortable loudness levels, and

coding strategy parameters. The volume of the speech proc-

essor was also adjusted to a comfortable loudness prior to

initial testing. Institutional review board (IRB) approval and

informed consent were obtained from all participants before

testing commenced.

3. Stimuli

IEEE sentences (IEEE, 1969) were used as the speech

stimuli for testing. There are 72 list of sentences in IEEE

database, where each list contains 10 phonetically balanced

sentences and each sentence is composed of approximately

7�12 words. The root-mean-square (RMS) value of all sen-

tences was equalized to the same value corresponding to

approximately 65 dBA.

4. Simulated reverberant conditions

The reverberant stimuli are generated by convolving the

clean signals with real RIRs recorded in a 10.06 m

� 6.65 m� 3.4 m (length � width � height) room (Neuman

et al., 2010). The reverberation time of the room is varied

from 0.8 to 0.6, and 0.3 s by adding absorptive panels to the

walls and floor carpeting. The direct-to-reverberant ratios

(DRR) of the RIRs are 1.5, �1.8, and �3.0 dB for T60¼ 0.3,

0.6, and 0.8 s, respectively. The distance between the single-

source signal and the microphone is 5.5 m, which is beyond

the critical distance. All stimuli were presented to the lis-

tener through the PDA in a double-walled sound attenuated

booth (Acoustic Systems, Inc.). Prior to testing, each subject

participated in a short practice session to gain familiarity

with the listening task. During the practice session, the sub-

jects were allowed to adjust the volume to their comfortable

level.

5. Procedure

Subjects participated in a total of ten conditions, three

unprocessed reverberant, three IRM processed, and three

BRM processed reverberant conditions corresponding to

T60¼ 0.3, 0.6, and 0.8 s, and anechoic quiet condition which

was used as a control condition. Two IEEE lists (20 senten-

ces) were used per condition.

Each subject completed all ten conditions in a single

session. Participants were given a 15 min break every 60 min

during the test session. Following initial instructions, each

user participated in a brief practice session to gain familiar-

ity with the listening task. None of the lists were repeated

across different conditions. The order of the test conditions

was randomized across subjects to minimize order effects.

During testing, each sentence was presented twice and the

participants were instructed to repeat as many of the words

as they could identify. The responses of each individual

were collected, and scored off-line based on the number of

words correctly identified. All words were scored. The per-

cent correct scores for each condition were calculated by

dividing the number of words correctly identified by the total

number of words in the particular sentence lists.

B. Results and discussion

The six CI listeners were tested to evaluate the intelligi-

bility of the reverberant signals processed by the proposed

BRM algorithm. Figure 3 shows the individual as well as the

averaged intelligibility scores of the CI users, in terms of the

mean percentage of words identified correctly. The results

obtained from the proposed BRM are compared against

those obtained by testing the subjects with the unprocessed

reverberant stimuli in three moderate to relatively high

reverberant conditions (T60¼ 0.3, 0.6, and 0.8 s). Scores

obtained from the IRM-processing (Kokkinakis et al., 2011)

are also given for comparison to provide the upper bound in

performance. The average intelligibility score obtained in

anechoic quiet condition was 82.6% for the six tested CI lis-

teners. With the proposed BRM, the intelligibility of the

reverberant speech improved from 26.5% and 24.7% to

50.2% and 51.7% in T60¼ 0.6 and 0.8 s, respectively. For

T60¼ 0.3 s a small improvement from 55.4% to 58.3% was

observed.

An analysis of variance (ANOVA) (with repeated meas-

ures) confirmed a significant effect (F[2,10]¼ 78.92,

TABLE I. Biographical data of the CI users tested.

Subjects Age Gender

Years implanted

(L/R)

Number of

active electrodes CI processor

Etiology of

hearing loss

S1 58 F 2/- 22 N5 Unknown

S2 65 F 3/3 22 N5 Unknown

S3 65 M 3/- 21 Freedom Unknown

S4 78 M 7/7 21 Freedom Hereditary

S5 59 M 1/1 22 N5 Meniere’s disease

S6 62 F 2/2 22 N5 Unknown
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p< 0.05) of reverberation time and a significant effect of

processing (F[2,10]¼ 113.27, p< 0.05) on speech intelligi-

bility. Least significant difference (LSD) post hoc compari-

sons were run to assess significant differences in scores

obtained between different processing methods. Results indi-

cated that performance improved significantly (p< 0.05) rel-

ative to the reverberant (unprocessed) conditions with both

IRM and BRM processing techniques except for the BRM

processing in T60¼ 0.3 s. This is due to the fact that the pro-

posed BRM algorithm primarily suppresses overlap-masking

effect; hence in small reverberation times, where the self-

masking is dominant, the BRM has limited or no impact.

Spectrograms of speech are used here in order to visu-

ally assess the effectiveness of the proposed reverberant

mask in reverberation suppression. Spectrograms of anechoic

clean signal, reverberant, IRM, and BRM processed signals of

two IEEE sentences in T60¼ 0.6 and 0.8 s are plotted in Figs.

4 and 5.

As seen from the figures, reverberation is suppressed to

a great extent with the proposed BRM algorithm. The rever-

beration energy that previously filled the gaps and smeared

the phoneme onsets is greatly removed and the speech sylla-

bles are recovered [compare panels (b) and (d)]. Moreover,

FIG. 3. Individual as well as average intelligibility scores of six CI users in

(a) T60¼ 0.3 s, (b) T60¼ 0.6 s, and (c) T60¼ 0.8 s. “R,” “BRM,” “IRM,” and

“Un” stand for reverberant signals, BRM-processed, IRM-processed, and

unprocesed signals, respectively. Error bars indicate standard deviations.

FIG. 4. Speech spectrograms of the sentence: “The stitch will serve but

needs to be shortened,” for (a) clean, (b) reverberant (T60¼ 0.6 s), (c) IRM-

processed, and (d) BRM-processed reverberant signals.

FIG. 5. Speech spectrograms of the sentence: “The meal was cooked before

the bell rang,” for (a) clean, (b) reverberant (T60¼ 0.8 s), (c) IRM-processed,

and (d) BRM-processed reverberant signals.
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the proposed BRM provides a good estimate of the IRM

[comparing panels (c) and (d)].

IV. DISCUSSSION

As results indicate, even with moderate amounts of

reverberation (T60¼ 0.3 s), intelligibility scores drop (rela-

tive to the anechoic conditions) by 27.2% for CI users. After

applying the BRM to the reverberant signals, the subjective

intelligibility scores improved by 2.9%, 23.7%, and 27.0%

absolute percentage points in T60¼ 0.3, 0.6, and 0.8 s condi-

tions, respectively. These improvements are found to be

statistically significant (p< 0.05) at T60¼ 0.6 and 0.8 s.

Although the IRM algorithm produces higher intelligibility

FIG. 6. Stimulus output patterns (electrodograms) of the words: “will serve” from the IEEE sentence “The stitch will serve but needs to be shortened,” for

(a) clean, (b) reverberant (T60¼ 0.6 s), (c) IRM-processed, and (d) BRM-processed reverberant signals.

1612 J. Acoust. Soc. Am., Vol. 133, No. 3, March 2013 Hazrati et al.: Binary masking for dereverberation



gains, the BRM method still provides significant intelligibil-

ity improvements.

Blind nature of the BRM strategy (no use of either the

anechoic speech or RIR information) is the major reason of

obtaining lower scores by applying BRM strategy to the

reverberant signals (compared to the IRM-processed rever-

berant signals).1

This intelligibility improvement is hypothesized to be

due to the recovery of the vowel/consonant boundaries

obscured by reverberation and the gaps between vowels and

consonants filled with reverberant energy [see Fig. 4(b) and

Fig. 5(b)]. This is evident in unvoiced segments of speech,

and consequently causes a decrease in intelligibility (Kokki-

nakis et al., 2011). As shown in panels (c) of Figs. 4 and 5,

after applying the IRM to the reverberant signal, the vowel/

consonant boundaries and gaps previously filled with rever-

berant energy are recovered, resulting in improved intelligi-

bility. Comparing the spectrogram of the BRM-processed

reverberant speech [panel (d)] with that of the IRM-

processed reverberant signal [panel (c)], it is evident that the

vowel/consonant boundaries and gaps are restored to a great

extent. This is more evident in Fig. 6 which illustrates exam-

ple stimulus output patterns (electrodograms) of a shorter

segment (two words, t¼ 0.65 s to t¼ 1.3 s) with the ACE

speech coding strategy in the Nucleus 24 device. In all panels

shown, the vertical axes represent the electrode position cor-

responding to a specific frequency, while the horizontal axes

show time progression. Temporal envelope smearing is evi-

dent in Fig. 6(b). As shown in Fig. 6(b), temporal smearing

blurs the vowel and consonant boundaries which are nor-

mally present in the anechoic stimuli plotted in Fig. 6(a).

Applying IRM or BRM to the reverberant stimuli removes

the overlap masking effect of reverberation and results in a

channel selection pattern closer to that of anechoic stimuli.

This is evident by comparing Figs. 6(c) and 6(d) with Fig.

6(b). However, comparing the channels selected from the

BRM-processed signal to those selected from IRM-processed

signals, it is clear that the BRM makes mistakes in low fre-

quency regions (high electrode numbers in Fig. 6) which is

one of the main reasons for the intelligibility gap between

IRM-processed and BRM-processed signals.

The effectiveness of the proposed BRM in the time do-

main is also demonstrated in Fig. 2. The figure shows band-

pass filtered signal of the same IEEE sentence (as in Fig. 3) at

fc¼ 0.5 kHz for anechoic, reverberant (T60¼ 0.6 s), and BRM-

processed signals along with the estimated feature and thresh-

old values for the same frequency band. Comparing the BRM-

processed [panel 2(d)] with the anechoic and reverberant sig-

nals [panels 2(a) and 2(d)], we observe that the proposed

BRM technique restores the vowel/consonant boundaries.

It is worth mentioning that no explicit enhancement

technique is applied to the reverberant signals here, and the

intelligibility gains are solely from eliminating highly rever-

berant T-F units.

V. CONCLUSIONS

The present study proposed a binary blind reverberant

masking (BRM) strategy for improving intelligibility of

reverberant speech for CI listeners. This technique uses the

proposed feature [Eq. (1)] along with a nonparametric and

unsupervised threshold estimation method to classify the T-

F units to reverberation-dominant or reverberation-free units.

Reverberation was suppressed by retaining only the units

that were classified as reverberation-free. Performance of the

proposed technique was assessed through listening tests con-

ducted with six CI listeners. Listening tests indicated signifi-

cant improvements in intelligibility in relatively high

reverberant conditions (T60¼ 0.6 and 0.8 s). This improve-

ment was attributed to the recovery of the vowel/consonant

boundaries, which are often blurred in reverberation owing

to the late reflections.
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