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The pituitary peptide hormone prolactin (Prl) is a potent inducer of Nb2 T lymphoma cell proliferation. To
analyze the early genetic response to the mitogenic signals of Prl, a cDNA library was constructed from Nb2
T cells stimulated for 4 h with Prl and the protein synthesis inhibitor cycloheximide. Of 26 distinct clones
isolated by differential screening, one clone, designated c25, exhibited extremely rapid but transient kinetics of
induction by Prl and superinduction by Prl plus cycloheximide. Run-on transcription analysis indicated that
¢25 gene transcription was induced greater than 20-fold within 30 to 60 min of Prl stimulation. Surprisingly,
DNA sequence analysis of c25 cDNA revealed that this Prl-inducible early-response gene is the rat homolog of
the mouse transcription factor interferon-regulatory factor 1 (IRF-1), sharing 91% coding sequence similarity
with mouse IRF-1. At the protein level, rat IRF-1 shares 97% and 92 % homology with mouse IRF-1 and human
IRF-1, respectively, suggesting that this molecule has been functionally conserved throughout evolution. Our
studies show that the gene for IRF-1 is an immediate-early gene in Prl-stimulated T cells, which suggests that
IRF-1 is a multifunctional molecule. In addition to its role in regulating growth-inhibitory interferon genes,
IRF-1 may, therefore, also play a stimulatory role in cell proliferation. The gene for IRF-1 is one of the earliest
genes known to be transcriptionally regulated by Prl.

The pituitary hormone prolactin (Prl) has been shown to
be a differentiation-specific and potent growth-promoting
factor for a wide variety of tissues (11, 14, 20, 31, 38, 41, 45,
46). Relatively little is known about the initial biochemical
and genetic responses elicited by Prl binding to Prl receptors
in these target tissues. As a model system for studying the
mitogenic effects of Prl, a T-cell lymphoma line (Nb2) (15)
which proliferates in response to picogram amounts of Prl
was used. Prl administration to quiescent Nb2 cells results in
rapid transcriptional induction of several growth-related
genes (47), including c-myc, B-actin, ornithine decarboxyl-
ase, and heat shock protein 70. The rapid kinetics of tran-
scriptional induction suggests that these genes represent
GO0-G1 genes that respond directly to the mitogenic signals of
Prl. Further, induction of c-myc occurs without de novo
protein synthesis (46), suggesting that modulation of preex-
isting factors is involved in its transcriptional induction by
Prl. The rapid transcriptional response to Prl stimulation
suggests that Nb2 T cells represent an excellent culture
system with which to isolate novel, Prl-inducible early genes
critical for T-cell activation and growth.

A number of early-response genes or competence genes
have been isolated from diverse cell types, including growth
factor-induced (5) or serum-induced (1, 3, 5, 22, 26, 27, 29,
43) fibroblasts, growth factor-induced pheochromocytoma
PC12 cells (33, 34, 43, 44), and mitogen-induced T lympho-
cytes (25, 30, 39, 49; reviewed in reference 6). In most cases,
the protein synthesis inhibitor cycloheximide (CHX) was
used in the cloning strategy to isolate mRNA sequences
whose expression does not require de novo protein synthe-
sis, as well as to stabilize those rare gene transcripts that
may be rapidly but transiently induced. Interestingly, over-
lapping sets of identical early genes have been isolated from
these different cell types (3, 4, 21, 22, 28, 30, 33, 43),
demonstrating that the same regulatory proteins appear to
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mediate a variety of cellular responses to different external
signals. Some early-response genes encode nuclear DNA-
binding proteins with zinc finger motifs (4, 22, 28, 33, 43),
steroid hormone receptorlike molecules (19), transmem-
brane proteins (18), low-molecular-weight secreted mole-
cules (5, 30, 39), and even an interferonlike molecule (44).
How this battery of immediate-early genes functions in a
program leading to cell proliferation and/or differentiation is
not known.

In our studies, we set out to identify early-response genes
that may play an important role in Prl-mediated growth
control. A cDNA library was prepared from Nb2 T cells
after 4 h of incubation with Prl and CHX. Interestingly, one
of the early genes isolated was that for the transcription
factor interferon-regulatory factor 1 (IRF-1). IRF-1 has been
previously shown to be a potent transcriptional regulator of
growth-inhibitory interferon (IFN) and IFN-inducible genes
(12,17, 23, 35). In the Nb2 T-cell system, rat IRF-1 (rIRF-1)
demonstrated rapid, transient, and dramatic transcriptional
induction by Prl. rIRF-1 was also found to be expressed in a
number of different cell types, as well as a variety of tissues,
suggesting that expression of the gene for IRF-1 can be
regulated by other stimuli, in addition to a specific response
to Prl in Nb2 T cells. A dual role of rIRF-1 as an early
regulatory gene in the T-cell activation pathway and as a
regulator of growth-inhibitory genes is therefore suggested.
Prl is a potent stimulator of IRF-1 gene transcription in T
cells.

MATERIALS AND METHODS

Cell culture. Nb2 T cells were maintained in Fischer
medium for leukemic mice (GIBCO Laboratories, Grand
Island, N.Y.) as previously described (47), except that
newborn calf serum (Hazelton, Lenexa, Kans.) was used
instead of fetal bovine serum. Quiescent cells were prepared
as previously described (47). To reinitiate growth, 10 ng of
Prl (NIH-P-S13 from the National Institute of Diabetes and
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Digestive and Kidney Diseases) per ml was added. Protein
synthesis inhibitors were used at either 10 pg of CHX per ml
(10 mg/ml stock in water) or 30 uM anisomycin (8,000%
stock in ethanol).

Lambda ZAP c¢DNA library and differential screening. A
10-pn.g sample of poly(A)* RNA from Nb2 T cells that had
been treated for 4 h with Prl and CHX were used to generate
cDNAs by using a combination of oligo(dT) and random-
priming procedures as already described (41). Double-
stranded cDNAs were size selected for lengths greater than
500 base pairs (bp) and cloned into the lambda ZAP bacte-
riophage cloning system (Stratagene, San Diego, Calif.) (41).
An unamplified library of 10’ recombinant clones was ob-
tained. Phage plates (15 cm?) were prepared with medium
plaque density, and two identical filters (nitrocellulose or
nylon) were made from each plate. One filter was hybridized
with 3?P-labeled first-strand cDNA probes derived from
quiescent cells, and the second filter was hybridized with
cDNAs from Prl-plus-CHX-stimulated cells. Routinely, 2 X
10° cpm/ml was used for each filter. Filters were hybridized
at 42°C for 48 h and extensively washed at 50°C as already
described (41).

Isolation and characterization of cDNA clones. Differen-
tially reacting phage clones were excised from the lambda
ZAP phage vector by using a one-step excision protocol with
a helper phage as already described (41). The excised,
single-stranded phagemid was then recovered through bac-
terial transformation as double-stranded pBluescript(SK—)
plasmids. From 1 to 5 mg of recombinant plasmid DNA was
obtained from 100-ml bacterial cultures by using a modified
alkaline lysis procedure (2). EcoRI or EcoRI-HindIII double-
digest cDNA inserts were prepared by agarose gel electro-
phoresis, followed by glass-milk isolation (Bio101, La Jolla,
Calif.). For analysis of induction by Prl plus CHX, control
and Prl-plus-CHX-stimulated poly(A)* RNAs were directly
labeled by using T4 kinase (37) and hybridized to duplicate
slot blots containing S pg of DNA from various cDNA
clones.

RNA blot analysis. To determine the relative contributions
of Prl and CHX to increasing steady-state mRNA levels,
RNA slot blots were made containing 5 pg of total RNA
from control and Prl-, Prl-plus-CHX-, and CHX-treated cells
and hybridized with individual cDNA inserts. To estimate
the sizes of the corresponding mRNAs, 10 pg of total RNA
was analyzed by hybridization with random-primed cDNAs
as already described (48). To determine cell type-specific
expression, NIH 3T3 fibroblasts were made quiescent in 1%
fetal bovine serum for 24 h and stimulated with 20% fetal
bovine serum plus CHX for 4 h. Mouse mammary epithelial
cells, Comma-D (7), were cultured as already described (48)
and stimulated with 1 ug each of insulin, hydrocortisone,
and Prl per ml plus CHX for 4 h. To determine clone 25 (c25)
mRNA expression in various tissues, 50 pg of total RNA
from a panel of rat tissues was hybridized with a c25 cDNA
probe. The hybridized signals were quantitated by densito-
metric scanning of multiple exposures of the autoradiograms
with a Quick Scan integrator (Helena Laboratories, Beau-
mont, Tex.).

Nuclear run-on transcription assay. To determine relative
transcriptional activities of genes in quiescent versus Prl-
stimulated cells, 90 X 10° nuclei were analyzed by an in vitro
run-on transcription assay as already described (47). DNA
dot filters contained 5 pg each of c25 (1.7 kilobases [kb]), c34
(2.6 kb), and pGemblue (2.9 kb; Promega Biotec, Madison,
Wis.). In each hybridization reaction, 27 x 10° cpm was
used, and three to four individual reactions were used for
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TABLE 1. Prl-plus-CHX-responsive cDNA clones from an
Nb2 T-cell library®

Clone® Insert size (kb) Response®
1 1.2 +
2 2.6 +
4 1.6 +
5 1.7 +
15 1.1 ++
22 4.7 +
24 1.3 +
25 1.7 +++
26 1.6 40% inhibition
29 1.0 +
30 1.5 +
35 2.8 +
4b 2.1 +++

“ This table represents a partial list of Prl-plus-CHX-responsive cDNA
clones.

® c4b was identified by rescreening the library with c25. ¢34 (2.6-kb insert
[not listed]), which does not respond to Prl plus CHX, was used as a control
cDNA.

€ Treatment with Prl plus CHX for 4 h. +, Low; ++, moderate; +++,
high.

each time point. Hybridized counts were eluted and quanti-
tated by liquid scintillation counting. After correction for the
plasmid DNA background (average, 4 ppm), the transcrip-
tion rate was determined as parts per million input counts
hybridized per kilobase of DNA (ppm/kb).

DNA sequencing. For DNA sequencing of c25, several
overlapping cDNA clones were used. A full-length cDNA
clone, c4b, was isolated from the lambda ZAP cDNA library
by using a 0.9-kb insert representing the most 5’ portion of
c25 as the probe. Either single-stranded phagemids or dou-
ble-stranded plasmids were sequenced by the chain termina-
tion method by using Sequenase (U.S. Biochemical Corp.,
Cleveland, Ohio) together with M13 reverse primer (Strata-
gene), T7 primer (Stratagene), or custom-made specific
primers. Exonuclease III-Mung bean nuclease deletion and
sequencing protocols (Stratagene) were used to generate
nested deletions for sequencing. All sequences were deter-
mined in both directions through all overlapping sites or at
least three times in one direction.

RESULTS

Cloning and isolation of Prl-plus-CHX-responsive genes. To
identify genes that may play a role in Prl-mediated growth
control, the strategy was to isolate genes that are expressed
early after Prl stimulation of quiescent Nb2 T cells without
protein synthesis. Incubation with Prl for 4 h was chosen
because previous studies have determined that two growth-
related genes, c-myc (13, 47) and Nb29, a heat shock protein
70 homolog (8, 47), were induced 5- to 10-fold at the
transcriptional level at 4 h after Prl stimulation (47). A
lambda ZAP Nb2 T-cell cDNA library was differentially
screened with first-strand cDNAs prepared from quiescent
versus Prl-plus-CHX-stimulated cells. Of 143,000 plaques
screened, 96 primary positive plaques were obtained which,
after multiple rounds of screening, generated 26 Prl-plus-
CHX-responsive clones. cDNA insert sizes estimated on the
basis of EcoRI and EcoRI-HindIII restriction digestion of
pBluescript(SK —) plasmids ranged from 1 to S kb (Table 1).
Cross-hybridization analyses showed that these clones did
not hybridize to each other, to a panel of known oncogenes
(c-fos, c-myc, c-ras, c-src, c-mos, and c-abl), or to T-cell
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FIG. 1. c25 gene expression in Nb2 T cells. Total RNAs (10 pg
per lane) isolated from control cells (C) versus cells treated for 4 h
with Prl, Prl plus CHX, or CHX were hybridized with a c25 cDNA
probe. Autoradiographic signals were quantitated by densitometric
scanning as described in Materials and Methods.

activation genes (interleukin 2 and its receptor), indicating
that they represent unique and distinct cDNAs (data not
shown).

To determine the abundance and inducibility of the 26
mRNAs represented by the Prl-plus-CHX-responsive cDNAs,
poly(A)* RNA from either quiescent or Prl-plus-CHX-treat-
ed cells was directly labeled with T4 kinase (37) to ensure full
representation of all mMRNA sequences and used as hybrid-
ization probes (data not shown). Two identical slot blots
containing all 26 unknown cDNAs were hybridized with the
two RNA probes. Following densitometric scanning, these
clones were grouped into those that were highly inducible,
moderately inducible, or inhibited by Prl plus CHX (Table
1). Selected cDNAs were further analyzed by RNA slot blots
for inducibility with Prl or CHX (data not shown). Most of
the unknown cDNAs fell into the moderate-inducibility
category, with Prl plus CHX treatment resulting in a two- to
threefold change in steady-state mRNA levels. One clone,
c26, was inhibited by CHX alone. Another clone, c25, was
inducible more than 15-fold by Prl plus CHX and was further
analyzed for its pattern and kinetics of induction in response
to either Prl or CHX alone.

c25 gene expression: early response to Prl. By using c25
cDNA as a probe, a single mRNA species at 2.1 kb was
observed in Nb2 T cells, which was stabilized by CHX alone
and superinduced by Prl plus CHX (Fig. 1). Since c25
mRNA was superinducible with Prl plus CHX, lack of a c25
signal in the RNA treated with Prl for 4 h suggests that c25
was transiently induced by Prl in less than 4 h. An early time
course study (Fig. 2) confirmed that, indeed, c25 mRNA
levels were rapidly induced within 30 min by Prl and that
maximum stimulation of about 15-fold above basal levels
occurred at 1 h. This rapid and dramatic increase was
transient, as c25 mRNA had returned to nearly basal levels
by 4 h of Prl incubation. In comparison, c-myc mRNA was
induced by Prl with similar rapid kinetics, while Nb29 was
maximally induced at 4 to 6 h. However, unlike c25 mRNA,
c-myc and Nb29 mRNA levels were not transiently induced
but remained elevated in the continued presence of Prl. The
induction of early growth response genes by Prl in Nb2 T
cells was specific, as the level of 18S rRNA remained
relatively unchanged with Prl incubation.
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FIG. 2. Early time course of Prl-inducible c25 gene expression in
Nb2 T cells. Total RNA (10 pg per lane) was isolated at various
times after Prl stimulation of quiescent Nb2 T cells and hybridized
with various DNA probes. RNA sizes: c25, 2.1 kb; c-myc, 2.4 kb;
Nb29, 2.4 kb; 18S rRNA, 1.9 kb.

¢25 gene expression: transcriptional regulation by Prl. The
unusually rapid, transient, and dramatic increase in c25
mRNA levels suggested that this gene is regulated by Prl at
the transcriptional level. To analyze the relative transcrip-
tion rate of c25, nuclear run-on transcription assays were
performed (Fig. 3). A rapid 14-fold induction by Prl of the
c25 transcription rate was observed at 15 min, which in-
creased to greater than 22-fold by 30 min but was completely
gone by 4 h. This very rapid but transient increase in c25
transcriptional activity is specific, as the transcription rate of
a control gene, c34, was relatively unchanged in response to
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FIG. 3. The c25 gene is transcriptionally regulated by Prl in Nb2
T cells. The transcriptional activities of nuclei isolated from quies-
cent cells versus cells treated with Prl at various times were
analyzed by nuclear run-on transcription (Tx) assay as described in
Materials and Methods. Relative rates of c25 transcription in re-
sponse to Prl are shown. Hybridization signals for c25 mRNA in the
same experiment were quantitated by densitometric scanning.
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TAA TTTGGGTCCCTGACCCGTTCTTGCCCTCCTGAGTGAGCTAGGTCCAGCATCATGGTGGCTGTGATACAACATAAAGCTAAACT
TCCGTGGACCCCTTGATGTGGCAAAACATAATCCCATTGCCAAGCAGGGAAGGGACCAAACCATCCTCCTTGGGTCAGTGGACTGACTCTTCAGAGCTT
AGGAGGCAGGGTCTAAGTTTTTCAAGCTGGTCCTGACTCCTAGGAAGATGGATTGGCGTTCTGAGGTTAGTGTGAGGCAGAGGACCTGGACGGAAGTTA
CCTTCTAGCTCTTTGAAAGCTTCATTGCTTAGAGAGGGTCTCACCACTGGGCTGGCCTGGGGGATAGACCAGCGCCCACAGAAGAGCATTGCACTGGCC
TTAGGGCTGGCTCCACACTGGGAGACAATTGCACTAAGTCCTATTCCCAAAGAACTGCTGCCCTTCCCAACCGAGCCCTGGGATGGTTCTAGAGCCAGT

GAAATGTGAAGGAAAAAATGGGGTCCTGTGAGGGTTGTCTCCCTTAGCCTCAGAGGGATTCTGCCTCACTCCCTGCTCCAGCTGTGGGGCTCAGGAAAA

AAAAATGGCACTTTCTCTGTGGACTTTGCCACATTTCTGATCAGAAGTGTACACTAACATTTCTCCCAAGTCTTGGCCTTTGCATTTATTTATATAGTG
CCTTGCCCTGTGCCTGCTGTCTCTCCTCAGGCCTCAGCAGTCCTCAGCAGGCCCAGGGAGGGGGTTGTGAGCGCCTTGGCGTGACTCTGAACATTGGAA
ACGCCACCTAACTACTAAGTTGTGTCTGATCTCGTGTGGATCTGTGTAAATATGTATATTCATCTTTTTATAAAAACCTAAGTTGTTTAAAAAAAAAAA

FIG. 4. Structural analysis of ¢25 cDNA. (A) Nucleotide sequence and deduced amino acid sequence of c25-c4b. Lys-Arg basic and
Glu-Asp acidic domains are shown in brackets. Potential CK-II phosphorylation sites, Ser/Thr-X-X-Asp/Glu, are overlined. A potential
N-linked glycosylation site, Asn-X-Thr, is boxed. The AUUUA motif sequences are underlined. (B) Nucleotide sequence comparison
between rIRF-1 and mIRF-1 cDNAs. Dashes represent identical sequences, dots represent deletions, and the sequences in the corresponding

regions are shown in lowercase letters.

Prl (data not shown). In the same experiment, a rapid,
transient, and dramatic increase in steady-state ¢25 mRNA
was observed, with 18-fold stimulation above basal levels at
1 h. The parallel induction by Prl of both gene transcription
and mRNA accumulation demonstrated for the first time that
c25 is one of the earliest Prl-inducible genes shown to be
regulated primarily at the transcriptional level.

Sequence analysis: ¢25 is the rat homolog of mouse IRF-1
and human IRF-1. Since c25 contains only a 1.7-kb insert, a
5'-end 0.9-kb fragment of ¢25 cDNA was used to rescreen
the lambda ZAP c¢cDNA library. Several overlapping clones
containing more 5’ sequences were obtained. ¢c4b was found
to contain an additional 400 bp of 5' sequences. DNA
sequence analyses of these and Exonuclease III-Mung bean

nuclease deletion clones generated from c25 with either
primers flanking the DNA inserts or custom-made oligomer
primers specific for c4b sequences (data not shown) pro-
vided a complete 2.1-kb cDNA sequence with a single open
reading frame of 328 amino acids (Fig. 4A). Surprisingly, this
open reading frame was found to share 91% sequence
similarity with the mouse interferon-regulatory factor 1
(mIRF-1)-coding-region cDNA (35) (Fig. 4B), suggesting
that ¢25-c4b is likely to be the rat homolog of mIRF-1.

The 5’ sequence of c4b extended 15 bp beyond the
reported mIRF-1 cDNA clone, but appeared to end 15
nucleotides 3’ of the major capping site in the genomic
mIRF-1 gene (Fig. 4B) (35). Interestingly, the high degree of
similarity between the rIRF-1 and mIRF-1 sequences was
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not observed in the 15-bp extended 5’ noncoding rat cDNA
sequence (Fig. 4B). A simple repeat, AACCG, occurs 10
times in the mouse 5’ noncoding region but only 6 times in
the rat sequence as a result of a 20-bp deletion in the rat
cDNA. The overall sequence identity between the rat and
mouse 3’ noncoding regions is about 85%, and several
deletions and insertions are found in both rat and mouse
sequences. One exception is ATTTATTTA and the sur-
rounding 25-bp sequences in the 3’ ends of both cDNAs,
which are completely identical (Fig. 4). The ATTTA se-
quence motif has been implicated in mediating rapid mRNA
turnover of a variety of lymphokine genes and oncogenes via
posttranscriptional mechanisms (40).

Comparisons of the rIRF-1, mIRF-1, and human IRF-1
(hIRF-1) proteins showed that the rIRF-1 protein is also
highly enriched in Lys and Arg residues, which constitute
55% of the amino acids between residues 117 and 138,
generating a very basic domain in the protein (Fig. 5). This
domain is followed by a region enriched in Ser-Ser residues
(Fig. 5B). Between amino acids 223 and 246 is an acidic
domain in which Glu and Asp make up 42% of the residues.
The last 27 amino acids constitute the most hydrophobic
domain (59%) of the protein and contain a single potential
N-linked glycosylation recognition site, 314-Asp-Ser-Thr,
which is not conserved in either mIRF-1 or hIRF-1. A single
amino acid deletion following the potential glycosylation site
makes rIRF-1 one amino acid shorter than mIRF-1. In
addition to the conserved charged domains, another strik-
ingly conserved feature is the cluster of potential phosphor-
ylation sites found in the middle of all three IRF-1 proteins.
For example, the potential casein kinase II (CK-II) recogni-
tion sequence Ser/Thr-X-X-Asp/Glu is present 11 times in
rIRF-1 and hIRF-1, and 9 times in mIRF-1 (Fig. 4A and 5B).
In particular, one such site in hIRF-1, 192-Thr-X-X-Asp, has
been conserved in position but not in sequence relative to
rIRF-1 and mIRF-1, i.e., 192-Ser-X-X-Glu. Interestingly, the
first half of the IRF-1 molecule, believed to bind to specific
DNA sequences through the basic Lys/Arg domain, is con-

53% 42% 59%
A lys/arg glu/asp hydrophobic 100bp
. =" 1% F1 B Adn

mouse : K-
human : W I LE. K

. . 60
rat : MPITRMRMRPWLEMQINSNQIPGLSWINKEEMIFQIPWKHAALHGWDINKDACLFRSWAI
I K.

rat : HTGRYKAGE)EPDPKTWKA;!FRCAHNSLPDIEEVKDQSRI‘(KGSSAVRVYRHLPPLTIO%%}%
mouse : R
human :

—_— P —— P 180
rat : KERKSKSSRDTKSKTKRKLCGDSSPDTLSDGLSSSTLPDDHSSYTAQGYLGQDLDMDRDI
mouse : v F E---
human : A A F

VP--M. ---EVEQAL

rat : TPAISPCWSSSISEHIHQHDIKPDSTTDLYNIQVSPHPSTSEMTDEDEEGKLPEDIHK
mouse : IA--L--
human :

-------A---T-PD-°IP’VEV‘ S----F

I---T

—_— 320
rat : LFEQSWQP!’HVDGKGYLLNEPGAQISTWGDFSCKEEPEIDSPGGDIEIGIQRVFTEHK
mouse : I ‘l‘ S R H

human : -L. N V-PT!

rat : NHDWHWHMLI.GNSTR PPSIOAIPCAP 328
mouse : ---ST:
human : ---AT.-L-§--TP.V-L-,-=-mmmmmn

FIG. 5. Comparison of rIRF-1, mIRF-1, and hIRF-1. (A) Con-
served domains in IRF-1. 5’ and 3’ noncoding regions are illustrated
as open lines. Coding sequences are depicted as open boxes in
which the conserved basic (Lys-Arg) and acidic (Glu-Asp) domains
are highlighted. (B) Amino acid sequence comparisons of rIRF-1,
mIRF-1, and hIRF-1. rIRF-1, mIRF-1, and hIRF-1 are 328, 329, and
325 amino acids long, respectively. Potential CK-II sites are over-
lined. Basic (K-R) and acidic (D-E) domains are bracketed by
arrows. The potential N-linked glycosylation site (NST) in rIRF-1 is
marked by a solid bar. The numbers conform to the rat protein
sequence. Single-letter amino acid codes are shown.
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FIG. 6. c25-rIRF-1 expression in different cell types. The vari-
ous cell cultures were ‘‘deinduced’’ in the appropriate medium for
24 h before stimulation with either serum or hormones plus CHX for
4 h as described in Materials and Methods. Inducer: 20% fetal
bovine serum for 3T3 cells; insulin, hydrocortisone, and Prl at 1
pg/ml for Comma-D cells; and Prl at 10 ng/ml for Nb2 T cells. A
1.5-ug sample of poly(A)* RNA from 3T3 cells and 5 pg each of
poly(A)* RNAs from Comma-D and Nb2 T cells were hybridized
with a c25 cDNA probe. No hybridization signals were obtained
with control Comma-D cell RNA (data not shown).

served in all three IRF-1 proteins. The second half of the
molecule, which is believed to mediate trans-activating
functions (17, 35), is more divergent among the three pro-
teins, suggesting potential differences in function.

¢c25-rIRF-1 expression in various cell types. Since rIRF-1 is
dramatically induced by Prl in Nb2 T cells, it was next
determined whether IRF-1 is expressed in another cell type
that is also responsive to Prl stimulation. The mammary
epithelial cell line Comma-D (7) responds to Prl by expres-
sion of differentiated functions (Fig. 6). As a control, mouse
3T3 fibroblasts were used. Since ¢25-rIRF-1 mRNA might
also be unstable in these cell types, an inducer-plus-CHX
protocol was used. Under superinduction conditions, a
2.1-kb signal was observed in poly(A)* RNAs from all three
types of cells, indicating that c25-rIRF-1 can be expressed in
T cells, fibroblasts, and epithelial cells. It is not known
whether serum alone can induce ¢25-rIRF-1 expression in
fibroblasts. Interestingly, c25-rIRF-1 mRNA levels were
elevated in actively proliferating mammary epithelial cells,
while fully differentiated mammary cells did not express
c25-rIRF-1 mRNA, even in the continued presence of Prl
(data not shown). It appears that c25-rIRF-1 mRNA accu-
mulates in rapidly growing mammary epithelial cells but
becomes unstable as the cells are induced to differentiate
with lactogenic hormones. These results reinforce the notion
that c25-rIRF-1 is a growth-related gene and also suggest
that c25-rIRF-1 can respond to signals other than Prl in other
cell types.

¢25-rIRF-1 expression in normal rat tissues. rIRF-1 expres-
sion was also examined in various rat tissues exposed only to
normal circulating levels of Prl (Fig. 7). Except for the
pancreas, rIRF-1 expression was detected at different abun-
dancies in all of the tissues examined. In particular, signifi-
cant rIRF-1 mRNA levels were found in the small intestine,
as well as in stomach, spleen, and lung tissues. Thus, it
appears that c25-rIRF-1 expression is not limited to one
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FIG. 7. c25-rIRF-1 expression in normal rat tissues. Total RNAs
(50 ug per lane) from various rat tissues were isolated from 24-day
old rats and examined for c25-rIRF-1 expression by hybridization
with a c4b cDNA probe. The Nb2 T-cell control lane contained 5 pg
of total RNA. St, Stomach; P, pancreas; I, small intestine; Sp,
spleen; Li, liver; K, kidney; B, brain; H, heart; Lu, lung.

particular tissue or cell type (Fig. 6) and that IRF-1 has a
general role in cell growth and differentiation processes, in
addition to exhibiting a specific response to Prlin Nb2 T cells.

DISCUSSION

Prl is a multifunctional neuroendocrine hormone which
plays a role in cell proliferation and differentiation in a
variety of tissues and cell types. Despite extensive analysis,
the molecular basis and regulatory mechanisms underlying
Prl action remain unclear. This study reports the cloning of
a panel of Prl-inducible early genes and the detailed charac-
terization of one immediate-early gene from a T-cell line as a
first step toward understanding the complex genetic re-
sponse of cells initiated by interactions between Prl and its
receptors.

rIRF-1 is a Prl-inducible, transiently expressed, immediate-
early gene. One of the immediate-early genes isolated from
Prl-plus-CHX-induced Nb2 T cells is transcription factor
rIRF-1. Expression of the gene for rIRF-1 is regulated by
rapid and dramatic 20-fold transcriptional up regulation by
Prl (Fig. 3). The transcriptional induction by Prl is transient,
with maximum stimulation between 30 and 60 min and a
complete return to basal levels by 4 h of Prl treatment. It is
not known which mechanism is involved in the transcrip-
tional shutoff of the gene for rIRF-1 and whether this process
would require ongoing protein synthesis. Transcriptional
induction slightly precedes the increase in steady-state rIRF-
1 mRNA and is sufficient to account for the large 18-fold
transient rise in rTIRF-1 mRNA levels (Fig. 3). The intrinsic
lability of rIRF-1 mRNA contributes to the transient nature
of rIRF-1 expression. rIRF-1 mRNA levels can be increased
by CHX alone (Fig. 1), suggesting that steady-state rIRF-1
mRNA is under negative regulation by a labile protein
factor. In fact, inclusion of CHX in the 4-h Prl induction
regimen proved to be critical for IRF-1 detection, because
CHX stabilized the unstable rIRF-1 transcripts. Hence,
IRF-1 superinduction by Prl plus CHX reflects in part a
stabilization of rIRF-1 mRNA levels by a posttranscriptional
mechanism, possibly involving the AUUUA sequence motif
located in the 3’ noncoding region of rIRF-1 mRNA (Fig. 4A).

It is not known whether rIRF-1 protein activity is also
transiently regulated by Prl. rIRF-1, mIRF-1, and hIRF-1 are
highly conserved in the first half of the molecule, including
the basic domain which is implicated in DNA binding (Fig. 5)
(17). A number of potential CK-II consensus sites lie within
and border this conserved basic domain (Fig. 4 and S).
Phosphorylation of the IRF-1 protein at these sites may alter



VoL. 10, 1990

its efficiency of binding to DNA (18, 35). Recent studies
suggest that the c-myc-encoded protein is phosphorylated by
a CK-II-like enzyme in vivo (32) and that such phosphory-
lation of the c-myc-encoded protein might play a role in
signal transduction to the nucleus. Interestingly, this basic
domain also contains the sequence Arg-Lys-X-Arg-Lys-
X-Lys, which is reminiscent of the highly conserved nuclear
localization signal Arg-Lys-X-(Arg-Arg/Lys-Lys)-X-X-(Arg/
Lys) found in steroid hormone receptors and the simian
virus 40 large T antigen (16). Thus, phosphorylation at the
CK-II sites around this basic domain could potentially
influence important regulatory regions in IRF-1 involved in
DNA binding and/or nuclear translocation. Rapid modula-
tion through protein phosphorylation may be another way of
transiently modifying IRF-1 protein activity.

Novel role of rIRF-1 in cell proliferation? The function of
rIRF-1 in Prl-mediated cell proliferation is unclear. The
transient nature of rIRF-1 expression suggests that the
rIRF-1 gene product is important for initiation of the GO-
to-G1 transition within the cell cycle, and its continued
presence may not be needed for progression through G1.
Interestingly, the gene for IRF-1 was originally isolated on
the basis of its properties as a transcription factor regulating
the expression of the genes for IFN in Newcastle disease
virus-induced mouse 1.929 fibroblasts (35). Since IFNs rep-
resent highly potent polypeptides that inhibit cell growth (10,
42), the paradox arises that in Prl-stimulated Nb2 T cells
poised for cell growth, its transcription factor, rIRF-1,
should be isolated as an immediate-early gene. In this
regard, it will be interesting to see whether Nb2 T cells are
induced by Prl to synthesize IFN through rIRF-1 induction.
Temporal restriction in the length of rIRF-1 expression
might be needed to prevent overproduction of these potent
growth-inhibitory molecules. If this is true, then the mitoge-
nic signal from Prl would be inherently self-limiting through
eventual induction of antiproliferative IFN and IFN-induc-
ible genes by the transcription factor rIRF-1. Alternatively,
rIRF-1 may simply regulate other growth response genes not
related to the growth-inhibitory pathways.

rIRF-1 expression is not limited to one cell type, as its
expression was observed in proliferating T cells, mammary
epithelial cells, and fibroblasts (Fig. 6). rIRF-1 is also widely
expressed in various normal rat tissues (Fig. 7). In particu-
lar, rIRF-1 mRNA was detected at significant levels in small
intestine tissue, which contains an abundance of rapidly
proliferating crypt cells (24). IRF-1 expression appears to be
correlated with the proliferating status of some tissues, as
rapidly growing mammary epithelial cells, as well as conca-
navalin A-stimulated splenocytes also exhibit increased lev-
els of IRF-1 mRNA (L. A. Schwarz and L.-Y. Yu-Lee,
unpublished data). At least two other stimuli, Newcastle
disease virus and IFN-, also induce transient IRF-1 expres-
sion in mouse fibroblasts (17, 35). These observations show
that rIRF-1 may be inducible by multiple stimuli in the other
tissues and cell types, in addition to a specific response to Prl
in Nb2 T cells.

Transcriptional and posttranscriptional mechanisms in-
volved in Prl action. Another tissue addressed by our studies
is the mechanism by which Prl regulates gene expression in
its target tissues. A handful of Prl-regulated, differentiation-
specific marker genes from mammary gland tissue appear to
be regulated by Prl primarily at the posttranscriptional level
(11, 36), although a specific effect of Prl on gene transcription
has been observed (9; H. S. Goodman and J. M. Rosen, J.
Cell Biol. 109:102a, 1989). Moreover, maximal induction of
these differentiation-specific genes by Prl occurs only after
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several days (11). This study is the first to demonstrate that
a gene that encodes a potent transcription factor, IRF-1, is
regulated by Prl at the transcriptional level (Fig. 3). Further-
more, rIRF-1 gene transcriptional induction by Prl is maxi-
mal within 1 h of hormone stimulation, demonstrating that it
is also one of the earliest-responding genes regulated by Prl.
We suspect that IRF-1 is a nuclear mediator of the Prl
response in Nb2 T cells.

rIRF-1, a multifunctional molecule. These studies suggest
that rIRF-1 is a highly inducible immediate-early gene whose
expression is part of an early mitogenic response to Prl in
Nb2 T cells. These studies also indicate that IRF-1 plays a
pleiotropic role in the regulation of cell proliferation and/or
differentiation, that is, that it may be growth promoting in
one cell type and growth inhibiting in another via expression
of IFN genes. In this manner, IRF-1 may be a master switch
gene, capable of responding to multiple external signals, in
addition to a specific response to Prl in T cells. Thus, we
suspect that IRF-1 and the recently identified transcriptional
repressor IRF-2, which share identical DN A-binding speci-
ficities (17), are a new class of transcription factors which
may be involved in the expression of a network of other
early genes whose transcriptional activity may be amplified
or limited by IRF-1 and IRF-2. These studies further show
that rIRF-1 represents an excellent molecular marker with
which to examine the role of Prl in T-cell growth regulation
and activation and should provide new insights into the
immunoregulatory properties manifested by this versatile
neuroendocrine hormone.
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