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Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-
induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-𝛾2
(PPAR𝛾2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPAR𝛾 increases subcutaneous
adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with
docosahexaenoic acid (DHA), a PPAR𝛾 agonist, would normalize IUGR adipose deposition in association with increased PPAR𝛾,
adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized
model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat withmaternal DHA supplementation. Our primary findings
were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose
deposition and visceral PPAR𝛾 expression in male rats and (2) increases serum adiponectin, as well as adipose expression of
adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may
normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.

1. Introduction

Intrauterine growth restriction (IUGR) predisposes to adult
onset disease. The development of obesity following IUGR is
well documented and results from adipose dysfunction [1–
3]. While IUGR infants are smaller than their appropriately
grown counterparts at birth, their rate of weight accretion
is accelerated in childhood and they acquire more adipose
tissue. An important concept is that IUGR adipose tissue is
dysregulated before the onset of obesity [4, 5]. In addition
to increased relative amounts of adipose tissue, adipose
deposition in IUGR children favors formation of visceral
adipose tissue (VAT) over subcutaneous adipose tissue (SAT)
[6–8].

We previously demonstrated that IUGR increases the
ratio of VAT to SAT inmale adolescent rats, prior to the onset
of obesity, with no effect in female rats [9]. The changes in
adipose deposition in IUGR were accompanied by increased

expression of the adipogenic transcription factor peroxisome
proliferator activated receptor-𝛾2 (PPAR𝛾2) in VAT, but not
SAT, of male rats [9].

An important transcriptional target of PPAR𝛾 is
adiponectin [10, 11]. Adiponectin improves insulin sensitivity
and normalizes adipose deposition [12]. When mice with
excessive VAT deposition overexpress adiponectin, VAT is
redistributed to SAT in association with improved metabolic
parameters [12]. Interestingly, the same outcome occurswhen
obese mice are given a PPAR𝛾 agonist [12]. PPAR𝛾 agonists,
such as the long chain fatty acid (FA) docosahexaenoic
acid (DHA), improve metabolic disease in both human and
animal models and increase PPAR𝛾 mediated transcription
of targets such as adiponectin [11, 13, 14].

The effects of adiponectin are imparted through one
of its two receptors Adiponectin receptor 1 (AdipoR1) and
adiponectin receptor 2 (AdipoR2) [15]. AdipoR1 and Adi-
poR2 have been found to be decreased with obesity leading
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to reduced adiponectin sensitivity [16]. Additionally, AdipoR1
and AdipoR2 are significantly decreased in adipose tissue of
insulin resistant ob/ob mice when compared with control
mice [16].

The effects of IUGR on adiponectin and adiponectin
receptor expression in the rat are unknown. Also unknown
are the effects of maternal DHA supplementation on adipose
distribution, as well as expression of PPAR𝛾, adiponectin, and
adiponectin receptors in the context of IUGR. Because DHA
activates PPAR𝛾, we hypothesized that maternal DHA sup-
plementation would normalize IUGR VAT and SAT levels in
associationwith increased PPAR𝛾, adiponectin, AdipoR1 and
AdipoR2 expression in SAT. To test these hypotheses, we used
a well-characterized model of uteroplacental-insufficiency-
(UPI-) induced IUGR in the rat [9, 17, 18] and developed a
model of maternal DHA supplementation in the context of
the UPI-induced IUGR rat [19].

2. Materials and Methods

2.1. Animals. All procedures were approved by theUniversity
of Utah Animal Care Committee and are in accordance
with the American Physiological Society’s guiding principles
[20]. IUGR was induced by uteroplacental insufficiency
(UPI) in Sprague Dawley rats as previously described [9,
19, 21]. Briefly, on day 19 of gestation, pregnant Sprague-
Dawley rats were anesthetized with intraperitoneal xylazine
(8mg/kg) and ketamine (40mg/kg), and both uterine arteries
ligated giving rise to IUGR pups. Control dams underwent
identical anesthetic procedures. After recovery, rat dams had
ad libitum access to food and water.

Maternal rats were allowed to deliver spontaneously at
term; pups were weighed and litters randomly culled to
six, to normalize postnatal nutrition. The pups remained
with their mothers, feeding via lactation, until day 21 of
postnatal life (d21). At d21, control and IUGR rat offspring
underwent euthanasia using a sodium pentobarbital over-
dose (150mg/kg), blood and serum were collected, and
subcutaneous and retroperitoneal (a representative visceral
depot) adipose was immediately harvested and flash frozen
in liquid nitrogen.

2.2. Maternal DHA Supplementation. DHA was adminis-
tered via a custom diet [19].The diet, based on Harlen Teklad
8640 standard rodent diet (TD.8640, Harlan-Teklad, WI),
substitutes 1% of the soybean oil in the standard chow with
1%purifiedDHA(cis-docosahexaenoic acid, no.U-84-A,Nu-
Chek Prep,MN).The resulting diet (here called 1%DHAdiet)
contains the same macronutrient content as standard rodent
chow (21.8%protein, 40.8% carbohydrate, and 5.4% fat, with a
resulting caloric density of 3 Kcal/g). DHA at 1% was chosen
based on our previous studies demonstrating that maternal
supplementation with 1% DHAwas sufficient to increase pup
DHA levels and to be associated with alterations in PPAR𝛾 in
other tissues [19].

The pregnant rats were pair-fed regular diet or 1% DHA
diet from E13 and through lactation. The continuation of
the maternal diet is important to this study as the fatty

acid composition of the maternal milk reflects the maternal
dietary fatty acid profile [22, 23]. Each group (Control, IUGR
and DHA-IUGR) consisted of 6 male and 6 female pups
derived from different litters.

2.3. Magnetic Resonance Imaging. Magnetic resonance imag-
ing (MRI) experiments were conducted using a Bruker
Biospec 70/30 instrument (Billerica, MA) and a 72mm-
diameter birdcage radiofrequency (RF) transmit-receive res-
onator as previously described [9]. ImageJ macros were
created to automate the process of image analysis while still
allowing manual intervention at key steps that were less
amenable to automation [9, 24].

2.4. Serum Adiponectin Quantification. Serum adiponectin
was quantified using an enzyme linked immunosorbent
assay (ELISA) (Alpco Diagnostics, NH, (44-ADPRT-E01))
according to the manufacturer’s instructions.

2.5. Real-Time RT-PCR. Real-time reverse transcriptase
polymerase chain reaction (RT-PCR) was used to eval-
uate mRNA levels in subcutaneous and visceral adipose
tissue of adiponectin and adiponectin receptors as previ-
ously described [9, 19, 25]. The following Assay-on-demand
primer/probe sets were used: PPAR𝛾2-Rn00440940 m1,
adiponectin-Rn00595250m1, AdipoR1-Rn01483784m1, and
AdipoR2-Rn01463173m1 (Applied Biosystems, CA, USA).
GAPDHwas used as an internal control (GAPDHprimer and
probe sequences; Forward: CAAGATGGTGAAGGTCG-
GTGT; Reverse: CAAGAGAAGGCAGCCCTGGT; Probe:
GCGTCCGATACGGCCAAATCCG).

2.6. Protein Analysis. Adipose tissue levels of PPAR𝛾2,
AdoR1, and AdoR2 protein were quantified using immu-
noblotting as previously described [9, 19]. The following
primary antibodies were used: PPAR𝛾 (H-100, sc-7196, Santa
Cruz Biotechnology), AdipoR1 (Santa Cruz Biotechnology,
CA, sc-46748), and AdipoR2 (Alpha Diagnostic Interna-
tional, TX, ApidoR21-A).

2.7. Statistics. Data are presented as IUGRorDHA-IUGR rel-
ative to sex-matched controls ± SEM. Statistical significance
was determined using ANOVA using the StatView 5 software
package (SAS Institute, Inc.). 𝑃 ≤ 0.05 was considered signi-
ficant.

3. Results

3.1. BodyWeights. Control rat dams supplementedwithDHA
did not differ in body weight from control rat dams fed a
regular diet. Similarly, IUGR rat dams supplemented with
DHA did not differ in body weight from IUGR rat dams
fed a regular diet. DHA diet also did not affect newborn
pup weights for pups from either control dams or IUGR
dams (Table 1). Consistent with previously published findings
[9], IUGR pups weighed significantly less than control pups
through d21. DHA-IUGR significantly increased body weight
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Table 1: Maternal DHA supplementation did not alter control or
IUGR dam or pup weights relative to regular diet (mean g ± SD).

Maternal weight Pup weight
Control IUGR Control IUGR

Regular diet 383 ± 34 294 ± 12 6.4 ± 0.6 5.6 ± 0.2
DHA diet 349 ± 18 295 ± 16 6.3 ± 0.3 5.5 ± 0.6

of male pups and normalized weight of female pups relative
to regular diet controls (Figure 1(a)).

3.2. Adipose Tissue Distribution. Relative levels of VAT (ret-
roperitoneal) and SAT were quantified from MRI images
in male and female control, IUGR and DHA-IUGR rats at
d21. Consistent with our previously published study, in male
rats, IUGR increased levels of both SAT and VAT relative
to regular diet control (𝑃 ≤ 0.05). In female rats, IUGR
did not significantly alter levels of VAT or SAT (Figure 1(b)).
DHA-IUGR did not significantly alter levels of VAT or SAT
in either male or female rats relative to regular diet controls
(Figure 1(b)).

3.3. PPAR𝛾2 mRNA and Protein. Consistent with our pre-
vious study, PPAR𝛾2 mRNA was unchanged in SAT and
increased in VAT of male rats (𝑃 < 0.05) relative to
male control rats. PPAR𝛾2 mRNA was unchanged in female
SAT or VAT relative to female control rats. PPAR𝛾2 protein
abundance was similarly increased in the VAT of male rats
relative to male control. PPAR𝛾2 protein abundance was
unchanged in SAT or VAT of IUGR females. DHA-IUGR
significantly increased PPAR𝛾2 mRNA in SAT of male (𝑃 ≤
0.05) and female (𝑃 < 0.05) rats relative to sex-matched
controls. DHA-IUGR did not significantly alter PPAR𝛾2
protein abundance in male or female SAT or VAT (Figure 2).

3.4. Serum Adiponectin. IUGR did not affect serum adipo-
nectin levels in either male or female rats relative to
sex-matched controls. However, DHA-IUGR significantly
increased serum adiponectin levels in male and female
(𝑃 < 0.05) rats relative to sex-matched regular diet controls
(Figure 3).

3.5. Adiponectin mRNA. Adiponectin mRNAwas unaffected
by IUGR in SAT and VAT ofmale or female rats. DHA-IUGR
significantly increased adiponectin mRNA in SAT of male
(𝑃 ≤ 0.05) and female (𝑃 < 0.05) rats relative to regular diet
controls. DHA-IUGRdid not affect VAT levels of adiponectin
mRNA in male or female rats (Figure 4).

3.6. AdipoR1 mRNA and Protein. In male rats, IUGR sig-
nificantly increased AdipoR1 mRNA in VAT (𝑃 ≤ 0.05)
relative to male control VAT. IUGR did not alter AdipoR1
mRNA in SAT and VAT of female rats. AdipoR1 protein
abundance was also unchanged by IUGR in SAT and VAT of
male or female rats relative to sex-matched controls. DHA-
IUGR significantly increased AdipoR1 mRNA in male SAT
(𝑃 ≤ 0.05) relative to male control SAT. DHA-IUGR did
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Figure 1: IUGR and DHA-IUGR body weight and adipose depo-
sition. (a) IUGR decreased body weights of male and female
adolescent day 21 rats. DHA-IUGR increased male body weight
and normalized female body weight compared to controls. (b)
Quantification of MRI images. IUGR increased SAT and VAT in
male rats. DHA-IUGR normalized SAT and VAT levels in male rats.
Sat and VAT deposition was not affected by IUGR or DHA-IUGR
in female rats. Results are IUGR (white bars) or DHA-IUGR (black
bars) relative to sex-matched controls (represented by the dotted
line). Errors are SEM. SAT is subcutaneous adipose tissue, VAT is
visceral adipose tissue, ∗𝑃 ≤ 0.05.

not affect AdipoR1 mRNA levels of female rats in VAT or
SAT. DHA-IUGR significantly increased AdipoR1 protein
levels in female SAT (𝑃 ≤ 0.05), with a trend towards
significance in male SAT (𝑃 = 0.06). Levels of AdipoR1
proteinwere undetectable inDHA-IUGR ratmale and female
VAT (Figure 5).

3.7. AdipoR2 mRNA and Protein. In male rats, IUGR sig-
nificantly increased AdipoR2 mRNA in SAT (𝑃 < 0.05)
relative to male control SAT. AdipoR2 mRNA was unaffected
by IUGR in SAT or VAT of female rats. AdipoR2 protein was
unaffected by IUGR in SAT and VAT of male or female rats.
DHA-IUGR increased AdipoR2 mRNA in male (𝑃 ≤ 0.05)
and female (𝑃 ≤ 0.05) SAT. DHA-IUGR AdipoR2 protein
abundance was increased in male (𝑃 < 0.05) and female
(𝑃 < 0.05) SAT (Figure 6).
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Figure 2: PPAR𝛾2 mRNA and protein levels. IUGR increases VAT
PPAR𝛾2mRNAandprotein levels inmale rats. DHA-IUGRnormal-
ized male VAT PPAR𝛾2 levels and increased SAT PPAR𝛾2 mRNA
levels male and female rats. Results are IUGR (white bars) or DHA-
IUGR (black bars) relative to sex-matched controls (represented by
the dotted line). Errors are SEM. SAT is subcutaneous adipose tissue,
and VAT is visceral adipose tissue, ∗𝑃 ≤ 0.05.
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Figure 3: Serum adiponectin levels. DHA-IUGR increased serum
adiponectin levels in male and female rats. Results are IUGR (white
bars) or DHA-IUGR (black bars) relative to sex-matched controls
(represented by the dotted line). Errors are SEM. ∗𝑃 ≤ 0.05.
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Figure 4: Adiponectin mRNA levels. DHA-IUGR increased SAT
adiponectin mRNA levels in male and female rats. Results are IUGR
(white bars) or DHA-IUGR (black bars) relative to sex-matched
controls (represented by the dotted line). Errors are SEM. SAT is
subcutaneous adipose tissue, andVAT is visceral adipose tissue ∗𝑃 ≤
0.05.
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Figure 5: AdipoR1 mRNA and protein levels. IUGR increases VAT
AdipoR1 mRNA levels in male rats. DHA-IUGR normalized male
VAT AdipoR1 mRNA levels and increased SAT AdipoR1 levels male
and female rats. Results are IUGR (white bars) orDHA-IUGR (black
bars) relative to sex-matched controls (represented by the dotted
line). Errors are SEM. SAT is subcutaneous adipose tissue, and VAT
is visceral adipose tissue. ∗𝑃 ≤ 0.05.
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Figure 6: AdipoR2 mRNA and protein levels. IUGR increases SAT
AdipoR2 mRNA levels in male rats. DHA-IUGR increased SAT
AdipoR2 mRNA and protein levels in male and female rats. Results
are IUGR (white bars) or DHA-IUGR (black bars) relative to sex-
matched controls (represented by the dotted line). Errors are SEM.
SAT is subcutaneous adipose tissue, and VAT is visceral adipose
tissue, ∗𝑃 ≤ 0.05.

4. Discussion

Important findings of our study are twofold. Firstly, maternal
DHA supplementation during rat pregnancy and lactation
normalizes IUGR-induced changes in adipose deposition and
visceral PPAR𝛾 expression in male rats. Secondly, maternal
DHA supplementation increases serum adiponectin, as well
as adipose expression of adiponectin and adiponectin recep-
tors in former IUGR rats. Our novel findings suggest that
maternal DHA supplementationmay normalize adipose dys-
function and promote adiponectin-induced improvements in
metabolic function in IUGR.

Individuals born IUGR develop adult obesity, with pref-
erential VAT deposition, and insulin resistance [8, 26, 27].
Obesity, preferential VAT deposition, and insulin resistance
have been demonstrated in IUGR animal models by our
group and others [9, 28–31], often with a sex-specific bias
[9, 29, 31]. A common theme amongst IUGR animal models
is dysfunctional adipose gene expression that occurs prior
to the onset of overt obesity. Our previous observation of
increased VAT deposition in adolescent IUGR male rats

is consistent with the subsequent development of insulin
resistance in this model. This is because VAT and SAT con-
tribute differently to the development of insulin resistance,
with VAT being detrimental and SAT potentially conferring
protective roles [12, 32, 33]. Normalization of VAT levels
in IUGR males following maternal DHA supplementation
may bemetabolically protective in IUGR. Interestingly, while
VAT levels normalized and SAT levels did not increase in
IUGR-DHA male rat pups, DHA-IUGR male body weight
was increased in our study. This may represent alterations in
lean body mass accretion in DHA-IUGR pups.

Supplementation with DHA is physiologically relevant in
IUGR. A maternal plasma FA profile low in DHA has been
shown to be associated with small for gestational age (SGA)
and preterm birth. Additionally, maternal supplementation
withDHAduring gestation is associatedwith longer gestation
duration [34–36]. In our IUGR rat model, serum DHA is
decreased in male neonatal rat pups compared to control,
with no significant difference seen in females [19]. The
addition of DHA to the maternal diet increases serum DHA
levels in male and female DHA-IUGR relative to control
[19]. In our model, improved DHA status normalizes VAT
PPAR𝛾2 levels in male IUGR rats and increases SAT PPAR𝛾2
levels in both male and female IUGR rats. These findings are
consistent with results of PPAR𝛾 activation in obese mice.
In ob/ob mice, the synthetic PPAR𝛾 agonist, Rosiglitazone,
results in a redistribution of adipose fromVAT to SAT stores,
with a concomitant resolution of metabolic disturbances
[12]. It is important to note however, that DHA may also
help normalize adipose physiology by contributing to other
mechanisms, including inhibition of inflammatory pathways
[37, 38].

There is evidence that adiponectin may be the link
between SAT PPAR𝛾 activation and subsequent ablation of
metabolic disturbances. Adiponectin expression and release
are higher in SAT compared with VAT [39]. When systemi-
cally activated, SAT PPAR𝛾 prevents adipocyte hypertrophy
by increasing the number of small adipocytes which increases
adiponectin levels [40]. In ob/ob mice, overexpression of
adiponectin produces a similar effect to that of PPAR𝛾
activation, with adipose redistribution from VAT to SAT and
normalization of metabolic disturbances [12]. Adiponectin
deficient mice have increased insulin resistance [41, 42].
Interestingly, obese humans express significantly lower levels
of adiponectin even though adiponectin is expressed solely
by adipose tissue [43]. Of note, children who are born IUGR
also have lower circulating adiponectin at birth [43, 44].
Increased serum adiponectin, especially in individuals who
have a predisposition to be insulin resistant, such as those
born IUGR, may improve insulin sensitivity.

In addition to increased serum adiponectin, maternal
DHA supplementation increased expression of AdipoR1 and
AdipoR2 in SAT in our study. AdipoR1 and AdipoR2 play
physiologically important roles in the regulation of insulin
sensitivity and glucose metabolism in vivo [45]. Obese,
insulin resistant mice have decreased expression of
adiponectin receptors in adipose tissue (23). The decreased
expression of adiponectin receptors is associated with a
reduction in the insulin-sensitizing effects of adiponectin.
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Increasing AdipoR1 and/or AdipoR2 may enhance adipo-
nectin binding capacities in adipose cells and in turn
may lead to an increase in the adiponectin effects, even
without change in adiponectin levels [46]. Overexpression
of AdipoR1 and AdipoR2 in ob/ob mice normalizes insulin
signaling [47]. Therefore, DHA-induced increases in both
adiponectin as well as its receptors observed in this study
may lead to the greatest degree of insulin sensitizing through
adiponectin signaling mechanisms.

Our study is not without limitations. First, while we
assessed the expression of adiponectin and AdipoR’s in
adipose tissue, we did not assess adiponectin signaling. An
understanding of the downstream consequences of AdipoR
activation in IUGR with and without DHA supplementation
is important and warrants further investigation. Secondly,
while we demonstrated improvement in adipose deposition
and increased adiponectin with DHA supplementation in
IUGR, we did not assess the effect of DHA supplementation
on the development of insulin resistance in this model.
Future studies are required to assess the effects of maternal
DHA supplementation during gestation and lactation on the
development of insulin resistance in IUGR rats. We also did
not differentiate between prenatal DHA effects and postnatal
DHA effects. Determining the minimum window in which
DHA may be effective will be important to enhance the
translational relevance of our study.

In conclusion, maternal DHA supplementation increases
adiponectin and adiponectin receptor expression in SAT of
IUGR rats. We speculate that increased adiponectin pro-
duction may improve insulin sensitivity in IUGR rats. Our
study suggests that early DHA supplementation may provide
a means of tempering adipose dysregulation and subsequent
metabolic disturbances in IUGR individuals.
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