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The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant
protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila
heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in
endocytosis and those undergoing rapid growth and changes in shape.

The cells of nearly all organisms have a conserved re-
sponse to environmental stresses, consisting of the synthesis
of several heat shock proteins (hsps) (for review, see refer-
ence 15). The most prominent stress protein in the majority
of species, hsp70, is highly conserved among procaryotic
and eucaryotic species. The hsp70 gene is a member of a
family of closely related genes that includes both stress-
inducible genes (hsp’s) and genes expressed constitutively
during normal development, the heat shock cognate genes
(hsc’s).

The heat shock cognate proteins appear to be important
for normal cellular function (reviewed in references 5, 15, 21,
and 27). A number of recent results indicate that the hsp70-
like proteins act in an ATP-dependent manner in several
cellular compartments. They may function to alter the con-
formations of proteins or affect protein-protein interactions
(9, 18, 25). Additionally, they may play a role in the
translocation of polypeptides across specific membranes (4,
7). The abundant cytoplasmic heat shock cognate protein in
mammalian cells, hsc70, is involved in the ATP-dependent
uncoating of clathrin from endocytotic vesicles (26, 31).

In Drosophila melanogaster, the hsp70 multigene family
includes five copies of the heat-inducible Asp70 gene, one
copy of the heat-inducible hsp68 gene, and seven heat shock
cognate genes, hscl through Asc7, that are expressed during
normal growth (6, 13, 15, 19). The Drosophila hsc70 protein,
encoded by hsc4, is a very abundant polypeptide in all
tissues and cells and is localized to a meshwork of cytoplas-
mic fibers concentrated around the nucleus (19).

Sequence and structure of the Drosophila hsc4 gene. The
hsc4 gene of D. melanogaster was originally isolated on a
recombinant plasmid, pMG34 (Fig. 1A and 2), following
hybridization with a Drosophila hsp70 gene (6). The DNA
sequence of hsc4 revealed a single open reading frame of
1,953 base pairs (bp) that potentially encodes a 651-amino-
acid polypeptide with an estimated molecular weight of
71,108. S1 nuclease analysis indicated that the protein cod-
ing and the 5’ untranslated regions were not contiguous and
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that an intron was located 5’ of the initiating ATG (data not
shown). To confirm the position of this intron, a cDNA,
cD12, was isolated and the sequence of the 5’ end was
determined. The cDNA sequence diverged from the genomic
DNA sequence at the ATG (Fig. 1B). The protein coding and
5’ untranslated regions of the Asc4 gene were interrupted by
a 1.6-kilobase (kb) intron.

The deduced amino acid sequence of the hsc4 gene (Fig. 3)
was 73% identical to that of the Drosophila heat-inducible
hsp70 (12) and 85% identical to that of the human hsc70
polypeptides (8). Furthermore, Drosophila hsc70 was 80%
identical to Caenorhabditis elegans hsp70A, which is abun-
dant throughout development and only marginally heat in-
ducible (29). An unresolved question is whether constitu-
tively expressed hsp70-related genes, such as hsc4, and
those induced by stress, e.g., hsp70, have identical or
different functions. The fact that Drosophila hsc4 is more
closely related to vertebrate hsc70-like genes than an induc-
ible gene from D. melanogaster suggests that the constitu-
tively expressed proteins may be functionally distinct from
the stress-induced proteins.

In situ hybridization to embryos reveals stage- and tissue-
specific enrichment of hsc4 transcripts. Northern (RNA blot)
analysis demonstrates that the major 2.3-kb hsc4 transcript
is expressed throughout embryonic, larval, pupal, and adult
development at relatively constant levels (6) (data not
shown). In situ hybridization to wild-type embryos was
performed as described by Hafen and Levine (11) or Tautz
and Pfeifle (30). Radioactive DNA probes were labeled by
nick translation with [**S]JdCTP (New England Nuclear
Corp.) to a specific activity of approximately 5 X 10’
cpm/ug, and the autoradiograms were developed after 2 to 3
days. Nonradioactive probes were prepared essentially by
the protocol provided with the nonradioactive labeling and
detecting kit (Boehringer Mannheim, catalog no. 1093657).
hsc4 transcripts were localized in a complex spatial and
temporal pattern during embryogenesis (Fig. 4 and 5), which
was superimposed onto a basal level of expression apparent
in virtually all cells of the developing embryo.

Enrichment of hsc4 transcripts was first observed during
late syncytial and cellular blastoderm stages and during early
gastrulation in the cytoplasmic compartment between the
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FIG. 1. (A) Restriction map of pMG34, a recombinant plasmid containing the entire Drosophila hsc4 gene. The direction of transcription,
positions of the intron and exons 1 and 2, start (ATG) and stop (TAA) codons of translation, and relevant restriction sites are included (B,
BamHI; Bg, Bglll; Hc, Hincll; P, Pstl; Xb, Xbal; Xh, Xhol). Below the restriction map, the approximate extents of three Asc4 cDNAs are
depicted. cDNA clone ¢321 was isolated from a 3- to 12-h embryonic cDNA library (23) in a differential screen designed to identify genes
preferentially expressed in neuroblasts rather than differentiated neurons (L. A. Perkins, A. P. Mahowald, and N. Perrimon, submitted for
publication) and was determined to encode hsc4 sequence based on its localization to 88E on the salivary gland polytene chromosomes,
Southern blot analysis with pMG34 as a probe, and partial DNA sequence analysis. cDNA clone cHsc4 was isolated at high stringency from
a size-selected 9- to 12-h embryonic library with ¢321 as a probe (35). cDNA clone c¢D12 was isolated from an embryonic cDNA library
provided by M. Goldschmidt-Clermont with pMG34 as a probe. (B) Location of the intron/exon boundaries in the Drosophila hsc4 gene. This
comparison shows the nucleotide sequence from cDNA cD12 aligned with the genomic DNA sequence from pMG34. This alignment does not
permit the unambiguous determination of the precise boundaries of exons 1 and 2, but the predicted splice site ( A ), based on the eucaryotic

consensus (17), is shown.

blastoderm nuclei and the yolk (Fig. 4A and B). These stages
are characterized by the rapid assembly of cellular mem-
branes to compartmentalize the nuclei. Tissue enrichment
was next observed in neuroblasts of both the head and
extending germ band (Fig. 4C, D, and E). Unlike transcripts
from Delta and members of the achaete-scute gene complex,
which are enriched in subsets of neuroblasts enlarging within
the neurogenic ectoderm (2, 24, 32), hsc4 transcripts were
only observéd in newly segregated neuroblasts internal to
the ectoderm. Enrichment was clearly observed in neuro-
blasts from the procephalic neurogenic ectoderm (Fig. 4C
and D) and continued to be enriched in specific derivatives of
this region (Fig. 4H). Enrichment of hsc4 transcripts was
observed in cells of the embryonic gut from anterior and
posterior midgut invagination to hatching (Fig. 4F to H) and
transiently in developing mesodermal cells (Fig. 4F and G).
Enrichment in the gut occurred while the cells were under-
going numerous cellular processes: mitoses, expansions,
stretching, and volumetric growth (3). Enrichment in the
mesoderm occurred as the somatic and splanchnic meso-

derms became separate layers (Fig. 4F and G) and was
readily apparent as the somatic muscles formed and single
cells fused into syncytial myotubes and differentiated into
somatic muscles (3).

During late embryogenesis, hsc4 transcripts were most
abundant in the garland gland (Fig. 4G and H), an organ
postulated to segregate and store waste products (34). Cells
from the garland gland are very active in endocytosis via
coated vesicles. In fact, electron microscopy reveals the
cortex of these cells to be a labyrinth of endocytotic pits or
channels that ‘‘pinch off’’ to form clathrin coated vesicles
(14; C. Poodry, personal communication). Since a clathrin
‘‘uncoating ATPase’’ activity has been detected in Droso-
phila cells (28), we propose that hsc70 in the garland gland
functions in the uncoating of clathrin triskelions.

In conclusion, hsc4 transcripts are present in most if not
all cells during embryonic development but are enriched in
cells active in endocytosis and those undergoing rapid
growth and changes in shape. Studies in other organisms
have demonstrated high levels of hsc70 in rapidly growing
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KITITNDKGRLSKEDIERMVQEAEKYKAEDEKQRDKVSSKNSLESYAFNMKATVEDEKLQGKINDEDKQKILDKCNEIINWLDKNQTAEKEEFEHQQKEL 599 Hum hsc70
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FIG. 3. Comparison of Drosophila hsc70, human hsc70, and Drosophila hsp70 amino acid sequences. The predicted amino acid sequence encoded by the Drosophila hsc4 gene (Dros
hsc70) is compared with the predicted amino acid sequences of human hsc70 (Hum hsc70 [8]) and Drosophila hsp70 (Dros hsp70 [12]). The sequences were aligned by using the GAP
program of the University of Wisconsin Genetics Computer Group with a gap weight of 5.00 and a length weight of 0.30. Identical amino acids (®) and conservative differences (O) are
indicated.
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FIG. 4. Expression of hsc4 transcripts during embryogenesis. (A) Transverse section with ventral at the bottom; (H) parasagittal section
with anterior to the left and ventral at the bottom; (B to G) whole-mount embryos labeled with nonradioactive probes (30). From fertilization
through the early stages of cleavage, expression of hAsc4 transcripts is uniformly distributed in the embryo (not shown). During the late
syncytial and cellular blastoderm stages through early gastrulation, most of the hsc4 transcript is observed between the peripherally
positioned nuclei (nu) and the central yolk (y), i.e., in the cytoplasmic compartment (cy) (A and B). Asc4 transcripts remain essentially uniform
in distribution at the basal level in all embryonic tissues until the germ band is almost fully extended. At this time a punctate band of more
intense hybridization internal to the region of the ectoderm (ec) and exterior to the mesoderm (ms), where neuroblasts (nb) have segregated
(D, enlarged in E), is detected. With development the intensity of the band increases, presumably due to either increased numbers of cells
becoming enriched for the hsc4 transcript or increased expression of the transcript in the enriched cells. Enrichment is also observed in the
procephalic neurogenic regions (D, enlarged in C). Throughout the remaining stages of embryogenesis, the lining of the developing gut is
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FIG. 5. Schematic summary of tissue-specific enrichment for
hsc4 transcripts during embryonic development. The top scale
represents hours of embryogenésis with hatching (h) occurring at 22
h of embryonic development. The solid lines indicate the times at
which enrichment was observed in the tissues indicated at the right.
The dashed line for the pharynx indicates that hsc4 transcription
was below the basal level of transcription observed in other nonen-
riched tissues.

embryonic and transformed cells and in some secretory cells
1, 10, 16, 22), suggesting that hsc4 is a homolog of the
mammalian hsc70 gene. Consistent with this interpretation is
the fact that hsc4 is more closely related to the mammalian
hsc70 than to the heat-inducible Drosophila hsp70 protein.
In addition, like the mammalian hsc70 protein, the Droso-
phila hsc4 protein product translocates to the nucleus after
thermal stress (19, 33).
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