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INTRODUCTION
Duchenne muscular dystrophy (DMD) is an X-linked progressive muscular dystrophy,
caused by loss of the dystrophin protein at the myofiber membrane.1,2 Pharmacologic
treatment of DMD patients with glucocorticoids can improve patient strength and prolong
ambulation, with concomitant improvements in quality-of-life scales.3–9 As such,
glucocorticoid treatment for DMD is recommended in standard-of-care guidelines, and as an
American Academy of Neurology practice parameter.10–12 The majority of trials and
treatment recommendations have used an oral dose of prednisone at 0.75 mg/kg/d. However,
alternative dosing regimens have been reported as changing the efficacy versus side-effect
profiles, including weekend dosing,13,14 lower doses,15 and alternative-day doses (10 mg/
kg/wk divided over 2 weekend days).16–18 In each study, a goal was to achieve a better
balance of efficacy (increased strength and delay of disease progression) with fewer side
effects (bone fragility, weight gain, mood changes).19–21 It is pertinent to note that muscle
weakness and wasting is an acknowledged side effect of chronic glucocorticoid
administration in many indications, such as critical care medicine, and is the most common
drug-induced form of muscle weakness.22 Glucocorticoids have a direct molecular effect on
myofibers, stimulating the catabolic AKT1/FOXO1 pathway, decreasing protein synthesis
and increasing the rate of protein catabolism, resulting in weakness and atrophy.23 Thus it is
likely that DMD patients treated with glucocorticoids show the clinical outcome of
increased muscle strength mitigated to some extent by the side effect of muscle catabolism.
Clearly any effort to reduce side effects such as weight gain and short stature may also lead
to lessening of the side effect of muscle weakness, whereby the balance would then be
tipped to greater efficacy.

© 2012 Elsevier Inc. All rights reserved.
*Corresponding author. Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave. NW,
Washington, DC. 20010 ehoffman@cnmcresearch.org.

NIH Public Access
Author Manuscript
Phys Med Rehabil Clin N Am. Author manuscript; available in PMC 2013 May 01.

Published in final edited form as:
Phys Med Rehabil Clin N Am. 2012 November ; 23(4): 821–828. doi:10.1016/j.pmr.2012.08.003.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fluorinated glucocorticoids, such as dexamethasone, are considerably more potent, with
higher affinity to the glucocorticoid receptor (Fig. 1). However, these tend to also exacerbate
side effects, and are generally avoided in indications of chronic use, such as muscular
dystrophy. On the other hand, less potent nonfluorinated varieties of glucocorticoids have
been tried, such as deflazacort. Deflazacort trials in DMD have suggested similar efficacy to
that of prednisone (albeit at a higher dose), with an improvement in some side-effect
profiles.3,24–26

FINDING THE OPTIMUM REGIMEN OF CORTICOSTEROIDS FOR DMD (FOR-
DMD) CLINICAL TRIAL

To study the balance of efficacy and side effects, depending on steroid type (prednisone vs
deflazcort) and dosing regimen (daily vs 10 days on, 10 days off), the FOR-DMD trial was
designed and implemented. FOR-DMD is a multicenter, double-blind, parallel-group, 36- to
60-month study, comparing 3 corticosteroid regimens in wide use in DMD:

• Daily prednisone (0.75 mg/kg/d)

• Intermittent prednisone (0.75 mg/kg/d, 10 days on, 10 days off)

• Daily deflazacort (0.9 mg/kg/d).

The hypothesis being tested is that daily corticosteroids (prednisone or deflazacort) will be
of greater benefit than intermittent corticosteroids (prednisone) in terms of function and
subject/parent satisfaction. A secondary outcome is to study whether daily deflazacort will
be associated with a better side-effect profile than daily prednisone.

The primary outcome variable will be a 3-dimensional (multivariate) outcome consisting of
the following 3 components (each averaged over all postbaseline follow-up visits through
month 36): (1) time to stand from lying (log-transformed), (2) forced vital capacity, and (3)
subject/parent global satisfaction with treatment, as measured by the Treatment Satisfaction
Questionnaire for medication.

Secondary outcome variables will include regimen tolerance, adverse event profile, and
secondary functional outcomes including the 6-minute walk test, quality of life, and cardiac
function. The analyses will be adjusted for covariates, namely country/ region, baseline time
to stand from lying, baseline forced vital capacity (FVC), and initial weight band. A sample
size of 100 subjects per group (300 in total) will provide adequate power to detect
differences that are thought to be of minimal clinical significance between any 2 of the 3
treatment groups, assuming a 10% rate of subject withdrawal.

The trial will randomize 300 boys aged 4 to 7 years to 0.75 mg/kg/d prednisone; 0.75 mg/
kg/d prednisone for 10 days alternating with 10 days off; or 0.9 mg/kg/d deflazacort. All
boys will complete a minimum 3 years (36 months) treatment period. All boys entering the
trial will remain on the study drug until the last boy completes the 36 months of study; this
may be up to 60 months.

Eligible boys will be those with confirmed DMD (defined as male with clinical signs
compatible with DMD and confirmed DMD mutation in the dystrophin gene [out-of-frame
deletion or point mutation or duplication] or absent/<3% dystrophin on muscle biopsy); age
at least 4 years and under 8 years; ability to rise independently from the floor; willingness
and ability of parent or legal guardian to give informed consent; willingness and ability to
comply with scheduled visits, drug administration plan, and study procedures; and ability to
maintain reproducible FVC measurements.

Hoffman et al. Page 2

Phys Med Rehabil Clin N Am. Author manuscript; available in PMC 2013 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The study is funded by the National Institutes of Health (Kate Bushby and Robert Griggs,
study Chairs), and will begin enrollment in 2012.

DEVELOPMENT OF DISSOCIATIVE STEROIDS FOR DMD
An alternative approach to optimizing dosing regimens of traditional glucocorticoid drugs is
to change the chemistry of the drug, with the goal of broadening the therapeutic window
(increasing efficacy while decreasing side effects). Glucocorticoid drugs are recognized to
have 2 subactivities: serving as a ligand for steroid hormone receptors, and nonreceptor-
mediated effects on plasma membranes. The ligand/ receptor complex has 2 further
subactivities: transactivation and transrepression properties. Transactivation (also termed
cis-regulation) is the best characterized molecular response, whereby ligand/glucocorticoid
receptor complexes translocate from the cytoplasm to the nucleus and then interact directly
with DNA and gene promoters (Fig. 2). With transactivation, the ligand/receptor dimers
typically bind to a DNA sequence motif (glucocorticoid response elements [GRE]), and
activate transcription of the nearby gene (hence the designation “transactivation”). Of
importance, there is increasing evidence that the transactivation subactivity is associated
more with side effects rather than with drug efficacy.27

Clinical efficacy, on the other hand, is increasingly associated with the second, trans-
repression subactivity. Transrepression involves ligand/receptor interactions with other
cellular signaling proteins, such as nuclear factor (NF)-κB, activator protein 1, and STAT5
complexes, with downstream changes in cell signaling, and more indirect effects on gene
transcription (non–GRE-mediated).27,28 Transrepression has been associated with anti-
inflammatory activity and clinical efficacy.

All steroid hormones, including glucocorticoids, are lipophilic, and readily traverse lipid
bilayers (cell membranes). Some steroid drugs have been optimized for membrane activities,
such as the lazaroids (see Fig. 1). Lazaroids, including the Δ-9,11 modification thought to
block binding of the drug to the receptor, were optimized for effects on cell membranes
(prevention of lipid peroxidation), and tested clinically for neuroprotection.29–31 In DMD,
there are well-documented changes in myofiber membrane function and integrity, and
steroids are likely to modify this defect (for better or worse). Consistent with this, recent
studies of lazaroids in myogenic cells in culture32 and ischemia/reperfusion injury in vivo
have shown benefit of lazaroid drugs.33

In an effort to improve upon glucocorticoid therapy for DMD, the authors studied drugs with
the Δ-9,11 chemistry (see Fig. 1). The goal was to determine whether this chemistry
represented a dissociative steroid (eg, separation of the transactivation [side effects] and
transrepression [efficacy]) (see Fig. 2). A Δ-9,11 drug, anecortave, did in fact bind the
glucocorticoid receptor, albeit at lower affinity than pharmacologic glucocorticoids.34 Of
importance, the ligand/glucocorticoid receptor complex was found to translocate to the
nucleus, but showed no activity in binding to GRE elements and activating GRE-mediated
gene transcription. Thus, the Δ-9,11 drug appeared to have lost the transactivation
subactivity associated with many deleterious side effects (see Fig. 2).

To determine whether the Δ-9,11 drug retained transrepression (the subactivity associated
with glucocorticoid efficacy), the authors studied anti-inflammatory effects using NF-κB
reporter assays.35 NF-κB inhibitory activity was found to be retained by the Δ-9,11 drug, at
a potency similar to that of prednisone.34 We were also interested in the effects of the drugs
on the phospholipids that make up the membrane. Phospholipid bilayers have a hydrophilic
head on the inner and outer walls of the membrane and hydrophobic tails. Lipids such as
cholesterol are known to compress head groups, strengthen the bilayer, and decrease
permeability when incorporated into a lipid bilayer. Indeed, our delta 9,11 steroids exert a
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similar and more profound effect on phospholipid bilayers than either prednisolone or
cholesterol. The D-ring functionality (17-hydroxy-20-keto-21-hydroxy) orients within the
phospholipid head groups while the hydrophobic ABC and most of the D ring orients in the
lipid core. Since the C-17 C-20 bond can rotate, our compounds are operationally cone-like
wedges in the phospholipid. They compress the head groups and decrease permeability
while disordering the hydrophobic core which, among other things, protects against lipid
peroxidation by decreasing the repeat number in lipid peroxidation chain reactions. This
phenomenon for the delta 9,11 steroids has been described.36 These result encouraged the
authors to conduct a preclinical study of the dystrophin-deficient mdx mouse model of
DMD. Evidence of efficacy in vivo was found, whereby daily oral delivery of Δ-9,11
analogue reduced muscle inflammation and improved multiple functional assays. Of note,
no side effects of reductions in body weight or spleen size seen with prednisone treatment
were observed, suggesting that the Δ-9,11 drug had indeed lost side effects. These data
suggest that the Δ-9,11 chemistry holds promise as a dissociative steroid, with retention of
efficacy via transrepression, and loss of side effects via reductions in transactivation
subactivities. Current studies are focused on testing a series of Δ-9,11 compounds to
optimize the potency, bioavailability, and toxicity profiles (lead compound selection), as
well as testing of the optimized lead compound in animal models of multiple chronic
inflammatory conditions, including other types of muscular dystrophy.

SUMMARY
DMD is among the most common of the muscular dystrophies, leading to shortened life
span and considerable disability. Glucocorticoids are considered the standard of care, yet
dose regimens have not been optimized, and the balance of efficacy and side effects for
specific types of glucocorticoids requires further study. The FOR-DMD trial promises to
shed light on dose optimization, as well as the therapeutic window of prednisone versus
deflazacort. An alternative approach to optimizing currently available steroid regimens is to
develop new drugs that are able to broaden the therapeutic window (increased efficacy with
decreased side effects). Initial studies of Δ-9,11 modifications of the steroid backbone
suggests that this chemistry produces a dissociative steroid, whereby anti-inflammatory
activity is retained (transrepression) and membrane stabilization properties enhanced, while
side effects are mitigated (loss of transactivation subactivity). Current studies are focusing
on lead compound optimization using transactivation and membrane stability assays.
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KEY POINTS

• Current standard of care of Duchenne muscular dystrophy (DMD) includes
pharmacologic treatment with oral glucocorticoids.

• Gains in strength and slowed progression of disease afforded by glucocorticoids
are offset, in part, by the wide range of side effects of drug treatment.

• Dose optimization studies are limited, and new larger clinical studies are needed
to best balance efficacy and side effects (therapeutic window), as are studies of
glucocorticoid alternatives to prednisone.

• The FOR-DMD trial funded by the National Institutes of Health is under way to
compare different dose regimens and types of glucocorticoids (prednisone,
deflazacort).

• A novel dissociative steroid, a Δ-9,11 drug, is under clinical development for
DMD. This drug promises to broaden the therapeutic window and reduce side-
effect profiles.
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Fig. 1.
Chemical structures of glucocorticoids and dissociative steroids. The arrow indicates the
position of the key 9,11 alterations distinguishing classic glucocorticoids (prednisone,
dexamethasone) from dissociative steroids (Δ-9,11 analogues).
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Fig. 2.
Molecular action of glucocorticoids and dissociative steroids. Classic pharmacologic
glucocorticoids have anti-inflammatory, membrane fluidity, and glucocorticoid response
element (GRE)-mediated transcriptional activities. Dissociative steroids retain membrane
and anti-inflammatory subactivities associated with efficacy, but do not retain the GRE-
mediated transcriptional activities associated with side-effect profiles. GR, glucocorticoid
receptor.
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