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According to the lipid raft hypothesis, biological lipid membranes
are laterally heterogeneous and filled with nanoscale ordered
“raft” domains, which are believed to play an important role for
the organization of proteins in membranes. However, the mecha-
nisms stabilizing such small rafts are not clear, and even their exis-
tence is sometimes questioned. Here, we report the observation of
raft-like structures in a coarse-grained molecular model for multi-
component lipid bilayers. On small scales, our membranes demix
into a liquid ordered (lo) phase and a liquid disordered (ld) phase.
On large scales, phase separation is suppressed and gives way to a
microemulsion-type state that contains nanometer-sized lo domains
in an ld environment. Furthermore, we introduce a mechanism that
generates rafts of finite size by a coupling between monolayer cur-
vature and local composition. We show that mismatch between the
spontaneous curvatures of monolayers in the lo and ld phases induces
elastic interactions, which reduce the line tension between the lo
and ld phases and can stabilize raft domains with a characteristic
size of the order of a few nanometers. Our findings suggest that
rafts in multicomponent bilayers might be closely related to the
modulated ripple phase in one-component bilayers.
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Ever since its introduction some two decades ago (1, 2), the lipid
raft concept has been discussed controversially (3–6). It rests

on two established facts:

i) Biological membranes are laterally heterogeneous. Heteroge-
neity is necessary to achieve the functions of membrane pro-
teins (e.g., in cellular signal transduction and trafficking, in
endocytosis) (7).

ii) Lipid-lipid phase separation is observed in model multicom-
ponent lipid bilayers. A variety of ternary mixtures containing
cholesterol phase separate into a cholesterol-poor Lα or “liquid
disordered” (ld) phase and a cholesterol-rich “liquid ordered”
(lo) phase with a higher degree of chain order (8).

The lipid raft hypothesis states that lipid-lipid phase separa-
tion contributes to membrane heterogeneity and is exploited by
nature to organize proteins (9–16). Preexisting “raft domains”
supposedly provide a heterogeneous environment that sorts pro-
teins and brings them close to each other, thus facilitating the
protein–protein interaction needed for clustering. This concept
provides an elegant picture for a number of experimental obser-
vations, including the reduced mobility of raft-associating proteins,
which depends on cholesterol content (17); the submicroscopic
local clustering of raft-associated proteins as observed by fluo-
rescence resonance energy transfer (18); and the existence of
detergent-resistant membrane fragments with a high content of
cholesterol, sphingolipids, and raft-associated proteins (19).
All the experimental evidence is rather indirect, however, and

the interpretation, in terms of lipid rafts, has been subject to
debate (6). One problem with lipid rafts is that they cannot be
observed in vivo with optical microscopic techniques; hence, they
must be tiny. Diffusion experiments indicate that the domain sizes
of rafts are probably in the range of a few tens of nanometers (17),
and they have short lifetimes in the millisecond or microsecond
regime. Thus, the current view is that rafts constitute dynamically

changing nanoscale entities, which are collected to larger arrays
on need by protein–protein interactions (5, 11, 16).
This naturally raises questions regarding the physical nature of

rafts and the mechanisms stabilizing them. The first question is:
If the physical basis of rafts is phase separation, why are they so
small? A number of possible explanations have been pointed out.
For example, it was argued that membranes in vivo are not at
thermodynamic equilibrium, and the constant turnover of lipids
may well disrupt the formation of large-phase separated domains
(20). Alternatively, it was proposed that immobilized cytoplasm
proteins generate disorder in the membrane, which prevents
large-scale phase separation (21).
The second important question is whether biological mem-

branes really do tend to phase-separate. Model multicomponent
membranes may exhibit phase separation at physiological tem-
peratures (22, 23). However, it is not clear whether this is also
true for biological membranes. Veatch et al. (24) have isolated
giant plasma vesicles directly from living rat cells and showed that
they do undergo a demixing phase transition but that the demixing
temperature is around T ∼ 15–25 °C. Hence, such membranes
would be in a mixed state at physiological temperatures. Veatch
et al. (25) and Honerkamp-Smith et al. (26) have argued that raft-
like structures might emerge as a signature of critical fluctu-
ations. This would restrict “rafts” to relatively small regions in
parameter space, because critical clusters only become large
close to critical points.
Alternatively, the membrane might be in the state of a 2D

microemulsion, which is globally homogeneous but locally phase-
separated with a characteristic length scale or domain size (27).
Schick (28) has recently proposed a mechanism that would sta-
bilize a microemulsion, which builds on a coupling between the
local curvature of the bilayer and the local composition differ-
ence between the two leaflets (29). Such a coupling can generate
modulated phases in mixed membranes under tension (30–33).
Schick (28) argued that it could also stabilize a microemulsion-
type state with a characteristic length scale of the order of 100 nm
in membranes under tension, which would diverge in tensionless
membranes, however.
A more traditional idea is that the membranes contain line-

active agents (13) that reduce the line tension and eventually turn
a phase-separated mixture into a microemulsion. Possible candi-
date agents are proteins (5) or minority lipids with a saturated tail
and an unsaturated tail (34, 35). However, none of the lipids that
are considered typical for lipid rafts (i.e., cholesterol, sphingoli-
pids) has obvious line-active properties (28). Thus, this mecha-
nism relies on additional assumptions regarding the composition
of membranes containing rafts.
Typical model membranes for studying rafts (“raft mixtures”)

contain cholesterol and at least two other lipid components.
Three components seem necessary to bring about global lateral
phase separation between liquid membrane phases (8). However,
there is some evidence that nanoscopic domains may already be
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present in binary mixtures containing cholesterol, particularly in
mixtures of cholesterol and a lipid with high main transition tem-
perature (Tm). The literature on these mixtures is controversial.
Whereas several authors have observed immiscible liquid phases,
based on various techniques such as ESR, NMR, or diffusivity
experiments (36–39), others claim that cholesterol and lipids are
miscible in the whole high-temperature fluid range (ref. 8 and
references therein). In particular, fluorescence microscopy images
feature only one homogeneous phase (8). Feigenson (40) has in-
troduced the notion of “type I” and “type II” mixtures, where the
“type II mixtures” exhibit global phase separation, whereas the
“type I mixtures” phase-separate on the nanoscale but are globally
homogeneous, much like microemulsions. The experimental evi-
dence suggests that binary lipid-cholesterol mixtures might be type
I mixtures. Thus, bilayers of binary lipid-cholesterol mixtures al-
ready seem to have many of the intriguing properties attributed
to lipid rafts, and a theoretical study of such binary systems should
provide insight into the mechanisms stabilizing rafts.
In the present paper, we contribute to the raft discussion with

two main results. First, we present Monte Carlo simulations of
a coarse-grained molecular model for binary lipid bilayers that
demonstrate the existence of a thermodynamically stable het-
erogeneous membrane phase with raft-like lo nanodomains in an
ld environment. Hence, raft formation is found to be a generic
phenomenon that can already be observed in binary mixtures and
does not require specific line-active agents. Second, we present
a theory that rationalizes our results and explains raft formation
by a coupling between local composition and monolayer curva-
ture. The theoretical picture is illustrated in Fig. 1. Liquid or-
dered domains have a propensity to bend inward. If they oppose
each other, as suggested by simulations, as well as by experiments
(41), the bending competes with bilayer compression. This creates
elastic tension, which reduces the line tension even for tensionless
membranes and stabilizes domains with a well-defined diameter of
the order of 10 nm.
Thus, we identify a generic mechanism of raft formation in

multicomponent membranes. It is different from the curvature-
mediated mechanism proposed by Schick (28), which is based on
bilayer curvature. Both the mechanism of Schick (28) and our
own mechanism rely on a competition between bending and an
opposing force. If the bilayer as a whole has a propensity to bend,
the opposing force is the surface tension. Therefore, the surface
tension sets the characteristic length scale, which thus diverges in
tensionless membranes. In our monolayer curvature mechanism,
the bending is opposed by bilayer compression, which results in a
characteristic length scale of the order of the membrane thickness.

Coarse-Grained Simulations of Mixed Lipid Bilayers
Our generic coarse-grained simulation model is based on a suc-
cessful model for one-component lipid bilayers (42), which re-
produces the main phases of phospholipid membranes (liquid,
tilted gel, and ripple phases) (43, 44) and the elastic properties of
fluid dipalmitoylphosphatidylcholine (DPPC) bilayers at a semi-
quantitative level (45). Here, we introduce two types of lipids,
“phospholipids” (P) and “cholesterol” (C), with interactions
designed such that C is smaller and stiffer than P and has a
special affinity to P, reflecting the experimental observation that
sterols in lipid bilayers always tend to be solubilized with one or
two other lipids (39). For the purpose of the present study, it is

essential to design the model so that it captures those nonrandom
mixing effects because they most likely drive the local segregation
into ld and lo phases. Waheed (46) and Waheed et al. (47) re-
cently studied the chemical potential of cholesterol in small sys-
tems of DPPC/cholesterol bilayers by atomistic (united atom) and
coarse-grained simulations. In atomistic simulations, they found
that the chemical potential drops with the cholesterol concen-
tration, indicating a clear tendency of local segregation into a
cholesterol-rich phase and a cholesterol-poor phase [about 0.3
thermal energy units (kBT) per lipid molecule]. This property was
not reproduced by coarse-grained models that show no sign of
random mixing (47). Our model is described in more detail in
Materials and Methods.
To examine whether the system phase-separates locally, we

first consider small systems (162 lipids) at fixed composition. We
find that such small systems almost always assume one of two
states, either disordered (ld) or ordered (lo), or jump between the
two, depending on the composition. Fig. 2 B and C shows sample
configurations of these two states. For future reference, we have
evaluated the pressure profiles across monolayers in the two states
and computed the spontaneous curvature of monolayers c0 from
the first moment (48). In the ld state, we obtain c0 = 0.2 ± 0.2σ−1,
and in the lo state, c0 = 1.22 ± 0.09σ−1, using our simulation length
unit σ ∼ 0.6 nm. Thus, monolayer regions in the lo state have a
strong tendency to bend inward, whereas monolayer regions in the
ld state tend to remain flat.
The free energy gain μ for replacing a P chain by a C chain (the

chemical potential difference) is shown in Fig. 2A. For temper-
atures above the main transition of the pure P system (Tm = 1.2«),
the chemical potential curve has an upward slope in the region
between ≈10% and ≈25% C chains. This indicates an unstable
regime in which one would expect spontaneous demixing in
larger systems.
When looking at larger systems (20,000 lipids), however, we

find that the system does not phase-separate globally. Instead,
finite lo domains with a high concentration of C lipids appear,
surrounded by the ld phase almost devoid of C lipids. To ensure
that these domains are true equilibrium structures and not the
result of incomplete phase separation, the simulations were con-
ducted in the semigrandcanonical ensemble at fixed μ (i.e., lipids
were allowed to switch their identities during the simulation). Fig.
3 A and B shows an example of an equilibrated configuration. One
can see the raft-like structure of the membrane from the top view
(Fig. 3A) and the structure of alternating lo and ld regions from
the side view (Fig. 3B). Consistent with this observation, the
behavior of the C concentration as a function of μ shows no sign
of a phase transition (Fig. 3C).
We analyze configurations such as shown in Fig. 3 following an

algorithm described in Materials and Methods. This allows us to
calculate the distribution of raft sizes (radii of gyration), as shown
in Fig. 4A. Although the distributions look rather similar for dif-
ferent values of μ, the area fraction (Fig. 4A, Inset) clearly shows

ld ld
lo

Fig. 1. Curvature mechanism generating rafts. The lo and ld regions in
opposing monolayer leaflets are spatially correlated and have different
spontaneous curvatures. This stabilizes domains of a finite size.

A B

C

Fig. 2. (A) Chemical potential difference in thermal energy units (kBT) vs.
cholesterol content from canonical simulations of small, mixed bilayer sys-
tems (162 lipids). The corresponding snapshots show the system in the ld
state (B) and in the lo state (C). The darker chains represent C lipids.
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that in systems with larger μ (i.e., systems with a lower concen-
tration of C), a greater fraction of the total raft area is present in
the form of smaller rafts.
Next, we address the question of whether rafts in opposing

monolayers are correlated. The normalized cross-correlation Ki
(Materials and Methods) between monolayers of a configuration i
tends to be positive, with values ranging from K = −0.05 to K =
0.15. To analyze whether a correlation Ki > 0 or anticorrelation
Ki < 0 is significant, we generate a set of configurations with
randomly shifted monolayers and determine the fraction of them
having a higher (anti)correlation jK~ ij. At large μ (i.e., small C
concentrations), the distribution of Ki is symmetrical around zero
and shifting monolayers often enhances the correlation. Raft
domains are thus uncorrelated in this regime. At large C con-
centrations, however, all values of Ki are positive and shifting
monolayers almost always reduces the correlation. We conclude
that the cross-correlation is significant at higher C concentrations
and that rafts tend to oppose each other in the bilayer. This is
compatible with experimental observations in membranes exhib-
iting global phase separation, where it was found that lo domains
are strongly correlated across the membrane (41).
Finally, we consider the in-plane structure factor (Fig. 5). For

small values of μ, we observe a peak at nonzero q ∼ 0.05σ−1,
corresponding to a characteristic length scale of about 20σ ∼ 12 nm.
Such a peak is a typical signature of a microemulsion (27).

Elastic Theory of Raft Stabilization by Curvature
The main results of the simulations can be summarized as fol-
lows: (i) lo domains (rafts) of a finite nanoscale size are observed
in two-component lipid bilayers, (ii) they are correlated across
the membrane (i.e., rafts on the two leaflets tend to oppose each
other), and (iii) the analysis of pressure profiles in small systems
shows that lo monolayer domains have a propensity to bend in-
ward (a spontaneous curvature). However, large-scale bending is
prevented by the presence of the rafts on the opposing monolayer.
These observations motivate the hypothesis that the elastic energy
associated with the spontaneous curvature might be responsible
for the finite size of the rafts (Fig. 1).
To analyze this possibility, we consider a simple elastic model

for two coupled monolayers with composition-dependent spon-
taneous curvature, which combines a model for mixed films by

Leibler and Andelman (30) with a bilayer model developed by
Dan, Pincus, and coworkers (49–51) to describe bilayer deforma-
tions near inclusions. For simplicity, and in contrast to the model
proposed by Schick (28), we assume that the local compositions
on opposing monolayers are strictly equal and do not induce
bilayer bending. Bending and thickness deformations then de-
couple, and for planar membranes, the elastic free energy of
monolayer thickness deformations can be written as follows
(45, 51–53):

Fel =
Z

d2r
�
kc
2
�
∇2u

�2
+
kA
2t20

u2 + 2kc

�
c0 +

ζ

t0
u
�
∇2u+ kG   det

�
∂iju

��
;

[1]

where u(r) denotes the local deviation from the mean monolayer
thickness t0 and the other parameters represent material prop-
erties of the membrane: the bilayer bending and compressibility
modulus kc and kA, the spontaneous monolayer curvature c0, an
associated curvature-related parameter ζ (51), and the Gaussian
rigidity of monolayers kG. Eq. 1 holds for tensionless membranes
as well as for membranes under tension (54). We have used it in
the past to fit deformation profiles of one-component membranes
in the vicinity of inclusions, with good results even on molecular-
length scales (45, 55).
We assume that the monolayer lateral phase separates into

two phases, which are separated by narrow interfaces with a bare
line tension λ0. In principle, all membrane parameters (t0, kc, kA,
c0, ζ, and kG) should depend on the local composition. For sim-
plicity, however, we will assume that only the spontaneous cur-
vature c0 makes a jump from one phase to the other. In that case,
the final elastic energy after minimization can be written in the
simple form (Materials and Methods)

Fel = kc   δc0

Z
dl n∇u; [2]

where the line integral
R
dl runs over all domain boundaries, n is

the unit vector normal to the interface, and δc0 is the curvature
mismatch (i.e., the difference of the spontaneous curvatures in
the inner and outer phases).

A

C

B

Fig. 3. Snapshots of a large bilayer system (20,000 lipids) featuring raft-like
lo domains: top view (A) and an enlarged section of a side view (B).
Parameters are kBT = 1.4, μ ≈ 6.6 kbT. (C) Chemical potential difference vs. C
content from semigrandcanonical simulations of large systems.

A B

Fig. 4. Characterization of raft domains. (A) Raft size distribution. The
distribution of rafts with a given radius of gyration (r.o.g.) is shown. (Inset)
Actual fraction of the raft area found in rafts of a given size. Lines are guides
for the eye; μ is given in units of kBT. (B) Cross-correlation Ki of configuration
i vs. percentile of conformations with randomly displaced monolayers, which
have a higher correlation or anticorrelation jK~ i j. Every point corresponds to
an independent simulation configuration i. The more skewed a distribution
is to the right side, the greater is the mean (positive) correlation between
rafts on both sides. The lower the percentile of a point, the less likely it is
that this particular value is coincidental. a.u., arbitrary units.
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In many cases, this simple theory can be solved analytically.
Details of the calculations are presented inMaterials and Methods.
For isolated plane interfaces, we obtain an elastic line energy (an
elastic energy per boundary length L):

λ∞el := Fel=L =−ξkcδc20=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1− bÞ

p
; [3]

which acts as an additive contribution to the total line tension,
λt = λ0 + λ∞el . Note that λ∞el is negative. Here, we have introduced
the in-plane correlation length ξ= ðkct20=kAÞ1=4 and the dimen-
sionless membrane parameter b = 2ζξ2/t0. Because kc should be
roughly proportional to kAt20 (56), ξ is of the order of the mem-
brane thickness. Inserting actual numbers for the fluid phase of
one-component DPPC bilayers from experiments, all-atom sim-
ulations, or simulations of our model (45), one consistently ob-
tains values around ξ ∼ (0.9–1.4) nm. For the membrane para-
meter b, one obtains b = 0.65 for our DPPC model and b =
0.69 for all atom simulations of DPPC. Throughout this paper,
we assume jbj < 1.
Because the elastic contribution λ∞el to the line tension is

negative, the effect of elastic relaxation between two curvature-
mismatched phases is similar to that of adding line-active sur-
factant agents. To assess its impact on the demixing transition,
we analyze the scaling of λ0 and λ∞el close to the critical demixing
temperature Tc. The bare line tension vanishes according to λ0 ∼
(Tc − T)ν with the critical exponent ν = 1, corresponding to
the universality class of the 2D Ising model (57). Likewise, the
curvature mismatch δc0 will vanish on approaching Tc, and it
seems reasonable to assume that δc0 is proportional to the
composition difference of the two phases (i.e., the order pa-
rameter of the demixing transition). The elastic “line tension”
should therefore scale as λ∞el ∝ δc20 ∼ ðTc −TÞ2β with the 2D Ising
exponent β = 1/8. Comparing the exponents for λ0 and λ∞el , we
find that λ∞el dominates close to Tc and the line tension becomes
negative. Thus, macroscopic demixing is suppressed at Tc. The
demixing transition is shifted to lower temperatures and gives
way to a microemulsion or modulated phase.
Next, we consider disks with a finite diameter D of one phase

immersed in the other. In that case, the elastic line energy
depends on D and we obtain (Materials and Methods)

λdiskel ðDÞ = Fel

πD
= −

πDkcδc20
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1− b2

p ℜ

	
ðξαÞ2J1

�
α
D
2

�
Hð1Þ

1

�
α
D
2

�

; [4]

where Jn and Hð1Þ
n are Bessel and Hankel functions of the first

kind. For comparison, we also consider the elastic line energy for
isolated stripe domains of width D. It is given by

λstripeel ðDÞ = −
ξ2kcδc20ffiffiffiffiffiffiffiffiffiffiffiffi
1− b2

p ℜ
�
α
�
1− eiαD

�
: [5]

The functional dependence of λdiskel ðDÞ and λstripeel ðDÞ on the
domain size D is illustrated in Fig. 6. As expected, both converge
toward λ∞el for a large D. At a finite D, the behavior is non-
monotonic: Both line energies exhibit a minimum of similar
depth (equal within 3%), which is weak for negative b and
becomes more pronounced as b approaches b → 1. The minimum
is located at D ∼ 4ξ for disks and at D ∼ 2–4ξ for stripes. This
result implies that domains of finite diameter become stable even
before the asymptotic line tension vanishes; thus, the theory pre-
dicts a regime where the membrane is filled with small nanoscale
domains (i.e., rafts). Because disk-shaped and stripe-shaped
domains have similar line energies, the actual shape depends on
the composition of the membrane. At low C concentrations, disks
will dominate; using ξ ∼ 1 nm, the predicted characteristic raft size
of around 4ξ corresponds to a few nanometers. This is compatible
with typical raft sizes observed in the simulation (Fig. 4). Taking
into account that σ ∼ 0.6 nm, our estimate is at the lower end of
the values typically suggested in the literature (∼10–100 nm).
We should add that the raft domains interact with each other;

hence, the theory actually predicts modulated phases with long-
range order. Let us consider a system where the phase separa-
tion, described by a demixing order parameter Φ, is driven by a
Ginzburg–Landau free energy functional of the form FΦ =R
d2r

n
g
2ð∇ΦÞ2 + f ðΦÞ

o
with f ðΦÞ= r

2Φ
2 − γ

3!Φ
3 + λ

4!Φ
4, and let the

spontaneous curvature c0 depend linearly on Φ according to
c0 =Φĉ=ξ. As shown in Materials and Methods, a homogeneous
phase in this model becomes unstable with respect to modu-
lations with wavelength ξ at g= 2kcĉ2=ð1− bÞ. Close to the spi-
nodal, we recover the Landau–Brazovskii model, which provides
a general framework for the description of phase transitions driven
by short-wavelength instability between a disordered phase and
ordered phases (58).
Because the same holds for the models for mixed membranes

with bilayer curvature coupling mentioned in the introductory
section (28, 30, 32), we expect the mean-field phase diagrams to
be similar, with one important difference: In the bilayer coupling
case, the characteristic wavelength 1=q* ∼

ffiffiffiffiffiffiffiffiffiffi
kc=σ

p
tends to be in

the micrometer range and diverges for vanishing membrane ten-
sion σ, whereas here, the characteristic scale ξ is in the nanometer
range and independent of membrane tension. Consequently, the
effect of fluctuations is expected to be much bigger in the present
case. Fluctuations are known to shift the order-disorder transition
and to stabilize a locally structured disordered phase via the
Brazovskii mechanism (58). The pattern formation then gives way
to a microemulsion-type raft phase as observed in the simulations.

Fig. 5. Radially averaged structure factor of the raft conformations for
different values of μ, with μ given in units of kBT. a.u., arbitrary units.

BA

Fig. 6. Rescaled elastic contribution to the line
tension λel(D) for disk-shaped rafts of diameter D (A)
and stripe-shaped rafts of thickness D vs. D (B) in
units of in-plane correlation length ξ and membrane
parameter b.
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Discussion
To summarize, we have presented a coarse-grained simulation
model for multicomponent lipid bilayer systems containing two
types of lipids P and C with properties inspired by phospholipids
and cholesterol. Our simulations show that this system forms
thermodynamically stable nanoscale rafts of C-enriched lo domains
surrounded by a sea of C-depleted ld phase. The in-plane structure
factor features a peak at nonzero q; hence, we have a micro-
emulsion-like structure with a characteristic wavelength of around
12 nm. Furthermore, we have suggested a mechanism that sta-
bilizes rafts of finite size. The mechanism is based on the idea that
the spontaneous curvature of monolayer regions in the lo and ld
phases should differ. We have established this for our model, and
it seems likely that it is also the case in real membranes. The
curvature mismatch then generates elastic interactions that sup-
press global phase separation and stabilize nanoscale structures.
If rafts are a disordered modulated structure, one might ask

whether the corresponding ordered modulated structure can be
observed in nature as well. Indeed, modulated ordered structures
with a very similar length scale are found in one-component
membranes of phospholipids in the pretransition region between
the fluid phase and the tilted gel phase ðLβ′Þ: the ripple phase Pβ′
(59). It is generally observed in lipid bilayers that exhibit a tilted
gel phase. It is also observed in our model (43), and the peri-
odicity (∼10 nm) is comparable to the characteristic length scale
of our raft state. The structure of rippled membranes is much
more complicated than that of rafts. However, just like in rafts, it
involves alternating stretches of gel-like and liquid-like domains,
and simulations suggest that ripple formation is driven by lipid
splay to a large extent (i.e., by monolayer curvature) (43). Thus,
we may speculate that rafts and ripples represent just two sides
of the same coin. Curvature-mediated rafts might be a generic
phenomenon in multicomponent membranes, just like ripples are
a generic phenomenon in one-component membranes.
Unfortunately, rafts are much more difficult to study experi-

mentally than ripples due to the lack of long-range order, as well
as their subsecond lifetimes (60). The structure factor describing
the distribution of domains on the nanoscale could possibly be
measured by X-ray diffraction experiments on aligned multi-
lamellar membranes (“membrane stacks”) of the relevant com-
position, either in reflection or transmission (61, 62). This would
allow one to test whether the in-plane structure factor has a peak
at nonzero wave vector in type I mixtures as predicted by our
model (Fig. 5). In addition, recently developed superresolution
microscopy techniques (63) might provide ways to visualize rafts
in free membranes on the scale of a few nanometers.
Of course, the curvature mechanism proposed here does not

exclude other mechanisms of raft formation, such as those dis-
cussed in the introductory section. Many mechanisms might
compete in nature. In particular, it should be interesting to study
the interplay of curvature-mediated rafts and lipid–protein
interactions (21, 55) in future work.

Materials and Methods
Coarse-Grained Simulation Model. The model is defined in terms of the length
unit σ ≈ 0.6 nm and the energy unit « ≈ 0.36·10−20 J (44). P molecules are
represented by simple flexible chains of beads with a hydrophilic head and
a hydrophobic tail, which self-assemble in the presence of structureless sol-
vent beads (64). C molecules have the same basic structure, but they are
shorter and stiffer except for one flexible end. All lipids are linear chains of
six tail beads attached to one head bead, connected by finite extension
nonlinear elastic (FENE) springs with the spring constant kb = 100 «

σ2
, equilib-

rium bond lengths r0 = 0.7σ (P lipid) and r = 0.6σ (C lipid), and logarithmic
cutoffs at Δrmax = 0.2σ (P) and Δrmax = 0.15σ (C). Consecutive bonds in a chain
with angle Θ are subject to a stiffness potential UBA(Θ) = kθ(1 − cos(Θ)) with
stiffness constant kθ = 4.7« (P lipids), kθ = 100« (C lipids, first four angles), and
kθ = 4.7« (C lipid, last angle). Beads that are not directly bonded with each

other interact via a Lennard–Jones potential ULJðr=ςÞ= «LJ

��
ς
r

�12
− 2

�
ς
rt
�6�

,

which is truncated at a cutoff radius rc and shifted such that it remains
continuous. At rc = 1, one recovers the purely repulsive Weeks-Chandler-
Anderson potential (65). The interaction parameters for pairs of P or C beads
(head or tail) and solvent beads are given by the following:

Hence, all nonbonded interactions except the tail–tail interactions are
repulsive, and the attraction between C tail beads is weaker than that be-
tween other tail beads.

Themodel was studied byMonte Carlo simulations at constant pressure P= 2«/
σ3 and constant zero surface tension in a fluctuating box of variable size and
shape (42). The total number of lipids was kept fixed. The composition was
sometimes allowed to fluctuate (semigrandcanonical ensemble). In that case,
semigrandcanonical moves were implemented by means of configurational bias
Monte Carlo moves (66), during which the identity of a lipid was switched be-
tween P and C. In the canonical simulations, the same moves can be used as
virtual moves to determine the chemical potential difference μ for P and C chains.

Data Analysis. To analyze configurations such as that shown in Fig. 3A, we
map each monolayer onto a discrete grid χxy, where χ = 1 stands for “raft”
and χ = 0 stands for “nonraft.” This is done with the following algorithm:

i) Assign chains to upper and lower bilayer leaflets according to their head-
tail orientation.

ii) For each layer, sort chains into quadratic bins of side length 1.5σ accord-
ing to the xy position of the head bead.

iii) Calculate the number density ρ, the C density ρc, and the nematic order
S for each bin.

iv) At each vertex of the lattice, take the mean value of each observable in
the surrounding bins.

v) If ρ·ρc·S > 0.15σ−4, the membrane at the vertex position is considered to
be in the lo phase.

vi) Apply the Density Based Spatial Clustering of Applications with Noise
(DBSCAN) cluster detection algorithm (67) with Eps = 3σ and minimum
number of points (MinPts) = 3. The clusters are identified as lipid rafts.

The normalized cross-correlations Ki of opposing monolayers of a con-
figuration i are calculated according to Ki = 1

N

P
x;yðχ itxy − χitÞðχibxy − χibÞ=σitσib,

where χ it and χib are the mean values of χ itxy and χ ibxy , respectively; σit and σib
are their SDs, and N is the number of lattice points. To analyze whether
a correlation Ki is significant, we take the same configuration i, displace one
of the leaflets by a random offset with respect to the other ðχ~xyib = χibx+rx ;y+ry Þ,
and compare the new correlation K

~
i with Ki.

Solution of the Elastic Theory. The elastic free energy Fel (Eq. 1) is minimized
with respect to u(r) in the bulk (inside phase-separated domains) and to
the boundary values of u and the normal derivative n∇u at the domain
boundaries. We note that the latter must be continuous across the boundaries;
otherwise, Fel diverges. This results in the Euler–Lagrange equation ξ4∇4u +
2bξ2∇2u + u = 0 in the bulk and in boundary conditions at the interfaces
between domains: n∇(∇2u) must be continuous, and ∇2u jumps by 2δc0 at the
boundaries. Inserting the Euler–Lagrange equations and the boundary con-
dition in Eq. 1 gives the simplified expression in Eq. 2.

For stripe domains of width D with boundaries at z = ±D/2, the defor-
mation profile u(z) satisfying the Euler–Lagrange equation and the bound-
ary conditions is given by

uðzÞ = −
2ξ2δc0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2

p
�
ℜ

ieiαD=2cosðαzÞ� : 0< z<D=2

ℜ

sinð−αD=2Þeiαz� : z>D=2;

[6]

with α=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b+ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2

pp
=ξ and u(−z) = u(z). Two isolated plane boundaries are

obtained in the limit D → ∞. Finally, the radially symmetrical analytical so-
lution for disk domains is

uðrÞ = δc0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−b2

p πDξ
2

(
ℜ
h
ξαJ0ðαrÞHð1Þ

1 ðαD=2Þ
i

: r <R

ℜ
h
ξαJ1ðαD=2ÞHð1Þ

0 ðαrÞ
i

: r >R:
[7]

The profile of Eq. 7 satisfies the boundary conditions by virtue of the
identity J0ðzÞHð1Þ

1 ðzÞ− J1ðzÞHð1Þ
0 ðzÞ=−2i=πz. Inserting Eqs. 6 and 7 into Eq. 2

gives Eqs. 5, 4, and 3 (in the limit D → ∞).

Bead type-bead type «/e ζ/σ rc/ζ

Head(any)-head(any) 1.0 1.1 1.0
Head(any)-tail(any) 1.0 1.05 1.0
Head(any)-solvent 1.0 1.1 1.0
Tail(P)-tail(P) 1.0 1.0 2.0
Tail(P)-tail(C) 1.0 1.0 2.0
Tail(C)-tail(C) 0.9 1.0 2.0
Tail(any)-solvent 1.0 1.05 1.0
Solvent-solvent 0
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Derivation of the Landau–Brazovskii Model. To analyze the situation close
to the spinodal, we minimize F = Fel + FΦ for c0 =ϕĉ=ξ with respect to u.
In wave-vector space q, this gives uq =Φq · 2ĉξ  χððqξÞ2Þ with χ(x) = x/(x2 −
2bx + 1). Inserting this in F and omitting boundary terms, we obtain
F = 1

2

P
qjΦqj2q2geffðq2Þ+ R

d2rfðΦÞ with geffðq2Þ=g− 4kcĉ
2χ   ððqξÞ2Þ. The

function geff(q
2) has a minimum at q* = 1=ξ; hence, a homogeneous phase

(with Φ = constant) becomes unstable at geff(q*) = 0 [i.e., g=g* : = 2kcĉ
2
=

ð1−bÞ]. Close to the spinodal, contributions q ∼ q* dominate; hence, we ex-
pand q2geff(q

2) about q*2 up to second order. This finally gives a free energy

expression of the Landau–Brazovskii form F =
R
d2r

�
Γ
2ðΔ+q2

0Þ2Φ2 + τ
2Φ

2 −
γ
3!Φ

3 + λ
4!Φ

4

�
with q2

0 =q*2
�
1+ ð1−bÞ

�
1− g

g*

��
, τ= r + 1

2ðg−g*Þðq2
0 +q*2Þ, and

Γ=g*=½2ð1−bÞq*2�.
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