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Unconsciousness is a fundamental component of general anesthe-
sia (GA), but anesthesiologists have no reliable ways to be certain
that a patient is unconscious. To develop EEG signatures that track
loss and recovery of consciousness under GA, we recorded high-
density EEGs in humans during gradual induction of and emer-
gence from unconsciousness with propofol. The subjects executed
an auditory task at 4-s intervals consisting of interleaved verbal
and click stimuli to identify loss and recovery of consciousness.
During induction, subjects lost responsiveness to the less salient
clicks before losing responsiveness to the more salient verbal
stimuli; during emergence they recovered responsiveness to the
verbal stimuli before recovering responsiveness to the clicks. The
median frequency and bandwidth of the frontal EEG power
tracked the probability of response to the verbal stimuli during
the transitions in consciousness. Loss of consciousness was marked
simultaneously by an increase in low-frequency EEG power (<1
Hz), the loss of spatially coherent occipital alpha oscillations (8–12
Hz), and the appearance of spatially coherent frontal alpha oscil-
lations. These dynamics reversed with recovery of consciousness.
The low-frequency phase modulated alpha amplitude in two dis-
tinct patterns. During profound unconsciousness, alpha amplitudes
were maximal at low-frequency peaks, whereas during the transi-
tion into and out of unconsciousness, alpha amplitudes were max-
imal at low-frequency nadirs. This latter phase–amplitude relationship
predicted recovery of consciousness. Our results provide insights
into the mechanisms of propofol-induced unconsciousness, establish
EEG signatures of this brain state that track transitions in conscious-
ness precisely, and suggest strategies for monitoring the brain
activity of patients receiving GA.

General anesthesia (GA), a drug-induced state comprising
unconsciousness, amnesia, analgesia, and immobility with

maintenance of physiological stability (1, 2), is a cornerstone of
modern medicine that is crucial for safely performing most sur-
gical and many nonsurgical procedures. In the United States,
nearly 60,000 people receive GA daily for surgery alone (1), sug-
gesting that no physicians manipulate the state of the brain more
often or more profoundly than anesthesiologists. Ironically, brain-
state monitoring is not an accepted practice in anesthesia care
because markers that reliably track changes in level of con-
sciousness underGAhave yet to be identified (3, 4). The standards
for assessing if patients are adequately anesthetized include in-
direct measures of brain state—changes in heart rate, blood
pressure, and muscle tone—along with presumed drug pharma-
cokinetics, pharmacodynamics, and, for inhaled anesthetics, the
level of exhaled anesthetic gas.
The EEG, which measures scalp electrical potentials generated

by cortical postsynaptic currents (5), has long been considered the
most feasible approach for tracking brain states under GA. The
first EEG recordings in humans under GA, reported in 1937,
revealed systematic changes with increasing doses of both ether
and pentobarbital (6). Despite attempts to characterize EEG
morphology under GA (6–9), reading the EEG has not become
part of routine anesthesiology practice. Instead, a simpler ap-

proach is used: Present-day depth-of-anesthesia monitors com-
pute proprietary indices that reduce the EEG to a single, easy-to-
interpret number intended to represent a patient’s level of un-
consciousness (10–15). These indices are designed to apply to all
anesthetics and are constructed from a combination of spectral
and entropy measures that typically require tens of seconds to
compute (3, 16). Despite the appeal of this approach, these in-
dices relate only indirectly to level of unconsciousness. Compared
with non–EEG-based approaches, they have been ineffective in
reducing the incidence of intraoperative awareness, i.e., when
patients are aware under GA even though they appear to be un-
conscious (4). The need to develop principled neurophysiological
approaches to monitoring the state of the brain under GA has
become particularly compelling given growing concerns about its
possible detrimental effects, including emergence delirium in
children (17), adverse developmental effects in neonates and
infants (18), and cognitive dysfunction in the elderly (19).
The black-box approach of these indices obscures structure in

the EEG signal, visible even in 1937 (6), that could be related
directly to the state of consciousness in the same way that the
electrocardiogram, blood pressure, and cardiac output can be
related to the state of the cardiovascular system. A variety of
EEG patterns are known to arise during GA maintained by both
GABAA receptor-specific and ether-derived anesthetics. These
EEG patterns include increases in frontal EEG power (20–24),
a shift in EEG power toward lower frequencies (25), changes in
coherence (22, 26), and burst suppression and isoelectricity (27).
However, the relationship between these or other EEG patterns
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and the loss and recovery of consciousness remain poorly un-
derstood. In particular, it has been difficult to identify specific
EEG signatures that are associated with the point of loss of
consciousness (LOC), because most anesthesia-related EEG
data come from clinical settings in which GA induction is per-
formed rapidly, causing the crucial transition from consciousness
to unconsciousness within 30–60 s (1). Compounding this rapid
LOC is the problem of measuring level of consciousness. The
most common approach is to ask patients to respond to a verbal
or physical stimulus and rate the quality of responses on a 0–5
numerical scale (10, 28). This highly subjective assessment usu-
ally is repeated on a time-scale of minutes (10, 29) and resolves
poorly the time point at which consciousness is lost or regained.
EEG signatures that predict return of consciousness have been
difficult to establish for similar reasons.
To study the relationship between EEG activity and the loss

and recovery of consciousness, we recorded high-density (64-
channel) EEGs while administering increasing (induction) and
decreasing (emergence) doses of propofol to 10 healthy volun-
teers executing a structured auditory-response task to assess
conscious behavior. Over an ∼2-h period, we used a computer-
controlled infusion to increase the target effect-site concentration
of propofol gradually from a baseline of 0 μg/mL to a peak level
of 5 μg/mL (30). We then gradually decreased the propofol target

effect-site concentration until it once again was 0 μg/mL (Fig.
1A). During the infusion, subjects listened to prerecorded audi-
tory stimuli, presented once every 4 s, consisting of their names,
words, and a train of clicks. The subject’s task was to identify the
stimulus type with an appropriate button press. The time-series
of responses provided a behavioral marker of the state of con-
sciousness. We analyzed the EEG using time-varying spectral,
coherence, and phase–amplitude methods and related these
quantities to the probability of response to the auditory stimuli.
We identified highly structured EEG signatures that can be used
to monitor and manage the states of unconsciousness and seda-
tion induced by propofol. These findings also provide insights
into the mechanisms of propofol-induced unconsciousness.

Results
Continuous Transitions Between Consciousness and Unconsciousness.
To track changes in level of consciousness quantitatively in re-
lation to propofol’s target effect-site concentration (Fig. 1A), we
used a Bayesian state-space algorithm (31) to estimate from the
time-series of correct and incorrect responses each subject’s
response-probability curve for the verbal stimuli (neutral words
and subject’s name), Pverbal, and response-probability curve for
the click stimuli, Pclicks (Fig. 1B). We used the same method to
calculate the difference between the response-probability curves,
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Fig. 1. Dynamics of the behavioral responses to the
verbal and click stimuli during induction and emergence
from propofol-induced unconsciousness. (A) The time
course of the target effect-site concentrations of propofol
during induction and emergence for subject 7. (B) Time
courses of the response-probability curves for the click
(blue, Pclicks) and verbal (red, Pverbal) stimuli and their re-
spective 95% credibility intervals (shaded areas) for sub-
ject 7. The vertical black lines, from left to right, show EON,

LOC, ROC, and EOFF. (C) The curve of the difference be-
tween the verbal and click response-probability curves
(Pverbal − Pclicks) and its associated 95% credibility interval
for subject 7. (D) Group-level click (blue, Pclicks) and verbal
(red, Pverbal) response-probability curves computed by
aligning the individual subjects’ response data during in-
duction with respect to LOC and during emergence with
respect to ROC. (E) Group-level curve for the difference
between the verbal and click response-probability curves
(Pverbal−Pclicks) and its 95% credibility intervals computed from
the group-level curves in D. These results show that during
gradual induction and emergence with propofol, loss and
recovery of consciousness occur not instantaneously but
gradually, and the probability of response depends criti-
cally on stimulus saliency.
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Pverbal − Pclicks (Fig. 1C). During induction Pclicks tended to de-
crease before Pverbal, whereas during emergence Pverbal tended to
increase before Pclicks. To analyze this observation formally, we
defined behavioral time markers for each subject, based on the
Pclicks and Pverbal curves, to compare and pool data across subjects.
We defined the first indication of a change in consciousness, the
effect onset (EON), as the first time during induction at which
Pclicks was less than 0.95 and remained so for at least 5 min. We
chose a 5-min interval because it is approximately three times the
equilibration time-constant for propofol (30). Similarly, we de-
fined the effect offset (EOFF) as the first time during emergence
at which Pclicks was greater than 0.95 and remained greater for at
least 5 min. We defined LOC as the first time during induction at
which Pverbal was less than 0.05 and remained so for at least 5 min
and return of consciousness (ROC) as the first time during
emergence at which Pverbal was greater than 0.95 and remained so
for at least 5 min.
We used Bayesian statistical inference to determine if Pclicks <

Pverbal by computing the posterior probability Pr{Pclicks < Pverbal}.
During induction, in 10 of 10 subjects, we observed that Pclicks <
Pverbal during the transition between EON and LOC; an example
is shown in Fig. 1C. This condition is indicated by the fact that Pr
{Pclicks < Pverbal} = Pr{0 < Pverbal − Pclicks} > 0.95, or equiva-
lently, that the 95% credibility intervals for Pverbal − Pclicks
(shaded area in Fig. 1C) do not include 0 during this period. The
transition between EON and LOC required a median of 23.9 min
(minimum, 6.7 min; 25th percentile, 16.4 min; 75th percentile,
28.6 min; maximum 32.8 min). We estimated group-level Pclicks,
Pverbal, and Pverbal − Pclicks curves for both induction and emer-
gence by aligning the responses to the auditory tasks with respect
to LOC and ROC, respectively (Fig. 1 D and E). The group-level
analysis corroborated the individual subject analyses, showing
that Pclicks < Pverbal during the transition to LOC (Pr{Pclicks <
Pverbal} > 0.95; Fig. 1E). Moreover, the group-level curves
showed a gradual increase in the difference between these
response probabilities as subjects approached LOC (Fig. 1E).
During emergence, individual response-probability curves

were more variable, but again we found that Pclicks < Pverbal at the
group level (Pr{Pclicks < Pverbal} > 0.95; Fig. 1E). During emer-
gence, 6 of 10 subjects did not reach EOFF because they did not
achieve Pclicks > 0.95 for 5 min or longer. Therefore we conser-
vatively estimated the emergence transition time by using either
EOFF or the end of the recording if EOFF was not achieved. All
subjects were conscious at the end of the recording time. We
found that the transition between ROC and EOFF required
a median of 25.5 min (minimum, 4.9 min; 25th percentile, 12.8
min; 75th percentile, 38.0 min; maximum, 47.6 min). These
results show that during gradual induction of and emergence
from GA with propofol, loss and recovery of consciousness do
not occur instantaneously but instead show gradual transitions
during which the probability of response depends critically on
stimulus saliency.

Dynamics of the EEG Spectrum Covary with Changes in Probability of
Response and LOC/ROC. To analyze the dynamics of EEG oscil-
lations during induction of and emergence from GA, we com-
puted time-varying spectra (spectrograms) (32). We computed
group-level spectrograms by taking the median baseline-nor-
malized spectrogram across subjects, aligned at LOC for in-
duction and at ROC for emergence (Fig. 2B). To minimize
spatial blurring in this and subsequent analyses, we used a near-
est-neighbor Laplacian reference, in which the Laplacian is cal-
culated by taking each channel and subtracting the average of the
nearest neighbors (24). During induction, gamma (25–40 Hz)
and beta (13–24Hz) power increased significantly above baseline
levels during the 30 min before LOC—when Pclicks < Pverbal—and
remained elevated during the unconscious period (Fig. 2 B and
C). At LOC, both alpha (8–12 Hz) and low-frequency (0.1–1 Hz)
power increased significantly (Fig. 2 B and C). Fifteen minutes
after LOC, the increases in alpha power were concentrated in
frontal channels, whereas those for low-frequency power were

distributed broadly across temporal and parietal channels (Fig.
2D). During emergence, these changes in power occurred in
reverse, following a similar time course: Frontal alpha and low-
frequency power decreased at ROC, whereas gamma/beta power
remained elevated throughout the post-ROC period when
Pclicks < Pverbal. These analyses show that changes in broad-band
gamma/beta power coincide with the behavior changes before
LOC and after ROC, whereas changes in slow and alpha power
coincide with LOC and ROC.
The standard definitions of the alpha, beta, and gamma EEG

frequency bands provide a convenient shorthand for describing
different oscillations. However, Fig. 2B makes clear that these
propofol-induced oscillations are not confined neatly to single
bands but instead move among these bands to varying degrees
during both induction and emergence. Furthermore, when we
examined individual subject spectrograms (e.g., Fig. S1), the
broad-band gamma/beta power seen before LOC appeared to
decrease continuously in frequency and bandwidth toward the
alpha range, and then appeared to increase in frequency and
bandwidth after ROC. To characterize this changing frequency
distribution quantitatively, we estimated the median frequency
and bandwidth (interquartile range) of the group-level baseline-
normalized spectrograms in the frequency range between 2 and
40 Hz (Fig. 3A; see SI Text for additional details). We chose the
2–40 Hz interval to provide a broad range of frequencies while
avoiding bias introduced by power in the low-frequency (0.1–1
Hz) band.
During induction, in the transition period before LOC, the

median frequency decreased from 23.1 to 12.0 Hz, and the
bandwidth decreased from 17.4 to 9.1 Hz (Fig. 3A). During
emergence, in the transition period after ROC, the median fre-
quency increased from 11.8 to 21.9 Hz, and the bandwidth in-
creased from 9.9 to 12.8 Hz. We analyzed the spatial distribution
of power at the median frequency at different behavioral time
points for each subject and computed group-level spatial esti-
mates at each time point by taking the median power across
subjects. We used the previously defined behavioral time points
(EON, LOC, ROC, and EOFF), along with three newly defined
time points—Pre-LOC (the midpoint between EON and LOC),
Unconscious (the midpoint between LOC and ROC), and Post-
LOC (the midpoint between ROC and EOFF)—to provide
a higher temporal resolution in our analysis.
We found that the power at the median frequency had a frontal

distribution across the different behavioral time points (Fig. 3B).
To compare this spatial distribution of power at the median
frequency with activity in the traditional frequency bands, we
examined the spatial distribution of power within the gamma,
beta, and alpha bands at the same time points (Fig. S2). Gamma
and beta power showed a frontal distribution from Pre-LOC
through LOC; during unconsciousness the frontal power distribu-
tion moved to the beta and alpha bands, consistent with the de-
creasing trend in the median frequency. During emergence, frontal
power shifted from the alpha and beta bands to span the beta and
gamma bands, again consistent with the increasing median fre-
quency. In addition, frontal gamma power appeared to persist
through EOFF. These results show that activity in the gamma, beta,
and alpha bands varies continuously during the transitions into and
out of propofol-induced unconsciousness, and that power in these
bands all have a common frontal distribution. To distinguish this
pattern of continuously varying median frequency and bandwidth
from activity within traditional fixed-frequency bands, we refer to
this phenomenon as the “traveling peak.”

Changes in Spatially Coherent Alpha Activity Mark Unconsciousness.
Because low-frequency and alpha oscillation power are prom-
inent across the entire scalp and the frontal areas, respectively,
during unconsciousness (Fig. 2D), we investigated the degree to
which activity in these frequency bands was spatially coherent.
We performed eigenvector decompositions of the cross-spectral
matrices and analyzed the spatial distribution of the first eigen-
vector, or principal mode, at all frequencies from 0.1 to 40 Hz in
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the baseline and unconscious states. We used the modal pro-
jection, i.e., the fraction of power explained by the principal
mode at each frequency as a function of time, to measure the
degree of coherent spatial activity (Fig. 4) (24, 32, 33). If a high
fraction of the variance is explained by a principal mode, it
suggests that there is highly coherent spatial activity at the as-
sociated frequency. We aligned the modal projection across
subjects with respect their respective LOCs and ROCs to con-
struct group-level summaries (Fig. 4).
Only the principal mode in the alpha frequency band was

prominent throughout the study (Fig. 4). At baseline, the alpha
frequency had an occipital distribution because all subjects were
instructed to keep their eyes closed throughout the study to avoid
eye-movement artifacts and confounds (Fig. 4 A and B). Hence,
the occipital alpha is consistent with the well-known awake eyes-
closed state (34). Occipital prominence of the principal mode was
present while the subjects were awake, ended at LOC, and
returned, and remained prominent after ROC. In contrast, during
unconsciousness, the principal mode in the alpha range was
prominent in a frontal distribution (Fig. 4 C and D). Frontal
prominence of the alpha principal mode occurred at the same
time and frequency range (∼10 Hz) as the increased frontal alpha
power (Fig. 2) and the traveling peak (Fig. 3). In contrast, low
frequencies did not show a prominent principal mode, even
though low-frequency power increased bymore than 10-fold in the

unconscious state compared with baseline (Fig. 2). These findings
demonstrate that with propofol the transition from awake eyes-
closed consciousness to unconsciousness is marked by the loss of
spatially coherent occipital alpha oscillations and the appearance
of spatially coherent frontal alpha oscillations. At ROC, the spa-
tially coherent frontal alpha oscillations disappear and the spa-
tially coherent occipital alpha oscillations return.

Different Patterns of Phase–Amplitude Modulation Mark Profound
Unconsciousness and Recovery of Consciousness. To investigate
further the structure in the prominent low-frequency and alpha
oscillations observed during unconsciousness, we analyzed phase–
amplitude modulation between the rhythms (35). That is, we
computed the extent to which the phase of the low-frequency
oscillations modulated the amplitude of the alpha and beta (8–14
Hz) oscillations by computing time-varying phase–amplitude
histograms for each subject and for the group aligned at
LOC and ROC (36). As described in ref. 36 and in theMaterials
and Methods, we bandpass filtered the EEG signal to obtain
low-frequency and alpha/beta components and used the Hilbert
transform to estimate low-frequency phase and alpha and beta
amplitude.
Our analysis identified two distinct patterns of phase–amplitude

modulation. During induction, beginning ∼20 min before LOC
and extending∼10min after LOC, the alpha/beta amplitudes were
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Fig. 2. Dynamics of the EEG spectrogram during
induction and emergence from propofol-induced
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consciousness (LOC + 15 min). These analyses show
that changes in broad-band gamma/beta power
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largest at the troughs of low-frequency oscillations (Fig. 5 B andC;
P < 0.05 in 9 of 10 subjects within 10 min of LOC by permutation
test, detailed in ref. 36; the troughs are Laplacian surface-negative
deflections).We term this pattern “trough-max.”During profound
unconsciousness, i.e., from 10–40 min after LOC, the phase–am-
plitude modulation shifted by 180°, such that the alpha/beta
amplitudes were largest at the peaks of low-frequency oscillations
(Fig. 5 B and D; P < 0.05 in 8 of 10 subjects by permutation test;
the peaks are Laplacian surface-positive deflections).We term this
pattern “peak-max.” Both phase–amplitude modulation patterns
were readily apparent in the raw EEG traces (Fig. 5 C and D).
During emergence, the phase–amplitude modulation reverted to
the trough-max pattern at ∼15 min before ROC (Fig. 5B; P < 0.05
in 9 of 10 subjects, permutation test). More generally, we found
that the low-frequency oscillations modulated a range of fre-
quencies from the theta band through the gamma band (Fig. S3).

Our findings suggest that the peak-max pattern is a marker of
profound unconsciousness, and the transition from the peak-max
pattern to the trough-max pattern predicts when subjects may be
able to recover consciousness.

Discussion
The mechanisms of unconsciousness caused by GA are regarded
as one of the great mysteries of medicine (37). By combining
gradual induction and emergence with a task paradigm capable of
tracking changes in behavior every 4 s, our study offers behavioral
markers and EEG signatures characterizing loss and recovery of
consciousness from propofol and mechanistic insights into how
propofol may induce unconsciousness. Our findings are (i) the
behavioral changes in the transitions between consciousness and
unconsciousness depend critically on stimulus saliency; (ii) the
median frequency and bandwidth of frontal EEG power (the
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when a spatially coherent occipital alpha mode
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traveling peak) track changes in level of consciousness; (iii) LOC
is marked by an increase in low-frequency power, loss of coherent
occipital alpha oscillations, and the appearance of coherent
frontal alpha oscillations; (iv) ROC is marked by a decrease in
low-frequency power, loss of coherent frontal alpha oscillations,
and reappearance of coherent occipital alpha oscillations; (v) the
trough-max pattern of phase–amplitude modulation marks the
transitions into and out unconsciousness, whereas the peak-max
pattern marks profound unconsciousness. These behavioral and
EEG signatures are summarized in Fig. 6.

Neurophysiological Properties of Propofol’s EEG Signatures. The
findings from our traveling peak and principal mode analyses (Fig.
3 A and B) are consistent with results from our recent modeling
studies. Using network models of Hodgkin–Huxley neurons, we
demonstrated that gamma and beta power increased in cortical
circuits with low-dose propofol administration (38) and that as the
dose was increased, gamma and beta activity coalesced into a co-
herent alpha oscillation through synchronization of thalamo–
cortical interactions (39). This coalescence agrees with the trav-
eling peak and the spatially coherent alpha activity we observed at
LOC (Fig. 4D). Our model analysis suggests that this coalescence
occurs as the cortex and thalamus mutually entrain through their
reciprocal connections into tightly organized, spatially coherent
oscillations in the alpha range (39).
Our current findings also suggest that propofol-induced gamma,

beta, and coherent frontal alpha oscillations are likely not separate
physiological phenomena but rather different dynamic regimes
of thalamo–cortical networks whose activity tracks the level of
arousal. Loss of gamma-band coherence has been reported to be
associated with LOC (22, 40, 41). We observed changes in alpha-
band power (Fig. 2) and coherence (Fig. 4) linked to LOC and ROC
but did not see such effects in the gamma band.
The temporal coincidence between the changes in low-fre-

quency (0.1–1 Hz) power and coherent alpha oscillations at LOC
and ROC (Figs. 2 and 4) suggests that these phenomena may
have a shared origin. There is a class of high-threshold thalamic

relay neurons that burst at alpha frequencies when depolarized
but spike in a low-frequency burst pattern when hyperpolarized
(42). Hyperpolarization of these neurons could explain the si-
multaneous changes in occipital alpha and low-frequency power
at LOC and ROC. This hyperpolarization could occur via
reduced excitatory input from cortex or brainstem, or from
increased GABAergic inhibition from thalamic reticular nucleus.
The peak-max pattern (Fig. 5 and Fig. S3) resembles the slow

oscillation which has been studied extensively in sleep (43), ket-
amine/xylazine anesthesia (44, 45), and, more recently, in studies
of human single units during propofol-induced unconsciousness
(46). In slow oscillations, surface-positive waves are associated
with UP or ON states in which broad-band EEG, local field po-
tential, and multiunit activity are all increased (44, 46–48). On the
other hand, DOWN or OFF states are associated with periods of
neuronal silence (44, 46–48). The slow oscillation is thought to
reflect a state of reduced cortico–cortical functional connectivity
(46, 49, 50). The spatial distribution and lack of spatial coherence
we observed in the low-frequency oscillations are consistent with
this idea (Fig. 4 and Fig. S2). The trough-max pattern could be an
instantiation of the slow cortical potential, a category of low-
frequency activity in which surface-negative deflections are as-
sociated with high-frequency activity (51). Anesthesia-induced
phase–amplitude modulation has been studied previously (51–
54). However, our results establish the existence of two distinct
patterns of low-frequency phase modulation of the alpha/beta
oscillation amplitudes and show that each pattern is linked to
a different state of unconsciousness. The mechanism for the
transition between the two patterns remains an open question.
Anteriorization, the frontal shift in EEG power in multiple

bands, has also been associated with unconsciousness (20–24, 26,
52). We find that anteriorization begins before LOC and involves
power increases in the alpha through gamma bands (traveling
peak, Fig. 3) and increases in alpha band coherence at LOC (Fig.
4). During emergence, after ROC, anteriorization reverses, but
frontal gamma power persists even after behavioral responses
have returned (Fig. 3 and Fig. S2). These results suggest that
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elevated frontal gamma/beta power could offer a quantitative
marker of sedation and/or a measure of persistent subclinical
effects of propofol following emergence.

Two Putative Mechanisms of Propofol-Induced Unconsciousness.
Unconsciousness coincides with spatially coherent frontal alpha
oscillations, whereas loss of this coherent activity precedes ROC.
Previous reports also have shown that responsiveness decreases
with increased frontal alpha synchrony (26). We postulate, based
on our modeling studies, that spatially coherent alpha oscillations
contribute to propofol-induced unconsciousness by drastically
restricting communication within frontal thalamo–cortical circuits
to this narrow frequency band (39). Several studies have shown
that low-frequency oscillations are more prominent with in-
creasing anesthetic dose and levels of unconsciousness (6, 8, 21,
22, 25). In recent multiscale human intracranial studies of pro-
pofol-induced unconsciousness, Lewis et al. (46) found that
neuronal spiking is limited to a brief phase window of the slow
oscillation, and is silent otherwise. These propofol-induced slow
oscillations occurred asynchronously across cortex, creating a state
of functional isolation between cortical areas (46). This obser-
vation suggests that reduced functional intracortical con-
nectivity is another possible mechanism for propofol-induced
unconsciousness. If, as we postulate, the peak-max modulation

pattern is a manifestation of this slow oscillation, the peak-max
pattern would be a marker of that decreased connectivity.
The creation of highly structured oscillations, as occurs during

seizures, is associated with unconsciousness (55) and could be a
mechanism of anesthetic-induced unconsciousness. Taken to-
gether, our modeling and experimental results identify restriction
of thalamo–cortical communication to the alpha range and slow
oscillation-mediated reduction in intracortical communication as
specific oscillatory dynamics that may explain how propofol
induces unconsciousness. These highly structured oscillations
could provide a means to disrupt integrated information pro-
cessing within the brain (56) as well as anterior–posterior cortical
feedback (41, 57, 58), both of which are considered crucial for
conscious processing (56, 59).

Comparisons with Sleep and Coma. GA-induced unconsciousness
often is compared with sleep (52, 60); our results lend further
support to our previous statements that there are similarities as
well as important differences in their EEG dynamics (1). Sleep
spindles occur with a frequency range and spatial distribution
that are similar to the frontal alpha/beta rhythms described here
(61), and spindles are generated by a similar thalamo–cortical
circuit (62). However, the time-domain morphology of these
oscillations is very different: Spindles have a transient envelope
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Fig. 6. Summary of behavioral and EEG signatures
during induction of and emergence from propofol-
induced unconsciousness. (A) Responses to auditory
stimuli show continuous changes in probability of
response and a salience dependence during the
transition to unconsciousness and during ROC. (B)
The frontal EEG spectrogram shows a traveling
peak that begins as broad-band beta-gamma
power at the onset of behavioral effects and
decreases in frequency and bandwidth into the al-
pha range toward LOC. (C) Spatially coherent pos-
terior alpha oscillations disappear and spatially
coherent frontal alpha oscillations appear at LOC.
At ROC, spatially coherent posterior alpha oscil-
lations reappear, and spatially coherent frontal
alpha oscillations disappear. (D) Low frequency (<1
Hz) power increases at LOC and decreases at ROC.
(E) Two patterns of low-frequency phase modula-
tion of alpha/beta amplitude. The trough-max
pattern appears at the transition into and out of
LOC. The peak-max pattern appears at profound
unconsciousness. These results establish EEG sig-
natures that characterize unconsciousness, track
the transitions into and out of unconsciousness,
and provide a means to monitor and predict the
brain states of patients receiving propofol for GA
or sedation.
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with a refractory period of several seconds (62), whereas pro-
pofol-induced alpha/beta oscillations appear more continuous in
nature. This difference could reflect propofol’s inhibitory effect
on thalamic calcium-dependent hyperpolarization-activated cur-
rents (Ih) (63), which are thought to mediate the sleep spindle’s
transient shape and refractory period (64). Propofol-induced slow
oscillations are associated with shorter periods of neuronal firing
and longer periods of silence than sleep slow waves, suggesting
a more profound degree of cortical impairment than seen with
sleep (46). We speculate that, as a result, sleep slow waves might
show less pronounced phase–amplitude modulation than the
propofol-induced slow oscillation (peak-max).
EEG patterns similar to those described here during propofol-

induced unconsciousness, including frontal alpha waves, low-
frequency oscillations, and burst-suppression, can be observed in
different coma states (1, 65). However, less is known about the
spatiotemporal dynamics and mechanisms of these EEG pat-
terns in coma, and further study will be required to make de-
tailed comparisons with GA. More generally, systematic analyses
comparing GA, sleep, coma, and other altered states of con-
sciousness may yield important insights into the mechanisms
underlying these phenomena.

Tracking Brain States of Patients Under GA. Anesthesiologists pro-
vide care to thousands of patients daily, but only about half use
depth-of-anesthesia monitors (66). The EEG-derived indices
reported by these monitors relate only indirectly to LOC, ROC,
and unconsciousness. Hence, even when patients are monitored,
their brain states are not known precisely (4). The standards
for monitoring vital physiological variables in anesthesiology—
heart rate, blood pressure, oxygen saturation, and temperature
(67, 68)—have been critical for reducing morbidity, mortality, and
malpractice premiums (69). Because there are no such standards
for tracking brain states under GA (70), there is no principled way
at present to prevent intraoperative awareness (4), postoperative
delirium, or postoperative cognitive dysfunction.
The EEG signatures we have identified for propofol can be

computed in real-time, are easy to recognize, and can be inter-
preted in a way that relates directly to the mechanisms through
which this anesthetic is postulated to induce unconsciousness.
The traveling peak and the trough-max pattern can be used to
track transitions into and out of unconsciousness (Fig. 3 A and B).
Alpha coherence (Fig. 4) could be used as a marker of un-
consciousness during surgeries such as carotid endarterectomies
in patients that have a full EEG montage. The trough-max pat-
tern offers a predictor of ROC (Fig. 5A and B), whereas the peak-
max pattern (Fig. 5 A and B) provides a signature of profound
unconsciousness. When the peak-max pattern is present, our
findings suggest that it is improbable that a patient will have
awareness. Neither the trough-max nor the peak-max pattern can
be detected by spectral or entropy-based analyses (3), because
these quantities do not contain phase information. The bispectral
statistic SyncFastSlow computed as part of the Bispectral Index
(16) also is unable to detect these modulation patterns (36), most
likely because the broad range of frequencies that are pooled
together (0.5–47 Hz) effectively cancels out phase information
(36, 71). However, because phase–amplitude modulation can be
represented as a form of quadratic phase coupling (72), it could
be estimated using properly structured bispectral techniques.
Studies of other anesthetics that combine experimental and

modeling paradigms likewise could relate drug-specific EEG sig-
natures to the mechanisms of drug action and the associated be-
havioral and brain states they produce. This deeper understanding
of anesthetic neurophysiology will provide new insights into brain
function and altered states of consciousness or arousal. It should
also translate into more reliable approaches to monitoring the
brain states of patients receiving GA and for tailoring drug dosing
based on specific, real-time knowledge of these states. Such in-
formed approaches are critical steps for establishing neurophysi-
ologically based standards for brain-state monitoring during GA.

Materials and Methods
Subject Selection and Clinical Procedures. We studied 10 normal healthy vol-
unteers, 18–36 y of age. These studies were approved by the Human Research
Committee at the Massachusetts General Hospital. All subjects provided in-
formed consent. All subjects were American Society of Anesthesiology
Physical Status I with Mallampati Class I airway anatomy. In addition to
standard preanesthesia assessments, we tested all subjects for normal hear-
ing and performed a urine toxicology screen to ensure that subjects had not
taken drugs that might interact adversely with propofol or confound the EEG
or behavioral results. We administered a urine pregnancy test for each fe-
male subject to ensure that none was pregnant.

Before the start of the study, we required subjects to take nothing by
mouth for at least 8 h. During the study, subjects breathed 30% oxygen by
volume. We monitored each subject’s heart rate with an electrocardiogram,
oxygen saturation through pulse oximetry, respiration and expired carbon
dioxide with capnography, and blood pressure through an arterial line. The
arterial line also was used for blood sampling. To ensure subject safety, at
least three anesthesiologists were present at each study: one was responsible
solely for the medical management of the subject during the study, the
second controlled the propofol administration, and the third performed
blood sampling. When a subject became apneic, the first anesthesiologist
assisted breathing with bag/mask ventilation. A phenylephrine infusion was
used to maintain mean arterial pressure above a patient-specific level de-
termined from the subject’s baseline measurements.

Experimental Design and Procedures. For induction of unconsciousness, we
used a computer-controlled infusion to achieve propofol target effect-site
concentrations of 0, 1, 2, 3, 4, and 5 μg/mL (Fig. 1A) (30, 73). We maintained
each target effect-site concentration level for 14 min. We denoted the pro-
pofol concentration atwhich each subject stopped responding to button press
as “CLOR.” Emergence began at the end of the 5 μg/mL level. To provide a
gradual emergence,we reduced the propofol infusion rates in a stepwise fashion
to achieve target effect-site concentrations of CLOR −0.5 μg mL, CLOR −1.0 μg/mL,
and CLOR −1.5 μg/mL, and 0 μg/mL, for 14 min each. We performed blood
sampling for later propofol assays at the midpoint and end of each level.

Before each study, we acquired structural MRI for each subject (Siemens
Trio 3 Tesla, T1-weighted magnetization-prepared rapid gradient echo, 1.3-
mm slice thickness, 1.3 × 1 mm in-plane resolution, TR/TE = 2530/3.3 ms, 7°
flip angle) and digitized scalp electrode positions (Polhemus FASTRACK 3D).
During induction and emergence, we recorded EEGs using a 64-channel
BrainVision MRI Plus system (Brain Products) with a sampling rate of 5,000
Hz, resolution 0.5 μV least significant bit (LSB), bandwidth 0.016–1000 Hz.
We also recorded galvanic skin response, plethysmography (PowerLab;
ADInstruments), and video (BrainVision Video Module; Brain Products).

Subjects were instructed to close their eyes throughout the study to avoid
eye-blink artifacts in the EEG. Keeping the eyes closed also helped distin-
guish between normal awake, eyes-closed occipital alpha oscillations (34)
and the frontal alpha oscillations associated with unconsciousness caused
by propofol.

Subjects were presented a series of auditory stimuli during the study and
asked to respond to these stimuli by button presses to assess level of conscious
behavior. The stimuli, which consisted of either a verbal stimulus or an au-
ditory click, were presented every 4 s in a repeating sequence of click-click-
verbal-click-click, with a total of 210 stimuli per target effect-site concen-
tration level. Verbal stimuli consisted either of the subject’s name or a word
(LIBRARY, CABINET, VEHICLE, TABLE, BUILDING, LADDER, PACKAGE), ran-
domized with an equal number of name or word stimuli at each level. Words
and names were recorded by a male native English speaker (P.L.P.). The click
train was delivered binaurally, with 40-Hz clicks in the left ear and 84-Hz
clicks in the right ear. Subjects were instructed to press one button if they
heard their name and to press the other button if they heard any other
stimulus. For click-train stimuli, subjects were instructed to wait until the end
of the stimulus before responding so that auditory event-related potentials
could be recorded without response artifacts. Analysis of these event-related
potentials will be reported in a separate publication.

Click trains were constructed by modulating uniformly distributed white
noise with a periodic ON/OFF trapezoid function (for 40-Hz clicks, 12.5-ms OFF
period, 12.5-ms ON period, 2-ms rise time, 2-ms fall time; for 80 Hz clicks, 6-ms
OFF period, 6-ms ON period, 1-ms rise time, 2-ms fall time). All stimuli were
recorded at a sampling rate of 44.1 kHz. Stimuli were presented using Pre-
sentation software (Neurobehavioral Systems, Inc.) with ear-insert head-
phones (ER2; Etymotic Research) at ∼81 decibels peak sound pressure level.

Button-press stimuli were recorded using a custom-built computer mouse
with straps fitted to hold the first and second fingers in place over the mouse
buttons throughout the study. The mouse also was lightly strapped to the

Purdon et al. PNAS | Published online March 4, 2013 | E1149

M
ED

IC
A
L
SC

IE
N
CE

S
PN

A
S
PL

U
S



subject’s hand using tape and an arterial line board to ensure that responses
could be recorded accurately during emergence.

Behavioral Analysis.We estimated the probability of response to the click and
verbal stimuli and the difference in probability of response by using Bayesian
Monte Carlo methods to fit a state-space model to these data (31, 74). To
perform group-level analyses, we aligned the behavioral data across subjects
with respect to each subject’s LOC time for induction and with respect to
each subject’s ROC time for emergence. We then pooled the responses
within 20-s bins. The pooled data were used to estimate group-level prob-
abilities of response using the state-space model.

EEG Preprocessing. We applied an anti-aliasing filter and down-sampled the
EEG data to 500 or 250 Hz before analysis. An investigator experienced in
reading EEGs (P.L.P.) visually inspected the data from each subject and ex-
cluded channels with noise or artifacts. We coregistered the electrode
positions with MRI-based scalp-surface reconstructions obtained with Free-
surfer (75) and remontaged EEG signals to a nearest-neighbor Laplacian
reference, using distances along the scalp surface to weigh neighboring
electrode contributions.

Spectral Analysis. We computed spectrograms using the multitaper method,
with window lengths of T = 2 s with 1.9 s overlap, time-bandwidth product
TW = 2, number of tapers K = 3, and spectral resolution of 2 Hz (32, 76). We
computed group-level baseline-normalized spectrograms for induction and
emergence by taking the median across subjects with the data aligned to the
LOC and ROC time points, respectively. To determine if the group-level spec-
trogram was significantly greater than baseline, we performed a sign test at
each time-frequency location, treating each subject as an independent sample.

To characterize the traveling peak, we first computed the group-level
baseline- and total power-normalized spectra aligned at LOC (induction) and
ROC (emergence) time points. We then computed themedian, 25th, and 75th
percentiles between 2 and 40 Hz at each time point and applied a random-
walk fixed-interval smoother to each resulting time series (77). We estimated
the state space observation variance by computing the sample variance of
the first 10 s of each time series and estimated the random-walk state var-
iance by taking the square of the end-to-end rate of change for each time
series [i.e., σ2state ¼ ððy1−yNÞ=NÞ2, where N is the number of samples in the
time series, and y1 and yN are the first and last samples in the time series,
respectively]. We computed group-level scalp power distributions by taking
the median across subjects. Scalp EEG plots were performed using the top-
oplot function in EEGLab (78).

Eigenvalue and Modal Projection Analyses. We performed an eigenvector
decomposition analysis of the cross-spectral matrix to identify the principal
modes of oscillation in the conscious and unconscious states and to analyze
how activity within these principal modes changed through time. We esti-
mated the cross-spectral matrices Pbaseline(f) and Punconscious(f) at each fre-
quency f using the multitaper method (parameters as above) using data
from the full baseline period, and segments of at least 5 min extending from
LOC to ROC, respectively, for each subject. We divided each segment into
nonoverlapping 2-s windows, and we computed the median over all win-
dows of the real and imaginary parts of each entry in the cross-spectral

matrix (33). We performed an eigenvalue decomposition on this median
cross-spectral matrix at each frequency. Each eigenvector describes a co-
herent spatial distribution or mode of oscillation, and the corresponding
eigenvalue quantifies the power in this mode. We refer to the first eigen-
vector u1(f) at a given frequency f as the principal mode of oscillation for
that frequency.

We usedmodal projection analysis to characterize how powerwithin these
principal modes changed as a function of time (33). For each Slepian-tapered,
Fourier-transformed vector in each channel, x(f, t), at frequency f and time
window t (duration 20 s, nonoverlapping), we defined the modal projection
as the power within the principal mode, normalized by total power:

MPðf ; tÞ ¼ jxT ðf ; tÞu1ðfÞj2
jxðf ; tÞj2 :

We used a permutation-based procedure to assess statistical significance for
the modal projection analysis. For each 20-s time window we applied
a randomly selected circular time shift to the raw data from each channel. The
shifted data then were subjected to the eigenvector and modal projection
analysis described above. To generate a null distribution, we repeated this
procedure 200 times with a new random time shift for each channel. To
improve resolution we resampled the 200 permutation controls 500 times,
with replacement. We used this null distribution to find the 95% confidence
limit for significant modal projection for each subject at each time point and
frequency. We averaged the 95% confidence limit across subjects and
compared the average with the mean of the original global coherence. Time
points and frequencies at which the mean modal projection was below the
mean of the 95% confidence interval were determined to be nonsignificant
(shown in gray in Fig. 4 B and D).

Phase–Amplitude Modulation Analysis.We analyzed the relationship between
low-frequency phase (0.1–1 Hz) and alpha/beta (8–14 Hz) amplitude by
calculating a phase–amplitude histogram, or “modulogram” (36). We down-
sampled the EEG data to 250 Hz, then applied bandpass filters to construct
narrow-band slow and alpha/beta signals (36). We then applied the Hilbert
transform to each signal and computed the low-frequency oscillation phase
Ψ(t) and alpha oscillation amplitude A(t). To construct the modulogram, we
assigned each temporal sample to one of 18 equally spaced phase bins based
on the value of Ψ(t), averaging over 2-min epochs. The modulogram in each
phase bin is the average of A(t) for all samples within the bin, normalized by
the average of A(t) over the entire 2-min epoch. To assess statistical signif-
icance for the modulogram, we performed a permutation test, described in
ref. 36.
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