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Abstract
Motivation—Microarray experiments typically analyze thousands to tens of thousands of genes
from small numbers of biological replicates. The fact that genes are normally expressed in
functionally relevant patterns suggests that gene-expression data can be stratified and clustered
into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible
to improve screening power while minimizing information loss.

Results—We propose a powerful and computationally simple method for finding differentially
expressed genes in small microarray experiments. The method incorporates a novel stratification-
based tight clustering algorithm, principal component analysis and information pooling.
Comprehensive simulations show that our method is substantially more powerful than the popular
SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a
Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray
datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method
proved more robust than the popular alternatives for identification of differentially expressed
genes.

Availability—The C++ code to implement the proposed method is available upon request for
academic use.

1 INTRODUCTION
Analysis of high-throughput microarray data is becoming commonplace with the increase of
sequenced genomes and genome-wide investigations of gene expression (Brem et al., 2002;
Chesler et al., 2005; Hubner et al., 2005; Mehrabian et al., 2005; Morley et al., 2004;
Scheetz et al., 2006; Tsai et al., 2006; Yvert et al., 2003). Low-replication experiments are
common in microarray studies (Gadbury et al., 2003) and testing for differential expression
of many genes with small samples is problematic (Sima and Dougherty, 2006; Yang and
Churchill, 2007). Gene ranking is a fundamental problem in microarray analysis, and great
efforts have been devoted to construct powerful statistics. The SAM t in Tusher et al.
(2001), the moderated t in Smyth (2004) and the Welch type t in Hu and Wright (2007) are
attractive statistics for this purpose. These methods share in common the idea of information

© The Author 2008. Published by Oxford University Press. All rights reserved.
*To whom correspondence should be addressed: shuzhang@mtu.edu.

Supplementary information: Supplementary data are available at Bioinformatics online.

Conflict of Interest: none declared.

NIH Public Access
Author Manuscript
Bioinformatics. Author manuscript; available in PMC 2013 March 25.

Published in final edited form as:
Bioinformatics. 2008 July 15; 24(14): 1583–1589. doi:10.1093/bioinformatics/btn215.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



pooling across genes, which can be dated back to Chen et al. (1997). Ranking alone does not
tell how many or which genes are significantly differentially expressed. Another challenge is
to identify, reliably and economically, as many biologically and statistically significant
genes as possible while controlling false positives. Some permutation approaches have been
developed to empirically estimate the false discovery rate (Storey and Tibshirani, 2003;
Tusher et al., 2001; Xie et al., 2005). A permutation based empirical estimate of FDR is a
must for SAM t and other statistics with unknown null distributions. However, permutation
is not available when the sample size is small.

Many existing approaches ignore the impact of the complex dependence structures in
microarray experiments. Several approaches have been proposed (Efron, 2007; Pawitan et
al., 2006; Qiu et al., 2005) to address the stochastic dependence between genes to improve
statistical inference of microarray data. We focus on the explicit use of gene-to-gene
correlation to boost statistical power and prevent false positives in small microarray
experiments. We believe that suitable dimension reduction techniques based on clustering
can be applied to effectively reduce the number of tests, thereby conserving testing power.
Standard clustering analysis forces all data points into groups at the expense of cluster
tightness. For microarray experiments, Tseng and Wong (2005) have proposed a method to
identify informative, tight and stable clusters to enable statistically valid biological
inferences from microarray data. By integrating K-means clustering with resampling, this
‘tight-clustering’ method embodies a novel concept that does not necessitate the estimation
of the number of clusters and the assignment of all genes into clusters. Although promising,
it is computationally intensive and requires large sample sizes like other resampling-based
techniques.

In this article, we propose an efficient method to identify differentially expressed genes. We
term the method FCPC, since it is based on a forward search using gene-to-gene correlation
and principal component analyses. In FCPC, we first divide genes into co-expression strata
using the information conveyed by gene expression. This is analogous to the post-
stratification technique commonly used in large scale survey sampling (Cochran, 1977; Feng
and Shi, 1996; Holt and Smith, 1979) to improve inference precision. Second, we design a
tight clustering method to search within every stratum for tight gene clusters in each of
which the minimum gene-to-gene correlation exceeds a predetermined level. The proposed
tight clustering approach should be especially suitable for low-replicate experiments. Next,
we represent tight clusters by their first principal components (PCs). In terms of mean-
square error, principal component analysis is a suitable linear dimension reduction technique
for defining a new dimensional space that captures the maximum information in the original
dataset. We then pool the information across all PCs and scattered genes using the
moderated t by Smyth (2004), which is implemented in the LIMMA package (Wettenhall
and Smyth, 2004). The moderated t is attractive in that it does not depend on permutation
testing, and thus is suitable for low-replicate experiments. Finally, we screen for significant
differential expression among PCs and scattered genes by controlling the FDR (Benjamini
and Hochberg, 1995) to the double-sided P-values of the moderated t-statistics. If a PC is
found significant, all genes in the cluster are declared to be significant. Simulations based on
a clumpy mean–variance model and a real dataset show that FCPC controls FDR and
notably outperforms the SAM and the empirical Bayesian approach detailed in Section 2.5.
Applications to real microarray datasets also show that our method yields more noteworthy
candidate genes for follow-up studies than the popular alternatives.

2 METHODS
Briefly, FCPC is composed of four steps: creating coexpression strata, finding tight clusters,
assigning a representative value for each tight cluster by principal component analysis and
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identifying differentially expressed clusters and/or scattered genes. Details of the four steps
are given below.

2.1 Generation of coexpression strata
All genes (probe sets) are initially divided into two strata based on mean expression
differences between control and treatment: dg = x̄2g − x̄1g for g = 1,…,G, where x̄1g and x̄2g
are mean expression indices of the g-th gene in the control and the treatment, respectively,
and G is the number of all genes under consideration. We call  = {g: dg > 0} and  = {g:
dg < 0} the upregulated and downregulated strata, respectively, and we screen for up- and
downregulated genes from  and . We further stratify  using relative expression ratios rg
= x̄2g/x̄1g for g ∈ . For an integer k ≥ 1, we assign all of the genes with relative expression
ratios in [k − 0.5, k +0.5) into substratum k. Similarly, we further stratify  using rg = x̄1g/
x̄2g for g ∈ . We further break each of the large strata into smaller strata such that each
contains L or fewer genes. Based on our simulations, we propose L to be 100 or so in order
to balance computational efficiency, power and FDR. In the main text, we will use L = 100
to illustrate the performance of the FCPC.

2.2 Identification of tight clusters
If the smallest gene-to-gene correlation within a cluster is chosen to exceed ρ0, we identify
the cluster as having a tightness ρ0. We search for tight clusters separately within each
stratum. For a given tightness ρ0, we find tight clusters recursively by a four-step algorithm:

1. Find a cluster core. Search for the gene pair C = (i,j) with the largest sample
correlation ρmax = ρij in the stratum. If ρmax ≥ ρ0, then take C as the core of a
potential cluster. Otherwise, go to step (4).

2. Extend the core to a cluster. For gene g ∉ C, if min{ρgi: i ∈ C} > ρ0, then add the
gene to C and denote as the current cluster; otherwise, search for the next gene ∉ C.
Repeat this step until no additional genes can be added. Retain current C as a tight
cluster and go to the next step.

3. Remove the tight cluster from the stratum and repeat steps (1) and (2) for the
remaining genes in the stratum to find another cluster of tightness ρ0. Repeat this
step until no additional clusters of the same tightness can be found.

4. Reduce the value of ρ0 and repeat Steps (1) to (3) until ρ0 falls to a predetermined
value. In our simulation studies and real database analyses, we begin with ρ0 = 0.8,
and then reduce it to 0.7, 0.6 and finally 0.5. See Sections 3.4, 3.5 and 5 for the
rationale of choosing these values.

2.3 Principal component analysis
For a tight cluster of size m ≥ 2, denote by x(j) = (x1j,…,xmj )τ the expression indices of m

genes in the j-th biological individual. Calculate  where n = n1 +
n2, n1 is the sample size of controls, n2 is the sample size of treatments, and x̄ = n−1(x(1) +···
+x(n)). All positive eigenvalues of Σ are denoted by λ1 ≥ ··· ≥ λp. The first PC of the j-th

biological individual is given by , where e1 is the eigenvector associating with λ1.

We propose the use of  to represent this tight cluster. How well the first PC
represents this cluster can be measured by the ratio γ = λ1/(λ1 + ··· + γp) which is the
proportion of total variance explained by the first PC. Table 3 and Figure S2 illustrate the
representativeness of the first PC.
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2.4 Identification of differentially expressed genes
Suppose there are G1 tight clusters and G2 scattered genes. We calculate the double-sided P-
values of the moderated t-statistics for the G1 cluster-specific PCs and G2 scattered
expression vectors. We then sort these P-values as p(1) < ··· < p(Ḡ), where Ḡ= G1 + G2. For a
given nominal FDR α, we identify all clusters and scattered genes with P-values smaller
than δ = max{p(g): p(g) ≤ gα/Ḡ} to be significant. To find δ, we start at p(Ḡ) proceed to
smaller P-values as long as p(g) > gα/Ḡ, and stop the procedure as p(g) ≤ gα/Ḡ with δ = p(g).
All significant scattered genes and the genes in the significant clusters are extracted as
differentially expressed candidate genes.

2.5 Methods comparison
We applied the FDR controlling procedure of Benjamini and Hochberg (1995) to the
double-sided P-values of the gene-specific moderated t-statistics in Smyth (2004), hereafter
referred to as the eBayes. To be specific, we calculated all gene-specific P-values of the
moderated t-statistics and sorted them as p̃(1) < p̃(2) < ··· < p̃(G), where G was the number of
all genes to be tested. The FDR procedure identifies all genes with P-values smaller than δ̃ =
max{p̃(g): p̃(g) ≤ gα/G} for the preset nominal α. For the SAM by Tusher et al. (2001), we
considered two typical choices of the SD offset in the SAM t-statistic. The median of the
gene-specific SDs was adopted in Xu et al. (2005) and Hu and Wright (2007). The
corresponding method was referred to as SAM50. Another choice was the coefficient
variation minimizer of the SAM t (Hu and Wright, 2007). The corresponding method was
referred to as SAMCV.

3 SIMULATION STUDIES
It has been reported that SAM has difficulties in FDR control and estimation (Dudoit et al.,
2003; Pan, 2002; Zhang, 2007). For small experiments, the empirical estimate of FDR in
SAM may be misleading. We thus adopted average power and FDR as performance criteria.
Applying a method to the r-th simulated dataset (1 ≤ r ≤ R), we may claim Dr positives,
where D̃r are among the D differentially expressed genes. We defined power = (RD)−1 (D̃1 +
··· + D̃R) as the average probability of rejecting the false null hypotheses, referred to as the

average power in Dudoit et al. (2003). Similarly, we calculated ,
where ℜ = {r: Dr > 0, 1 ≤ r ≤ R}. Using common datasets, we calculated average powers
and FDRs of SAM along a threshold list, and those of the other two statistical approaches,
along a nominal FDR list.

3.1 Clumpy mean–variance model
We designed our simulation dataset based on the fact that genes are usually expressed in
functionally relevant patterns, contributing to the mosaic dependence structure of microarray
data. Described as ‘clumpy dependence’ by Storey (2003), it depicts the scenario that genes
are dependent in small, functionally relevant groups but independent among groups. In
actual microarray experiments (or biological systems), the ‘clump’ sizes are likely to vary
from a few to several dozens, depending on associated pathways/processes and/or
microarray design (e.g. probe redundancy). In addition, as shown in Hu and Wright (2007),
different genes may have distinct expression deviations. We therefore simulated gene-
expression indices from a clumpy mean–variance model. First, we generated a G×n
background matrix X by iterating two steps below: (1) Randomly select clump size m from
{1,2,…,100} and clump-wise correlation ρ from U(0.5, 1). (2) For a given (m, ρ) pair,

generate m ×1 noise vectors e·j from  and let x·j = μ+diag(σ)e·j be the
expression indices of the m genes in the clump at array j = 1, …, n = n1 + n2, where μ is an
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m × 1 vector of elements , and σ, an m × 1 vector of elements , and
β0 and β1 are two constants for all G genes. In this design we set β0 = −5,β1 = 2 and n1 = n2
= 4. Second, we similarly generated gene clumps containing 150 background expression
indices and added 2−1/2δgσg to xgj for all j > 4 to have gene g be upregulated, where δg was
sampled from U(4,10) such that the true regulation ratio 1+2−1/2e−2δg ~ U (1.2322, 1.5804).
In a similar way, we generated clumps containing 150 downregulated genes. Finally, we
randomly replaced 300 rows of the background matrix X by the 300 differentially expressed
genes so that no clumps were enriched by differentially expressed genes. We mimicked
gene-expression indices of clump-wise correlations and various gene-specific means and
variances. We varied G from 1000 to 50 000 and for each given number we simulated 1000
datasets to calculate the FDR and power for each method.

In terms of power for a given FDR, the FCPC notably distinguished itself from the other
three methods, with eBayes second, closely followed by SAMCV and SAM50 (Fig. 1). Both
the FCPC and the eBayes controlled FDR fairly well, close to the nominal level as shown in
Table 1. In contrast, it would be difficult to select the threshold in the SAM approaches to
control FDR at a nominal level, especially for very small sample sizes. The FCPC is
preferable to the eBayes in terms of the relative power gain defined as (βFCPC − αFCPC) ×
(βeBayes − αeBayes)−1 −1, where β’s and α’s were the power and FDR of the specified
approaches. Setting nominal FDR at 0.05 and G =20 000, we obtained βFCPC = 0.785,
αFCPC = 0.032, βeBayes =0.705 and αeBayes = 0.054. In such a scenario, the relative power
gain of the FCPC over the eBayes was 16%. Under the same nominal FDR, the relative
power gain increased as G increased, and approached 34% as G =50 000 (Fig. S1).

3.2 Sampling from the colon dataset
The dependence in real datasets should be much more complicated than the clumpy mean–
variance model. To illustrate the advantages of the FCPC when sample size is very small,
we sampled the colon dataset from Alon et al. (1999). In that dataset, expression indices of
40 tumor and 22 normal colon tissues for 6600 human genes were measured using the
Affymetrix GeneChip. A subset of 2000 genes with the highest minimal signal intensity
across the samples was chosen by the authors for further analysis. From the subset, we
removed 472 genes such that 1 < |ℓg| ≤2, where ℓg = log(x̄2g/x̄1g). For each gene g with ℓg > 2
we added 0.6-fold of gene-specific range to every expression index in the treatment to
mimic an upregulated gene. At the same time, for each gene g with ℓg < −2 we added 0.6-
fold of gene-specific range to every expression index in the control to mimic a
downregulated gene. As such, we artificially introduced 102 differentially expressed genes
and had 1426 stably expressed genes. We randomly sampled 2 out of the 40 tumor arrays
and 2 out of the 22 normal arrays for testing with the FCPC and its alternatives. We repeated
this procedure 1000 times and calculated the FDR and power of each approach.

Here again, the FCPC clearly outperformed the other three methods in terms of power,
especially at lower FDR levels (Fig. 2). The SAM50 ranked second, closely followed by the
eBayes. The SAMCV was the last. At nominal FDR 0.05, the FCPC and eBayes controlled
FDR at 0.040 and 0.048 and with a power of 0.433 and 0.141, respectively. The relative
power gain of the FCPC over the eBayes was thus 323%. Given the small sample size, the
empirical estimate of FDR in SAMCV appears to be unreasonable (Table 2). In some cases,
the empirical estimates unacceptably differed from the corresponding FDRs.

3.3 The representativeness of the first PC
The representativeness of the first PC for each tight cluster was evaluated by γ in Section
2.3. Table 3 shows the distribution and certain mathematical characteristics of the γ-values
of 427 806 tight clusters produced by 1000 simulated 5000×8 datasets from the clumpy
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mean–variance model described in Section 3.1. There were 329 978 clusters at tightness
≥0.8, and 55 367 clusters at tightness 0.7 to 0.8 (Table 3). The number of clusters decreased
rapidly as the level of tightness declined. At each tightness level, the median and mean were
large, and the coefficient of variance was very small. In general, the first PC of a tight
cluster represented the cluster fairly well. On average, the first PC explained greater than
87% of the total variance (Table 3, see the smallest mean and median). Additional details for
first PCs of tightness ≥ 0.8 are shown in Fig. S2.

3.4 The basis for the forward search tight clustering
The correlations between genes of different expression patterns have distinct properties. Let
ρ̂ be a generic notation of the correlation between two genes. We distinguish three
hierarchies for ρ̂: (1) between two differentially expressed genes, (2) between a
differentially expressed gene and a stably expressed gene and (3) between two stably
expressed genes. The proposed tight clustering is based on our simulation studies on gene-
to-gene correlations.

In our method, the probability Pr(ρ̂ > ρ0) reflects the likelihood of assigning two genes of
interest into a cluster of tightness ρ0. To illustrate the distribution properties of ρ̂, we
sampled the expression indices of two genes exhibiting bivariate normal distribution in a
control group with mean 0, variance 1 and correlation ρ and bivariate normal distribution in
a treatment group with mean (μ, ν)′, variance 1 and correlation ρ. For given differential
expression (μ,ν)′ the probability Pr(ρ̂ > ρ0) increased with residual correlation ρ (Fig. 3 and
Fig. S3). This is consistent with classical sample correlation. These figures also show three
particular characteristics of gene-to-gene correlations, which clearly differ from classical
sample correlations.

First, the distribution of the correlation between two similarly up-or downregulated genes
(i.e. μ = ν ≠ = 0) can be dramatically affected by the magnitude of differential μ. The larger
the magnitude, the larger the probability Pr(ρ̂ > ρ0), and the more likely the two genes will
be clustered together. As shown in Figure 3a–b and Figure S3a–b, the correlation between
two differentially expressed genes was likely to be large if the magnitude of the differential
was large. This was also true even if the residual of the two genes were completely
independent (ρ = 0). As μ = 5 and ρ = 0, Pr(ρ̂ > 0.8) = 0.9091 in Figure 3a and Pr(ρ̂ > 0.8) =
0.9585 in Figure S3a. The probability decreased as μ decreased. As μ= 3 and ρ = 0, Pr(ρ̂ >
0.8) = 0.4798 in Figure 3b and Pr(ρ̂ > 0.8) = 0.0072 in Figure S3b. Given ρ = 0, Pr(ρ̂ > 0.8)
decreased to 0.032 in Figure 3c and to 0 in Figure S3c when μ decreased to 0. Since high
gene-to-gene correlations likely occur between similarly up- or downregulated genes with
large differentials, the proposed method tends to assign those genes with the largest
differentials to a common cluster in early iteration steps.

Second, the correlation between a stably expressed gene and a differentially expressed gene
is unlikely to be large. This was especially the case when the magnitude of differential was
large, even when the residual correlation ρ was close to 1. As μ = 3, Pr(ρ̂ > 0.8) ≤ 0.1354 in
Figure 3d and Pr(ρ̂ > 0.8) ≤ 0.0001 in Figure S2d for ρ ∈ [0,1]. As μ = 10, Pr(ρ̂ > 0.8) ≤
0.0518 in Figure 3e and Pr(ρ̂ > 0.8) = 0 in Figure S3e for ρ∈ [0,1]. These upper bounds were
achieved at ρ = 1, and for fixed μ the probability Pr(ρ̂ ρ0) declined as ρ decreased. Thus, the
proposed forward-search tight clustering method reduced the chance of assigning a stable
gene to a differentially expressed cluster, and vice versa.

Third, Figure 3c–e and Figure S3c–e show two properties of the correlation ρ̂ between a
stably expressed gene and a differentially expressed gene: (1) The distribution of ρ̂ is
invariant to μ if the two genes are independent (ρ = 0). Precisely, independence means τ =
(n−2)1/2 ρ̂(1 − ρ̂2)−1/2 ~ tn−2 (the student t with n − 2 degrees of freedom) for arbitrary μ. (2)
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For arbitrary ρ∈ [0,1],τ converges in distribution to tn−2 as μ → +∞. As μ increases, the
curves with respect to positive residual correlations decline toward the benchmark curve of
an independent stably expressed pair. By these properties, one may control the possibility of
clustering a gene of fixed differential expression with a stably expressed gene by choosing a
suitable tightness correlation threshold.

Classical correlation theory applies for the correlation ρ̂ between two stably expressed genes
(μ = ν = 0). In such a case, ρ̂ is well-known to converge in probability to the residual
correlation ρ as sample size increases. The distribution of ρ̂ is mainly affected by ρ for a
finite sample size. The larger the residual correlation, the more likely ρ̂ exceeded a given
threshold (Fig. 3c and Fig. S3c). In microarray experiments, there are more stably expressed
genes than differentially expressed genes in general. Hence, the forward-search tight
clustering is especially efficient as there are large residual correlations among stably
expressed genes.

3.5 Parameters that affect FCPC
Two user-defined parameters, the maximum substratum size L and the tightness level T
impact the tight cluster sizes and hence the sensitivity, specificity and the computational
efficiency of the FCPC. In our simulations, we investigated four sets of tightness levels: T1
={0.9, 0.8, 0.7, 0.6} and Ti = T 1− 0.1×(i −1) for i = 2,3,4. For each Ti we calculated the
power and FDR of the FCPC with L =50, 100, 1000, 2000 and 5000 as applicable. The
power of the FCPC appeared robust as L changed for a given T (Figs S4a and S5a). In
general, using large L would reduce computational efficiency and increase the possibility of
mixing noise genes and genes that are only marginally differentially expressed. We
recommend performing tight clustering within substrata of sizes 100 or so. Using less
stringent tightness levels could boost statistical power at the expense of inflating FDR,
especially for a very small nominal FDR. In our simulations, T 1 yielded the most stringent
control of FDR and was the most computationally demanding. T 2 controlled FDR very well
even as G = 50 000 (Table 1), with considerably improved computational efficiency.

4 APPLICATIONS TO REAL MICROARRAY DATASETS
4.1 Nitrogen deficiency in Populus

We applied FCPC and eBayes to analyze the transcriptomic response of Populus fremontii ×
angustifolia to nitrogen deficiency using the GeneChip® Poplar Genome Array
(Affymetrix). Raw hybridization signals were processed by the Affymetrix MAS 5.0
software, and only probe sets identified as ‘present’ in all three control and three nitrogen
stress replicates were analyzed further. The resultant 13 507 probe sets were separated into
up- (6202) and downregulated (7305) strata. Of the 6202 probe sets in the upregulated
stratum, 5368 were represented by 2206 tight clusters, likewise, 6478 of the 7305 probe sets
in the downregulated stratum were covered in 2196 tight clusters, and we had 1630 scattered
genes. At the nominal FDR α =0.05, the FCPC method detected 410 significantly up- and
189 significantly downregulated genes, and eBayes identified 143 up-and 90 downregulated
genes.

Further examination of the significant results from each procedure revealed discrepancies in
terms of the genes identified. Table 4 lists the 10 downregulated discoveries based on the
highest expression differentials and the 10 downregulated discoveries based on the smallest
expression differentials found by eBayes and FCPC. Half of the discoveries by FCPC from
the most significantly downregulated stratum were not captured by eBayes (see the genes
and relative expression ratios in boldface in panel a of Table 4). FCPC also outperformed
eBayes in capturing weakly but statistically significantly downregulated genes (Table 4,
panel b). For instance, the 10 most weakly downregulated genes discovered by FCPC were
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completely missed by eBayes. All 10 FCPC discoveries shown in panel b of Table 4 were ≤
1.3-fold downregulated, versus only 1 by eBayes. We also analyzed this dataset using
various tightness levels (Tables S1 and S2). Using less stringent tightness levels had no
effect on strongly downregulated genes (Table S2a), but captured more genes with weak
expression differentials (Table S2b). Although biological significance of these weakly
downregulated candidate genes requires follow-up analysis, FCPC nevertheless provides a
more sensitive means than eBayes in capturing more candidate genes for subsequent
investigations.

4.2 Human diseases
Having applied the FCPC method to the low-replicate plant microarray experiment, we then
turned to investigate its performance in microarray datasets of human cancers (colon cancer
and leukemia), in which there were more biological replicates. The basic features of the
colon data were described in Section 3.2. The leukemia dataset was from Golub et al.
(1999). This dataset contained expression indices of 7129 genes of 11 AML and 27 ALL,
where 3051 genes remained after filtering and preprocessing as done by the authors. We
applied FCPC and eBayes to the filtered genes as summarized in panel a of Table 5.

FCPC claimed 49 and 54 more genes to be differentially expressed than eBayes in the colon
and leukemia datasets, respectively, as shown in panel b of Table 5. Using the leukemia
dataset as an example, eBayes discovered 357 significantly upregulated genes and 312
significantly downregulated genes, while FCPC discovered 394 and 329, respectively. As
with the low-replicate experiment reported above, lowering the tightness levels led to more
significant gene discoveries, as shown in Table S3. Taken together, these analyses showed
that FCPC performs as well as, or slightly better than eBayes when applied to microarray
experiments with high biological replication. However, FCPC is substantially more robust
than eBayes for significant gene discoveries in low-replicate experiments.

5 DISCUSSION
In this article, we present a powerful and computationally simple method, FCPC, to detect
differentially expressed genes from microarray data. The method integrates the strengths of
stratification,

tight clustering, data compression, information pooling and standard Benjamini–Hochberg
FDR correction. We evaluated FCPC by simulation studies as well as by application to a
real dataset. Simulation results show that FCPC controls FDR and is much more powerful
than the popular approaches when the number of genes is large. The basis for the FCPC
approach is 2-fold. First, expression indices that vary between different experimental
conditions can reveal certain regulatory strata. Genes within one common stratum may be
more related functionally, at the organismal level, than genes from different strata. This
serves as the basis for stratification. Second, gene-expression indices are correlated in
various clumps (Qiu et al., 2005; Storey, 2003). This serves as the basis for correlation-
based clustering.

The rational of the iterative clustering method we employed deserves special mention.
Clustering was done progressively, and with a correlation threshold in order to maximize the
tightness of early formed clusters. We designed the method according to our observations on
the sampling distributions of gene-to-gene correlation. A correlation threshold can be chosen
such that the sample correlation between similarly up- or downregulated genes will most
likely exceed that threshold, while the correlation between a stably expressed gene and a
differentially expressed gene is unlikely to meet the threshold. Therefore, the proposed
clustering method can distinguish differentially expressed genes from stably expressed
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genes during the early iterations, and organize them into tight clusters. In addition, the
correlation between two stably expressed genes is likely larger than a threshold if the
residual correlation is strong. This integration proved to efficiently prevent loss of statistical
power and the flood of false discoveries.

The observations in Section 3.4 are helpful for defining the tightness parameters to find
stable clusters. It is very difficult to find the optimal set of tightness levels without
information about the residual correlations. According to our simulations and observations
of the properties of gene-to-gene correlation, T1 and T2 are reasonable choices. Analysis of
real data as in Section 4 appeared to validate the dependence between genes, as use of these
tightness levels resulted in the clustering of most genes. The gene-to-gene correlation is
affected by many factors such as expression differential, residual correlations and the
variance deviation across conditions, but the theoretical basis remains under-investigated.
Nevertheless, the proposed FCPC approach provides a powerful and efficient means for
assessing the various parameters as part of the microarray data analysis for identification of
differentially expressed genes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The power versus the FDR over 1000 simulated datasets from a clumpy mean–variance
model. Each dataset contained expression indexes of 20 000 genes at four controls and four
treatments, where 300 genes were differentially expressed.
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Fig. 2.
The power versus the FDR over 1000 subsets randomly sampled from the trimmed colon
dataset. Each subset contained expression indexes of 1528 genes at two normal and two
tumor arrays, where 102 genes were differentially expressed.
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Fig. 3.
Horizontal axis: ρ0 Vertical axis: Pr(ρ̂ > ρ0) where ρ̂ gene-to-gene correlation. Each curve
was based on a gene pair expressed in three controls and three treatments. For a control, the
expression of the pair was sampled from the bivariate normal distribution with mean 0,
variance 1 and correlation ρ, and for a treatment, the expression of the pair was sampled
from the bivariate normal distribution with mean (μ,ν)′, variance 1 and correlation ρ.
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Table 1

The FDRs of FCPC and eBayes

G FCPC eBayes

1000 0.021 0.039

2000 0.029 0.050

3000 0.027 0.051

4000 0.029 0.053

5000 0.030 0.053

6000 0.029 0.055

7000 0.028 0.053

8000 0.029 0.055

9000 0.033 0.056

10 000 0.030 0.054

20 000 0.032 0.054

30 000 0.035 0.056

40 000 0.038 0.056

50 000 0.039 0.054
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Table 4

Partial lists of downregulated candidate genes in nitrogen-stressed Populus

eBayes FCPC

Gene name RR Gene name RR

Panel a. The 10 significant discoveries with the largest relative expression ratios

 Ptp.2165.1.S1_at 19.7 PtpAffx.71066.2.A1_at 60.9

 PtpAffx.73917.1.S1_at 19.6 Ptp.2165.1.S1_at 19.7

 PtpAffx.158518.3.S1_a_at 15.1 PtpAffx.73917.1.S1_at 19.6

 Ptp.7001.1.S1_at 15.0 PtpAffx.158518.3.S1_a_at 15.1

 PtpAffx.204261.1.S1_at 12.8 Ptp.7001.1.S1_at 15.0

 PtpAffx.42221.1.A1_s_at 8.6 PtpAffx.24775.1.A1_x_at 14.6

 PtpAffx.200453.1.S1_at 7.5 Ptp.2598.1.S1_at 14.1

 PtpAffx.143356.1.S1_at 6.3 PtpAffx.204261.1.S1_at 12.8

 PtpAffx.4337.1.A1_s_at 5.9 PtpAffx.71066.7.A1_at 10.3

 PtpAffx.21075.1.S1_at 5.8 PtpAffx.22847.2.A1_a_at 10.3

Panel b. The 10 significant discoveries with the smallest relative expression ratios

 PtpAffx.12016.2.S1_a_at 1.6 PtpAffx.222420.1.S1_at 1.3

 PtpAffx.144999.1.A1_s_at 1.6 Ptp.817.1.S1_a_at 1.3

 PtpAffx.51612.1.A1_at 1.6 PtpAffx.130633.1.S1_at 1.3

 Ptp.288.1.A1_s_at 1.5 Ptp.6011.1.S1_at 1.3

 PtpAffx.128269.1.S1_s_at 1.5 PtpAffx.215038.1.S1_at 1.3

 Ptp.6204.2.S1_at 1.5 PtpAffx.5907.1.A1_at 1.2

 Ptp.5434.1.A1_at 1.4 Ptp.6067.1.S1_s_at 1.2

 Ptp.6046.1.A1_at 1.4 Ptp.902.1.S1_s_at 1.1

 Ptp.4006.1.S1_at 1.4 PtpAffx.213776.1.S1_at 1.1

 Ptp.2332.2.A1_a_at 1.3 Ptp.3777.1.S1_s_at 1.1

RR: Relative expression ratio rg = x̄1g/x̄2g.
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