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Before the advent of genome-wide association studies (GWASs), hundreds of candidate genes for obesity-
susceptibility had been identified through a variety of approaches. We examined whether those obesity can-
didate genes are enriched for associations with body mass index (BMI) compared with non-candidate genes
by using data from a large-scale GWAS. A thorough literature search identified 547 candidate genes for obes-
ity-susceptibility based on evidence from animal studies, Mendelian syndromes, linkage studies, genetic as-
sociation studies and expression studies. Genomic regions were defined to include the genes +++++10 kb of
flanking sequence around candidate and non-candidate genes. We used summary statistics publicly avail-
able from the discovery stage of the genome-wide meta-analysis for BMI performed by the genetic investiga-
tion of anthropometric traits consortium in 123 564 individuals. Hypergeometric, rank tail-strength and gene-
set enrichment analysis tests were used to test for the enrichment of association in candidate compared with
non-candidate genes. The hypergeometric test of enrichment was not significant at the 5% P-value quantile
(P 5 0.35), but was nominally significant at the 25% quantile (P 5 0.015). The rank tail-strength and gene-set
enrichment tests were nominally significant for the full set of genes and borderline significant for the subset
without SNPs at P < 1027. Taken together, the observed evidence for enrichment suggests that the candidate
gene approach retains some value. However, the degree of enrichment is small despite the extensive number
of candidate genes and the large sample size. Studies that focus on candidate genes have only slightly
increased chances of detecting associations, and are likely to miss many true effects in non-candidate
genes, at least for obesity-related traits.

INTRODUCTION

The genetic contribution to inter-individual variation in body
mass index (BMI), as a measure of obesity risk, has been well-

established with heritability estimates ranging between 40 and
70%, while the remaining variation is due to lifestyle factors
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(1). Since the mid-1990s, candidate gene studies have aimed to
identify obesity-susceptibility genes. Candidate gene studies
are hypothesis-driven, and hundreds of genes for which there
is some evidence for a role in the regulation of energy
balance in animal models or in extreme/monogenic forms of
obesity have been tested for association with obesity-related
traits (2). However, consistent associations have been reported
for only a handful of these candidate genes (3). The main
reasons for the limited success of the candidate gene approach
include small sample sizes and thus low statistical power, low
numbers of genetic variants tested per gene and thus incom-
plete coverage of the common variation and limited biological
insights providing the basis for gene candidacy.

The advent of the genome-wide association approach in
2005 has changed the way and the speed by which genetic
loci are being discovered. Among the strongest arguments
in favour of performing genome-wide association studies
(GWASs) is the fact that such studies are hypothesis-free; i.e.
the whole genome is screened for association to a complex
disease or trait, without prior hypotheses about which genes
or regions are likely to be associated. The results of numerous
GWASs performed in recent years have justified this approach,
as many previously unsuspected regions have been reproducibly
associated to numerous complex traits (4).

Nevertheless, interest remains in the analysis of candidate
genes, for a number of reasons. First, although GWASs have
identified many unsuspected regions, they have also detected
association to many genes that are regarded as good (though
sometimes a posteriori) candidates (5). Considerable recent
progress has been made in delineating biological pathways
and interactions between gene networks, providing richer in-
formation on the identification of candidate genes. Several
groups have shown that functional elements, genes and rele-
vant pathways are all enriched among the results of GWASs
(4,6,7). Finally, the failure of GWASs results to explain the
heritability of many traits can be partly attributed to stringent
thresholds of statistical significance, due to a high multiple
testing burden, and there is considerable interest in applying
methods that use prior information to improve the power of
tests and reduce multiple testing (8,9). With GWAS data
now available on numerous large cohorts, it has become pos-
sible to embed candidate gene studies within GWASs, testing
for association on a much larger number of candidate genes
than previously possible.

It is still unclear, however, that candidate genes as defined
by expert knowledge are more likely to be associated than
random genes or genomic regions. Enrichment of association
in genes compared with non-coding regions has been demon-
strated in psychiatric disorders (6), and overlap between some
candidate genes and GWAS-identified loci have been
observed for some common traits and diseases (10–12), in-
cluding BMI (5). However, this does not necessarily extend
to candidate genes in general and the extent of overlap may
vary across traits and diseases. If there is indeed an enrich-
ment of association for candidate genes, then this could be
exploited to improve statistical power, but if not, then the
value of embedded candidate gene studies is open to ques-
tion.

Here, we addressed this issue for obesity-susceptibility. We
performed a thorough literature search to derive a

comprehensive list of 547 candidate genes for obesity, based
on studies of model organisms, monogenic syndromes of
obesity, linkage studies, candidate gene association studies
and other sources of evidence, including gene expression
studies. We then referenced these genes in the results of a
large meta-analysis of BMI conducted by the genetic investi-
gation of anthropometric traits (GIANT) consortium (5). We
compared their ranking within the full list of genes with the
ranking of non-candidate genes, with the aim of observing
more significant association statistics, on average, for candi-
date genes compared with non-candidate genes. We consid-
ered the regions around genes with no prior evidence for
candidacy as a baseline for comparison, rather than intergenic
regions, because we were interested in whether, given a focus
on testing genes, there is value in specifically considering can-
didate genes.

RESULTS

A quantile–quantile plot comparing gene-level P-values
between candidate (ngenes ¼ 547) and non-candidate genes
(ngenes ¼ 12 722) shows a possible enrichment of candidate
genes (Fig. 1). The hypergeometric test of enrichment was
not significant at the 5% P-value quantile (P ¼ 0.35) but
was nominally significant at the 25% quantile (P ¼ 0.015)
(Table 1). Similar results were obtained for the subset of
genes (ncandidate ¼ 544; nnon-candidate ¼ 12 682) after excluding
any SNPs with associations at P , 1027 (P ¼ 0.55 and P ¼
0.016, for the 5 and 25% threshold, respectively). The rank
tail-strength and gene-set enrichments tests were nominally
significant for the full set of genes and borderline significant
for the subset without SNPs at P , 1027 (Table 1). The Kol-
mogorov–Smirnov (KS) and Wilcoxon tests did not reach
nominal significance, though the latter was borderline.
Taken together, these results reflect greater power of the
tests that are sensitive to the tail distribution of P-values. Al-
though we applied multiple tests to the same data, the results
are clearly correlated and it is reasonable to conclude that
there is nominally significant evidence for enrichment in the
tests best designed to detect such enrichment.

For candidate genes within each category of evidence, there
were nominally significant tests for all categories, except for
genes identified by animal studies (Table 1). For genes asso-
ciated with monogenic obesity, only the GSEA and hypergeo-
metric (5%) tests were significant, in contrast to the other
categories (linkage, association, and other) for which the
rank tail-strength and Wilcoxon tests reached nominal signifi-
cance. As we had no prior preference for which categories
would show enrichment, a multiple test correction should
apply, under which no categories show significant enrichment.
Therefore our results on enrichment within categories of can-
didate genes should only be regarded as suggestive.

After grouping genes according to the number of categories
providing evidence, there was nominally significant enrichment
of candidate genes with at least two categories of evidence, of
genes with at least three categories of evidence and of genes
with exactly four categories of evidence. Again, significance
was nominal and was attained only with the rank tail-strength
and one-sided KS and Wilcoxon tests (Table 1).
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Of the SNPs in or near candidate genes, SNPs in BDNF
(brain-derived neurotrophic factor) showed the most sig-
nificant associations with BMI (P ¼ 5.55 × 10213 for
rs10767664), followed by associations of non-synonymous
SNPs in SH2B1 (SH2B adaptor protein 1), MC4R (melanocor-
tin 4 receptor) and GIPR (gastric inhibitory polypeptide recep-
tor) (Table 2). These four genes had previously been
highlighted by Speliotes et al. (5), as they reached genome-
wide significance at the follow-up. SNPs in other four genes
that ranked among the top 2% located in or near PMS2L3
(postmeiotic segregation increased 2-like 3), SCG3 (secreto-
granin III), VPS13B/COH1 (vacuolar protein sorting 13
homolog B/Cohen syndrome) and CFB (complement factor
B) (Table 2).

DISCUSSION

Based on an extensive search of the literature, we developed a
comprehensive list of candidate genes for obesity. Using
genome-wide association data from a large consortium
meta-analysis, we show nominally significant evidence of en-
richment for association among candidate genes compared
with non-candidate genes. This enrichment is particularly
evident among genes identified from human linkage and asso-
ciation studies, and for genes proposed from at least three sep-
arate lines of evidence.

These results suggest that, to a mild extent, candidate genes
are more likely to be truly associated than other non-candidate
genes, at least for obesity-susceptibility. However, the degree
of enrichment is small and the statistical significance in our
data is marginal despite the extensive length of the candidate
gene list and the large sample size. The fact that candidate
genes will have made the list based on evidence of small
studies and false-positive observations may have contributed

to the limited enrichment, in particular if there was only one
source of evidence. Analysis methods can be devised that
give more weight to candidate than non-candidate genes, but
the relative weighting cannot be high and any improvement
in power would be slight. Similarly, focusing exclusively on
candidate genes is unlikely to lead to significant gains in
power. Since most genes in the genome are not candidate
genes, it is likely that much of the unexplained heritability
for BMI can be attributed to genes that are not currently con-
sidered as candidates.

We considered the regions around genes with no prior evi-
dence for candidacy as a baseline for comparison, rather than
intergenic regions. Other authors have presented evidence that
SNPs in genes are more strongly associated than those in non-
coding regions (6). We were interested in whether, given a
focus on testing genes, there is value in specifically consider-
ing candidate genes. Our results suggest that although there is
evidence for the enrichment of association in candidate genes
for BMI, the minor extent of that enrichment implies limited
practical utility for improving the power of association
studies.

As a side issue, we considered several possible tests of en-
richment and introduced a novel test, the rank tail-strength,
which appears to yield the most significant results across a
range of tests. It was not the most significant test for any of
the analyses we performed, but was nominally or borderline
significant in all the cases in which other tests were significant.
Given the potentially confusing array of enrichment tests avail-
able, the rank tail-strength shows promise as a test with consist-
ent power. Its analytic distribution is known when the number
of genes is large, as is the case here, ensuring the type-1 error
rate is correct. To more thoroughly characterize its properties,
its power should be assessed under a range of simulated condi-
tions. This is beyond the scope of the present work, but our
results suggest that further study of this method is warranted.

For the three candidate genes with the strongest associations
in GIANT (BDNF, SH2B1, MC4R), there was evidence for
their candidacy from multiple sources, whereas the other can-
didate genes with the next strongest associations only had evi-
dence from one category each, with the exception of CFB. Of
interest is that the SNPs in the top four candidate genes were
either non-synonymous or in moderately high LD with a non-
synonymous SNP.

BMI and related obesity-susceptibility traits are common
phenotypes with a modest heritability (h2: �40–70%) and a
non-Mendelian pattern of inheritance. It remains to be deter-
mined whether the degree of the enrichment of association
in candidate genes can be generalized to similar traits and con-
ditions, and which characteristics (e.g. heritability, prevalence,
inheritance pattern) influence the degree of enrichment most.
We should also note that we only considered genes for
overall obesity-susceptibility, as assessed by BMI, rather
than body fat distribution or body shape.

Taken together, we observed evidence for the enrichment of
association in candidate genes, suggesting that the candidate
gene approach retains some value. However, the degree of en-
richment is small despite the extensive number of candidate
genes and the large sample size. Studies that focus exclusively
on candidate genes have only slightly increased chances of
detecting associations, and are likely to miss many true

Figure 1. Quantile–quantile plot comparing the observed adjusted minimum
P-values of candidate gene SNPs with the observed adjusted minimum
P-values of non-candidate gene SNPs.
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effects in non-candidate genes, at least for obesity-related
traits.

MATERIAL AND METHODS

Candidate genes

We defined ‘candidate genes’ as genes for which there was at
least some a priori evidence for a role in obesity-
susceptibility. As such, genetic loci identified by GWASs for
obesity-related traits were not per se considered as candidate
genes, but only when they overlapped with our a priori
defined list.

The candidate genes for obesity were selected based on five
lines of evidence from literature. These evidences include
reports on animal models, Mendelian forms of obesity, loca-
tion near linkage peaks or quantitative trait loci, human
genetic association studies and other sources of evidence in-
cluding expression studies. All of the relevant studies were
identified by extended computer-based searches of PubMed
databases. The following search terms were used: ‘obesity in
mice’ or ‘obesity in animals’; ‘monogenic obesity’ or ‘Men-
delian obesity syndrome’; ‘genes for obesity’ or ‘obesity
pathway genes’ or ‘obesity candidate genes’; ‘obesity
linkage studies’, ‘obesity expression analysis’; and ‘obesity
genetic association studies’ or ‘obesity polymorphism’ or
‘obesity variant’. The retrieved studies were then read in
their entirety to assess their appropriateness for inclusion as
a candidate gene. In total, we identified 547 candidate genes
(Supplementary Material, Table S1). Genomic regions
studied were defined to include the candidate genes +10 kb
of flanking sequence around each gene (defined according to
NCBI Build 35). Next, we assigned a rank to each gene
based on the number of evidences. A rank of 4, 3, 2 and 1 indi-
cates the genes having 1, 2, 3 and 4 lines of evidence, respect-
ively. There were seven candidate genes with a rank of 1, 47
genes with a rank of 2148 genes with a rank of 3 and 334 with
a rank of 4 (Supplementary Material, Table S1). Of the 547
candidate genes, 277 had evidence from animal studies, 57

from monogenic forms of obesity, 58 from linkage studies,
210 from association studies and 141 from other sources of
evidence. The complete list of candidate genes with their
sources of evidence is provided in Supplementary Material,
Table S1.

The total number of genes in the analyses, including the
candidate genes, was 13 269 (547 candidate and 12 722 non-
candidate genes.

Information on gene–SNP annotation was obtained accord-
ing to the University of California Santa Cruz (UCSC) genome
server, http://genome.ucsc.edu/cgi-bin/hgTables?command=
start, through combining appropriate fields in ‘Variation and
Repeats’ and ‘Genes and Gene Prediction Tracks’ groups.

Available genome-wide association data

To examine enrichment of candidate gene associations, we
used summary statistics available from the discovery stage
of the genome-wide meta-analysis for BMI performed by the
GIANT consortium as described previously (5). Briefly, in
this study, summary statistics of 46 GWASs, each of which
had tested association between �2.8 M SNPs and BMI in sex-
specific strata, were combined in a meta-analysis using the
inverse variance method, including up to 123 865 individuals
of white European descent. Quality control was applied to
each GWAS prior to the meta-analysis, excluding poorly
imputed SNPs and SNPs with a minor allele count less than
six. Genomic control correction was applied to each individual
GWAS and to the final meta-analysed results. The GIANT
GWAS data are publically available at http://www.broa
dinstitute.org/collaboration/giant/.

Statistical analysis

We are primarily interested in whether associations observed
for candidate genes are stronger than those for non-candidate
genes. To allow for possible confounding by gene size,
linkage disequilibrium and the number of SNPs per gene,
we adjusted SNP P-values within each gene to obtain

Table 1. P-values for enrichment of evidence for association in candidate genes compared with non-candidate genes

GSEA Hyper 5% Hyper 25% Rank TS KS Wilcoxon

Genes 0.0352 0.3452 0.0153 0.0424 0.1089 0.0562
Genes (exclusion of associations with P , 1027) 0.0627 0.5506 0.0163 0.0684 0.1273 0.0665
Sources of evidence

Animal studies 0.2257 0.5324 0.0996 0.1412 0.3831 0.1418
Monogenic obesity 0.0320 0.0228 0.1597 0.0664 0.2552 0.1842
Linkage 0.2303 0.5642 0.0679 0.0474 0.0451 0.0295
Association 0.2975 0.3699 0.0766 0.0170 0.0124 0.0019
Other including expression studies 0.0596 0.1761 0.0248 0.0343 0.0534 0.0309

Number of evidence sources
4 0.2236 0.3036 0.0706 0.0434 0.0088 0.0043
3 0.1096 0.08703 0.2722 0.0465 0.0794 0.0358
2 0.4171 0.4703 0.1479 0.1273 0.1688 0.0584
1 0.0962 0.7082 0.0638 0.3466 0.2830 0.4845
≥3 0.0665 0.05169 0.1061 0.0115 0.0134 0.0043
≥2 0.1318 0.1365 0.0528 0.0113 0.0136 0.0036

GSEA, gene set enrichment analysis; Hyper x%, hypergeometric test with threshold at x percentile over P-value distribution; TS, tail strength; KS, Kolmogorov–
Smirnov. Nominally significant (P , 0.05) results shown in bold, and all tests were one-sided.
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gene-level P-values. As we did not have individual-level
genotype data, we made this adjustment by taking the corre-
sponding CEU founder genotypes from HapMap2, assigning
a random binary phenotype to each HapMap individual and
then using permutation tests implemented in PRESTO (13)
to estimate the null distribution for the minimum P-value
within each gene. The gene-level P-value was estimated as
(R + 1)/(N + 1), where R is the number of permutations in
which the minimum SNP P-value in the gene was less than or
equal to the value seen in the meta-analysis, and N is the total
number of permutations, which was 10 000.

There are many methods to test for the enrichment of asso-
ciation, defined as a systematically lower distribution of
P-values among candidate genes compared with non-
candidate genes. A simple and commonly used method is a
hypergeometric test, or its binomial approximation, comparing
the proportion of candidate genes with P-values lower than a
given threshold with the corresponding proportion of non-
candidate genes. We applied a one-sided hypergeometric test
using the 5 and 25% points of the empirical distribution of
P-values as thresholds for the entire set of genes. These thresh-
olds were intended to capture enrichment in the tail of the
overall P-value distribution, allowing either a minority or ma-
jority of the candidate genes to contribute to the enrichment,
noting that the candidate genes comprise about one-quarter
of the full set.

Some methods have been proposed that consider the whole
distribution of P-values rather than just the number exceeding
a threshold. In principle, these tests could be more powerful
than the hypergeometric test (14). We considered the tail-
strength statistic (15), which is sensitive to the departure of
P-values from uniformity in the tail of the distribution. Both
candidate and non-candidate genes could have a departure
from uniformity; therefore, to test enrichment of the candidate
genes, we calculated the tail strength for the ranks of the can-
didate gene P-values among the whole list of genes, scaled to
lie within (0.1). This test, which is novel, is termed the rank
tail-strength test.

We also applied the gene-set enrichment analysis test (16),
using the normalized enrichment score and the 2log trans-
form of the P-values. This is a modification of the KS test
towards greater sensitivity in the tail, and for comparison we
also applied the standard KS test and the Wilcoxon
rank-sum test to compare the sets of P-values in candidate
and non-candidate genes.

For the gene-set enrichment analysis, significance was cal-
culated by a permutation test that randomly allocates each
gene to the candidate or non-candidate list, keeping the total
size of each list fixed. Each statistic is then calculated on the
randomized data and an empirical P-value estimated as
the proportion of random permutations in which the statis-
tic exceeds the value observed in the original data. Results
were based on 10 000 random permutations. For the rank
tail-strength, significance was calculated from the asymptotic
distribution for 547 candidate genes, given by N(0, 54721) (15).

We compared the distribution of gene-level P-values for all
candidate and non-candidate genes, and also for the reduced
lists obtained by excluding all genes that included any SNP
with P , 1027. This was because the results could be
skewed towards the enrichment of either set by a fewT
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extreme results, and also because we are interested in whether
future studies would benefit by studying candidate genes that
are not significant at the genome-wide level, and could there-
fore be found by standard GWASs. We also compared the dis-
tributions of P-values for candidate genes in each of the five
evidence categories described above, and for sets of genes
defined according to the number of categories providing evi-
dence in favour of candidacy.
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