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Abstract

DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to
milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced
transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-
skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors
determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of
pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98
point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant
splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis
was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major
factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing
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pathway is highly dependent on the interplay between splice site strength and density of regulatory elements.
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Introduction

Dystrophinopathies are the most frequent neuromuscular
disorder. They are caused by mutations in the DMD gene, one
of the largest genes found in humans [1,2]. DMD encodes for
dystrophin, a key player in the stabilization of the sarcolemma
during muscle contraction [3]. Clinical phenotypes include severe
Duchenne muscular dystrophy (DMD), milder Becker muscular
dystrophy (BMD), intermediate muscular dystrophy (IMD) and
pure cardiac X-linked dilated cardiomyopathy (XLCM). DMD is
characterized by early-onset, rapidly progressive muscular weak-
ness, leading to wheel-chair dependency before age 13 and death
during the third decade. BMD is clinically heterogeneous but
presents a later onset and slower progression [4].

Clinical severity is determined by the maintenance of the open
reading-frame, allowing the expression of semi-functional dystro-
phin with preserved N-term and C-term protein-binding domains
[5]. Some parts of the central rod-domain can be truncated with
minimal impact on protein function [6]. Frameshift and nonsense
mutations cause absence of dystrophin expression and a DMD
phenotype. In-frame mutations lead to abnormal or reduced
dystrophin in muscle causing BMD. On this particular feature is
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based the promising molecular therapy of antisense oligonucleo-
tide (AON)-mediated exon-skipping. Targeting splicing motifs of
the pre-mRNA can induce the exclusion of selected exons and
restoration of an open reading-frame, theoretically allowing the
conversion of DMD to the BMD phenotype [7-9].

Until recent years, molecular diagnosis was mainly limited to
detection of exonic deletions and duplications accounting for 65—
70% of all disease-causing mutations [10,11]. Detection of the
remaining 25-30% single point mutations or small rearrange-
ments have historically been challenging due to the large size of
DMD gene. Development of high-throughput screening method-
ologies has allowed routine diagnosis of these mutations [12].
However, the mutation impact on pre-mRNA splicing and protein
expression is often unknown.

Exceptions to the reading-frame rule are found in approxi-
mately 9% of patients and the production of alternatively spliced
transcripts is considered a key modifier of the clinical severity [10].
Skipping of the mutated exon has been reported in several
nonsense BMD-associated mutations, suggesting a model based on
disruption/creation of splicing regulatory elements (SRE) [13-18].
However, some findings suggest that SRE alteration is not the only
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factor determining exon-skipping [19-22]. Recently, Flanigan and
co-workers postulated that exon-skipping occurs in a subset of
weakly defined DMD exons [23]. It has also been found that splice
site mutations can lead to exon-skipping or activation of cryptic
splice sites [24—26]. Nevertheless, the main factors determining the
final splicing pathway are still unclear.

The precise definition of DMD point mutations and their
consequences help to improve our understanding of the molecular
pathology in dystrophinopathies. Due to its particular features and
size, DMD 1is a suitable model gene for the study of the in vivo
effects of DNA variants on mRNA and the elements involved in
the regulation of the splicing process. Point mutations also provide
valuable information regarding critical protein domains for
dystrophin function. Herein we report our results concerning the
clinical phenotype, dystrophin expression and DMD molecular
analysis in 105 dystrophinopathy patients, presenting 98 different
point mutations. Muscle mRNA analysis performed in most
patients, identified 27 mutations causing aberrant pre-mRNA
splicing. The mechanisms involved in the development of splicing
defects included abrogation of natural splice sites, creation of new
splice sites, alteration of SREs and pseudoexon activation.
Bioinformatics analysis using splice site and SRE predictive
matrices was performed to investigate the major factors deter-
mining the splicing pathway in splice site mutations and the ability
of available algorithms to predict exon-skipping events in exonic
mutations.

Materials and Methods

Patient selection

Dystrophinopathy patients who tested negative for intragenic
deletions and duplications were screened for point mutations using
genomic DNA or muscle cDNA whole gene sequencing. Male
patients were grouped into four phenotypic categories: DMD,
BMD, IMD, and XLCM according to clinical presentation, family
history, age at onset, progression and age at loss of ambulation
(ODMD<13, BMD=16, IMD =13 and <16). Females expressing
myopathic symptoms were reported as MC (manifesting carriers)
while unaffected females were reported as AC (asymptomatic
carriers). Patients or their parents in case of children gave written
individual informed consent to participate in the study. The study
was performed in accordance with the ethical standards laid down
in the declaration of Helsinki and was approved by the Ethics
Committee of Hospital de la Santa Creu i Sant Pau (HSCSP),
Barcelona.

Muscle biopsy analysis

A muscle biopsy was taken in 89 out of 105 cases. Muscle
sections were analyzed using standard histological and immuno-
histochemical techniques, described elsewhere. Dystrophin IHC
was performed using monoclonal antibodies against N-terminal
(DYS3), rod-domain (DYS1) and C-terminal (DYS2) epitopes
(Novocastra, Newcastle upon Tyne, UK). IHC analysis of other
sarcolemmal proteins, such as o, B, ¥ and § sarcoglycans, caveolin-
3, dysferlin, utrophin and emerin, were also performed.

Mutation detection

DNA was extracted from peripheral blood samples according to
standard procedures. Prior to point mutation screening, DNA was
tested for intragenic deletions and duplications by MLPA (multiple
ligation-dependent probe amplification) (P034 and P035 Salsa Kit,
MRC-Holland). Point mutation detection was performed on
genomic DNA by direct sequencing of the 79 DMD exons and
their flanking intronic sequences using SCAIP (single-condition
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amplification/internal primer) [12]. When muscle tissue was
available, mutation analysis was first performed by cDNA
sequencing and further confirmed on genomic DNA. Total
mRNA was extracted and purified from approximately 30 mg of
muscle using RNeasy Fibrous Tissue Mini Kit (Qiagen, Hilden,
Germany) and subsequently retrotranscribed to ¢cDNA by RT-
PCR using polythymine primers (Invitrogen, Carlsbad, NM).
Complete DMD ¢cDNA was amplified and sequenced in twenty
overlapping fragments using published [25] and self-designed
primers. Sequencing analysis were performed using Big Dye 3.1
chemistry and ABI 3500xL equipment (Applied Biosystems,
Foster City, CA). Nucleotide positions were determined according
to the standard DMD reference sequence (GenBank accession
number NM_004006.2), and mutation nomenclature follows the
guidelines of the Human Genome Variation Society. In order to
make data publicly available, mutations and associated phenotypic
information were subtmited to the Leiden Open Variant Database
(LOVD, www.dmd.nl), Leiden, the Neetherlands.

Bioinformatics analysis

In silico analysis of wild-type and mutant sequences was
performed using a variety of tools integrated in the Human
Splicing Finder (HSF, http://www.umd.be/HSF/) [27] to identify
potential splicing alterations. Acceptor (3" ss) and donor (5" ss)
splice sites strength was scored using HSF [27], MaxEnt [28] and
NNSPLICE [29] and SpliceSiteFinder (http://www.genet.
sickkids.on.ca/ali/splicesitefinder.html) [30] matrices. These pro-
grams were used to predict disruption/creation of splice sites and
identification of potential cryptic splice sites. Analysis SRE was
done using different matrices that predict exonic splicing enhancer
motifs (ESE), silencers motifs (ESS) or both: ESE-finder matrices
for SR (serine/arginine-rich) protein binding sites [31,32], Rescue-
ESE hexamers [33], PESE and PESS octamers [34], EIE (exonic
identity elements) and IIE (intronic identity elements) hexamers
[35], Sironi’s ESS motifs [36], Whang’s ESS decamers and Fas-
ESS hexamers [37], and Tra2b, 9G8, and hnRNP Al binding site
matrices [27]. These tools were used to predict mutation-
associated SRE disruption/creation and to calculate the density
of ESE and ESS motifs in wild-type DMD exons. The
pathogenicity of amino acid substitutions was evaluated using
four algorithms: Polyphen-2 [38], SIFT [39], Panther [40] and
SNAP [41].

Statistical analysis

The association between alteration of SRE motifs and milder
BMD phenotype in truncating mutations was analyzed using
Fisher’s exact test for each SRE predictive matrix (Table S1). A
permutation test was applied to significant SRE matrices to adjust
for multiple comparisons. Differences in relative 5" splice site
strength and density of SRE motifs between exons exhibiting
cryptic site activation and exon-skipping in 5’ ss mutations were
analyzed using a paired T test.

Analysis of splicing pathways

Mutations predicted to affect splice sites or SRE motifs were
analyzed by semi-quantitative QF-PCR in muscle cDNA. For
each mutation, specific fluorescent labelled primers pairs encom-
passing the mutated exon were designed (Table S2). PCR products
were analyzed by capillary electrophoresis using ABI 3500 xL.
equipment and Genemapper software (Applied Biosystems, Foster
City, CA). Splicing outcomes were determined by comparing
fragment length with position of potential cryptic splice sites and
exon length. Peak area was used to calculate the relative ratio of
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each transcript population. Samples were run in duplicate together
with a normal control.

Results

We identified 98 different point mutations in 105 unrelated
dystrophinopathy patients, 99 males and 6 female carriers. Table 1
shows the identified mutations and associated muscular pheno-
types together with results regarding muscle dystrophin immuno-
staining and mRINA analysis. Representative images of dystrophin
immunostaining are shown in Figure 1. We identified 54 nonsense
mutations, 15 small deletions, 11 insertion/duplications, 20 splice
site mutations, 4 missense mutations, and one deep intronic
mutation. Aberrant splicing was found in 27 mutations through
muscle cDNA and/or in silico analyses. Mechanisms involved in
splicing defects included abrogation of 17 natural splice sites, two
splice site creations, seven SRE alterations and one pseudoexon
activation. In the male patients, 75 had DMD, 15 BMD, 8 IMD
and one XLCM. In the female carriers, one was asymptomatic
(AC) while five manifested myopathic symptoms (MC). The
manifesting carriers reported here were included in a previous
work concerning clinical outcomes and X-chromosome inactiva-
tion [42].

The frequency of each type of mutation differed substantially
between clinical phenotypes. Most DMD patients presented
nonsense and frameshift truncating mutations that accounted for
84% of cases (63/75). Splice site mutations were found in 14.6% of
cases (11/75) while missense and in-frame changes were found in
2.7% (2/75). BMD patients presented the same proportion of
truncating mutations than splicing defects, 46.7% (7/15) each.
Splicing defects in BMD include a pseudoexon activation caused
by a deep intronic substitution. Only one missense mutation was
detected in BMD patients (6.7%). IMD patients presented three
truncating mutations (37.5%), three splice site mutations (37.5%)
and two missense mutations (25%).

Nonsense and frameshift mutations

The great majority of truncating mutations identified in male
patients were associated with more severe DMD and IMD
phenotypes (66/74, 89.2%). However, 8 patients exhibiting BMD
or XLCM phenotypes presented nonsense or frameshift mutations
(11%). Patient #444, presenting isolated DCM but no muscle
weakness, carried a nonsense mutation in somatic mosaicism.
BMD patients #468, #1472, #548, #1728, #1242, #605 and
#1736 presented six different mutations localized in five in-frame
skippable exons (exons 9, 28, 37, 71 and 74). Three of these
mutations were found to induce significant amounts of in-frame
exon-skipping in muscle ¢cDNA (Figure 2). Patient #1472
presenting ¢.3850G>T in exon 28, showed ~4% of exon 28
skipping and ~35% of exons 28 and 29 double skipping. Patients
#548 and #1728 carrying ¢.5287C>T in exon 37, showed
~29% of exon 37 skipping. Patient #605 presenting c¢.10235del in
exon 71, showed ~21% of exon 71 skipping. In addition, in-frame
exon-skipping was also found in an IMD patient (#1491). This
patient carrying ¢.3982C>T nonsense mutation in exon 29,
showed ~2% of exon 29 skipping and ~9% of exon 28 and 29
double skipping.

In silico analysis of SRE motifs showed five ESE disruptions and
one ESS creation in BMD mutations. Disruption of at least one
PESE octamer occurred in mutations ¢.883C>T (exon 9),
¢.3850G>T (exon 28), ¢.5287C>T (exon 37), ¢.10235del (exon
71) and ¢.10231_10235del (exon 71). Mutation ¢.10409dup (exon
74) was predicted to create an ESS according to PESS and Fas-
ESS matrices. Five BMD mutations were predicted to create an
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intronic identity element (IIE). IMD mutation ¢.3982C>T (exon
29) was predicted to disrupt three SR-protein binding sites and to
create an ESS according to hnRNP Al and Sironi’s matrices
(Table S1). To investigate the ability of available matrices to
predict critical regions for exon recognition and, to assess the
association of SRE alterations with exon-skipping in BMD
patients, all truncating mutations located in in-frame exons were
tested against different matrices (T'able S1). In male patients, 32
nonsense/frameshift mutations were identified in-frame skippable
exons but only six were associated with milder BMD phenotype
(18.75%). Statistically significant differences between DMD/IMD
and BMD mutation groups were found using PESE and IIE
matrices. Other matrices did not show any significant difference.
Predicted disruption of PESE octamers occurred in 5 out of 6
BMD mutations (83.3%) and in 6 out of 26 DMD/IMD mutations
(23%) (Fisher’s Exact Test, P-value 0.0112). Seven mutations
associated with DMD/IMD were found in exons where exon
skipping events have been previously described (exons 25, 29, 37,
38, and 40). None of them was predicted to disrupt any PESE
octamer. Creation of IIE hexamers occurred in 5 of 6 BMD
mutations (83.3%) and in 7 of 26 DMD/IMD mutations (26.9%)
(Fisher’s Exact Test, P-value 0.0185). A permutation test
corroborated the significant result between the PESE and IIE
matrices (truncated P-value product 0.00659).

Splice site mutations

We identified twenty different splice site mutations in twenty-
one unrelated patients. Splicing pathways were determined in
fourteen mutations through muscle cDNA sequencing and QF-
PCR analysis. Detected transcript species, relative ratio and splice
site predictions are summarized in table 2. Most mutations
mvolved canonical AG/GT nucleotides disrupting natural splice
sites (13720, 65%). Four involved non-canonical nucleotides
(20%), of which one disrupted the splice site while the other three
reduced its efficiency. Creation of a new splice site was found in
four mutations. Two of them also disrupted a natural site (c.265-
1G>A and ¢.6913-1G>A), while the other two (c.1332-9A>G
and ¢.5444A>G) created a strong splice site more efficient than
the natural site. An intronic single-base substitution far from a
natural splice site (647 bp) provoked the activation of a cryptic 5’
ss causing the inclusion of a 67 bp pseudoexon into the mature
mRNA. Mutations affecting natural 5" ss were more frequent (11/
21, 52.4%) than those affecting natural 3" ss (6/21, 28.6%).

The splicing pathway differed from one mutation to another. In
most cases (11/14) variable levels of more than one alternative
transcript were detected. Splicing outcomes included exon-
skipping, cryptic or new splice site activation, intron retention
and pseudoexon inclusion. Six mutations induced exclusively or
mainly exon-skipping, seven induced activation of alternative
splice sites and one mutation induced predominantly normal
splicing (c.3603+2dupT). In most cases, the clinical phenotype and
expression of dystrophin correlated with the absence/presence of
significant amounts of normal and/or in-frame mRNA transcripts.
This correlation was not observed in two cases presenting
significant amounts of in-frame transcripts and a severe phenotype
(patients #2042 and #1455). In both cases, most abundant in-
frame transcripts presented truncated protein-binding domains,
actin-binding (ABD) or zinc-finger (ZZ) domains respectively. Loss
of coding sequences may also have an impact on protein folding or
stability. The mutations that abolished the function of natural sites
presented a score reduction between 7% and 86% using HSF, and
between 64% and 801% using MaxEnt (Table 2). The mutations
that reduced the site efficiency presented a score reduction
between 7% and 15% using HSF, and between 41% and 81%
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DYS1 DYS3

RIS

Control '& ' “~.'.
(RS

I M AN

BMD #1665
3’ss mutation exon 3

DMD #1973
missense exon 3

DMD #1775
nonsense exon 26

BMD #1472
nonsense exon 28

BMD #1497
missense exon 68

Figure 1. Representative results of dystrophin immunostaining. A healthy control and five patients presenting different types of DMD point
mutations are shown. BMD patient #1665 shows dystrophin reduction. This patient presented a 3’ ss disrupting mutation causing mainly exon 3 in-
frame skipping. Patient #1973 presents the rare combination of DMD phenotype and reduction of dystrophin expression. In this patient, a missense
mutation in CH1 of ABD1 domain may cause impaired actin-binding activity. DMD patient #1775 carrying a nonsense mutation in exon 26 shows
absence of dystrophin (an isolated revertant fibre can be observed in DYS2). In contrast, patient #1472 carrying a nonsense mutation in exon 28
shows reduced dystrophin expression and milder BMD phenotype. mRNA analysis in this patient revealed in-frame exon-skipping due to the
disruption of an ESE motif. In the last row, BMD patient #1497 shows a very mild reduction of dystrophin expression. This patient presented a
missense mutation in the ZZ domain that may compromise B-distroglycan binding.

doi:10.1371/journal.pone.0059916.g001

using MaxEnt. Most of the activated cryptic or new sites were To investigate the major factors determining the main
predicted by HSF or MaxEnt matrices (Table 2). However, two alternative splicing pathway in 5’ ss mutations (cryptic site
transcripts presented activation of GC 5" ss (#1959 and #1619) activation versus exon-skipping), we analyzed several parameters:
that were only predicted by the SpliceSiteFinder algorithm. Two exon and intron length, density of SRE motifs, availability of
transcripts did not correlate with any potential 5’ ss (patients #338 cryptic sites and relative 3" ss strength. The analysis was extended
and #1619). to eight exons with previously reported pathways in 5" ss
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$ % ¥ & % 8 ¥ 3 8 § .
N

BMD 605.

Exon 71 ¢.10235del
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}
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Figure 2. Exonic mutations associated with exon-skipping events. On the left, semi-quantification of alternative transcripts by QF-PCR on
muscle biopsy ¢cDNA. In the centre, schematic representation of the detected transcript species and their relative ratio. On the right, mutation
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sequence context and predicted ESE motifs: blue bars indicate ESE finder SR protein binding sites; violet bars indicate Rescue-ESE hexamers; red bars

indicate PESE octamers. The mutated nucleotide is indicated in red.
doi:10.1371/journal.pone.0059916.9g002

disrupting mutations [26]. We found that exons exhibiting mainly
exon-skipping presented a weak 3’ ss, while most exons showing
predominantly cryptic site activation presented a strong 3’ ss
(Figure 3A, paired t test, P-value 0.0346). No statistically
significant differences were found in other parameters. However,
exons exhibiting cryptic site activation presented a mean density of
ESE motifs higher than exon showing exon-skipping (Figure 3B).

Missense and in-frame mutations

Four missense mutations and one amino acid deletion were
detected in our cohort. All were located in highly conserved
residues and were predicted to be pathogenic based on Polyphen-2
and SIFT algorithms. These mutations were not found in 100
healthy controls and not reported in the Exome Variant Server
(http://evs.gs.washington.edu/EVS/). Two mutations were found
in the N-terminal ABD. In the CHI1 (calponin homology ABD
domain), mutation p.Leu53Arg was found in a DMD patient with
irregularly reduced expression of dystrophin (Figure 1). In the
CH2 domain, mutation p.Gly166Val was found in a patient with
IMD. In the central rod-domain at the spectrin-like repeat 2, a
double amino acid change (p.Met450Ile_Asp451Tyr) was detected
in an IMD patient presenting reduction of dystrophin with
negative fibres. Two mutations were found in the C-terminal
cysteine-rich region. Mutation p.Pro3320Ser in the ZZ-domain
was found in a BMD patient with near normal dystrophin
expression (Figure 1), and a single amino acid deletion,
p-Glu3367del, was found in a DMD patient.

Discussion

We describe a comprehensive analysis of 98 DMD point
mutations related to clinical phenotype and their effect on muscle
mRNA and dystrophin expression. Aberrant splicing was found in
27 mutations. Mechanisms responsible for the splicing defects
consisted in abrogation of natural splice sites, creation of new
splice sites, disruption/creation of regulatory elements (SRE) and
pseudoexon activation. Bioinformatics analysis of nonsense/
frameshift mutations revealed that PESE/PESS matrix is a
powerful tool to predict critical regulatory regions for BMD-
associated exon-skipping. Our findings suggest that the splicing
pathway in 5’ ss disrupting mutations is highly dependent on the
interplay between 3’ ss strength and density of exonic splicing
enhancers.

In agreement with the reading frame rule, most nonsense and
frameshift mutations in our cohort were found in patients
presenting a severe DMD or IMD phenotype. However, 11% of
them were detected in patients presenting milder BMD or XLCM
phenotypes. Several mechanisms have been associated with the
production of dystrophin in nonsense/frameshift mutations,
ameliorating the clinical phenotype. These include alternative
translation initiation in 5’ end mutations [43,44], escape of
nonsense-mediated mRNA decay (NMD) in mutations located in
or beyond exon 74 [45] and somatic mosaicism [25,46,47].
However, the most reported mechanism is the skipping of the
mutated exon, producing significant amounts of in-frame
transcripts. Mechanisms involved in exon-skipping events include
disruption and creation of SRE. Although creation of ESS has
been reported [18], disruption of ESE is better documented [13—
17,25,48]. Most widely used algorithms to predict ESE disruption
are ESE Finder matrices for SR protein binding sites, and Rescue-

PLOS ONE | www.plosone.org

1

ESE hexamers which are differentially present in exons and
introns. However, the ability of these tools to predict exon-
skipping events in the DMD gene is limited. Analysis of the
mutation entries in the Leiden database (LOVD) revealed that
ESE disruption occurred in 50% of BMD nonsense mutations
[10]. Deburgrave et al. reported similar results, since 4 out of 8
mutations with confirmed mRINA exon-skipping had consequenc-
es on ESE motifs ESE motifs [25].

In our subset of patients, we found a nonsense mutation in
somatic mosaicism in a patient who presented DCM but no
muscle weakness. Clinical, pathological and molecular studies in
this patient are discussed in greater detail in a previous work [49].
Exon-skipping events were found or predicted in seven BMD
patients. We found that 8-mers putative splicing enhancers (PESE)
and silencers (PESS) from Zhang and Chasin [34] are a powerful
tool to predict in the DAMD gene critical SRE motifs for exon
recognition. PESE disruption was predicted in six patients
presenting five different mutations. Disruption of ESE motifs
was predicted only in one mutation when ESE finder or Rescue-
ESE matrices were used (Figure 2 and Table S1). Surprisingly,
disruption of PESE motifs in BMD overlapped in most cases with
creation of an intronic identity element (IIE) [35], raising the
possibility that the mutations had a double effect, contributing to
loss of exon identity. An ESS creation was predicted by PESS and
other matrices in a nonsense mutation in exon 74. However, in
absence of cDNA studies we can not confirm an exon-skipping
event, since mutations in this exon have been found to cause either
exon-skipping or escape from NMD [14,25]. None of the
associated IMD/DMD mutations located in exons where exon-
skipping events have previously been reported were predicted to
disrupt any PESE octamer. However, one of these mutations
located in exon 29 induced exon-skipping. Nevertheless, the
proportion of exon-skipping transcripts in the patient was much
lower than those found in a BMD patient presenting an identical
skipping pattern (Figure 2), indicating that they are insufficient to
rescue the phenotype. According to LOVD this mutation has been
previously found in BMD patients, suggesting differences in the
exon-skipping efficiency between individuals. In line with this
hypothesis, Ginjaar et al. reported a BMD family with a nonsense
mutation in exon 29 who presented variable phenotype severity,
ranging from severe BMD to asymptomatic elevation of CK levels
[17]. The authors reported that clinical variability was related to
different levels of exon 29 skipping.

In line with previous reports [19-22], our data indicate that
SRE disruption/creation is not the only factor determining exon-
skipping, since 6 out of 11 mutations disrupting PESE octamers in
in-frame exons were found in IMD/DMD patients (Table S1). In
a recent work, Flanigan et al. 2011 reported that exon-skipping
occurs in a subset of exons, proposing a model in which a weak
exon definition context, defined by a weak 3’ ss and low ESE
density, is necessary for mutation-associated exon-skipping [23]. In
our cohort, we identified BMD nonsense/frameshift mutations in
exons 9, 28, 37, 71 and 74. To our knowledge, this is the first
report of exon-skipping events in exons 9 and 28. According to the
model of Flanigan et al, exons 37 and 71 present weak 3’ ss and a
low ESE density, while exon 9 exhibits the lowest ESE density in
our subset of exons (Figure 4). Exons 28 and 74, however, present
high ESE densities and strong acceptor splice sites. Furthermore,
in exons 3 and 33, presenting a weak exon definition context
similar to other skipped exons, PESE disruption does not induce
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Figure 3. Factors determining the main splicing pathway in 5’ ss mutations: cryptic site activation versus exon-skipping. A) Relative
3’ ss strength (MaxEnt score difference with next distal natural 3’ ss) of exons exhibiting mainly cryptic site activation and exon exhibiting mainly
exon-skipping. Box plots indicate the lowest and highest observation, lower and upper quartile, and median. B) Mean density of ESE motifs predicted
by different matrices. C) Individual exons are plotted by the relative 3’ ss strength and density of Rescue-ESE motifs. Black-filled circles represent
exons showing cryptic site activation. Non-filled circles represent exons showing exon-skipping. Exon numbers are indicated beside circles.

doi:10.1371/journal.pone.0059916.9g003

exon-skipping as ¢cDNA analysis or the patient’s phenotype
indicate. Our data suggest that factors other than a weak 3’ ss
and low ESE density may also influence the skipping capability of
exons. The genomic context probably displays a relevant role in
many exons. Mutations ¢.3850G>T (exon 28) and ¢.3982C>T
(exon 29) induce both double skipping of exon 28 and 29, while
mutation ¢.3786+1G>A (exon 27) produces significant amounts of
transcripts showing skipping of exons 27 to 29. Other splice site
mutations, such as ¢.1332-9A>G (exon 12) and c.10086+5G>C
(exon 69), showed transcripts presenting skipping of the mutated
exon and other neighbouring exons. These findings suggest a kind
of priming effect in some exons, as previously observed in other
genes [50], and reinforce the idea that the overall pre-mRNA
architecture might be involved in the splicing process [51].

We observed that most splice site mutations induce variable
levels of multiple alternatively spliced transcripts. Probably for this
reason, splice site mutations are more frequent in BMD than in
DMD. The splicing pathway differs substantially from one
mutation to another, with main outcomes consisting in exon-
skipping or activation of alternative sites. Intron retention was
found only in one case and involved the smallest DMD intron
(107 bp), in line with previous findings [52]. Several mutations
induce more than one pathway at the same time. For this reason,
predicting how these mutations will affect splicing patterns without
mRNA studies is challenging. Algorithms such as HSF and
MaxEnt are useful tools to predict abrogation or reduction of
splice site function, creation of new sites and presence of cryptic
sites. Changes located in non-canonical AG or GT nucleotides,
slightly reducing the site strength are expected to induce significant
amounts of normally spliced transcripts. However, this can not be
generalized to all mutations. While mutations ¢.3603+2dupT and
¢.9563+5G>C induced significant amounts of normally spliced
transcripts, ¢.34324+3A>T and ¢.10086+5G>C induced mainly
aberrant transcripts (Table 2). These findings and the variety of
observed splicing outcomes indicate that factors other than splice
sites influence the final pattern. Multiple factors have been
suggested to determine the splicing pathway, including the
sequence context of the affected splice site, exon and intron
length, RNA secondary structures, and conservation of the reading
frame [51,53,54]. The abundance of cryptic splice sites has been
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suggested as a main factor determining whether a mutation
induces exon-skipping or cryptic splice site activation [53].
Confirming a previous work [56], our data indicate that the
availability of cryptic splice site does not determine the main
splicing pathway, since numerous potential sites are found in most
analyzed exons according to HSF and MaxEnt predictions.
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Figure 4. Relative ESE density versus relative 3’ ss strength in
in-frame exons presenting nonsense and frameshift mutations.
On the y axis: difference between exon PESE density and mean density
of all DMD exons. On the x axis: difference between 3’ ss MaxEnt score
and next distal natural 3’ ss score. Non-filled circles represent exons
with DMD/IMD-associated mutations, while grey-filled circles represent
exons with BMD-associated mutations. Black bordered circles indicate
exons without PESE disruptions. Blue bordered circles indicate exons
with PESE disruption. Exon numbers are indicated beside circles.
doi:10.1371/journal.pone.0059916.g004
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Habara et al. proposed that in +1G>A mutations a strong exon
recognition, resulting from the combination of a high 3’ ss score
and a long exon length, is necessary for cryptic site activation [56].
Our data indicate that the splicing pathway in 5" ss mutations is
determined by the interplay between the relative strength of 3" ss
and the density of ESE elements (Figure 3). Cryptic site activation
occurs in those exons that present a strong 3’ ss compared with the
next distal exon, while weak 3’ ss lead to exon-skipping. However,
two exceptions are found in our subset of exons. Exon 26
presenting a weak 3’ ss showed cryptic site activation, while exon
69 presenting a moderately strong 3 ss showed exon-skipping
(Figure 3C). We hypothesize that a high density of ESE motifs may
compensate a weak 3’ ss, leading to activation of alternative splice
sites. In the other hand, a low ESE density in a moderately strong
3’ ss context may contribute to exon-skipping.

Precise identification of DMD mutations and their consequences
on mRNA and protein expression is essential to provide accurate
genetic counseling in dystrophinopathy families and to include
patients in mutation suppression therapies. Our results support
and extend previous findings showing that 3’ ss strength and
density of regulatory elements are determinant factors of the
splicing pathway in mutations affecting splicing signals. However,
other factors such as the genomic context may also play a relevant
role, suggesting a more complex model. Understanding the
splicing code and developmenting computational splicing models
will be of great value to predict pathological effects of DNA
variants in molecular diagnosis of dystrophinopathy and other
diseases, and to design more efficient molecules for splicing
modulation therapies.
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