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Abstract

Early marker-based metagenomic studies were performed without properly accounting for the effects of noise (sequencing
errors, PCR single-base errors, and PCR chimeras). Denoising algorithms have been developed, but they were validated
using data derived from mock communities, in which the true sequences were known. Since the algorithms were designed
to be used in real community studies, it is important to evaluate the results in such cases. With this goal in mind, we
processed a real 16S rRNA metagenomic dataset through five denoising pipelines. By reconstituting the sequence reads at
each stage of the pipelines, we determined how the reads were being altered. In one denoising pipeline, AmpliconNoise,
we found that the algorithm that was designed to remove pyrosequencing errors changed the reads in a manner
inconsistent with the known spectrum of these errors, until one of the parameters was increased substantially from its
default value. Additionally, because the longest read was picked as the representative for each cluster, sequences were
added to the 39 ends of shorter reads that were often dissimilar from what had been removed by the truncations of the
previous filtering step. In QIIME, the denoising algorithm caused a much larger number of changes to the reads unless the
parameters were changed from their defaults. The denoising pipeline in mothur avoided some of these negative side-
effects because of its strict default filtering criteria, but these criteria also greatly limited the sequence information produced
at the end of the pipeline. We recommend that those using these denoising pipelines be cognizant of these issues and
examine how their reads are being transformed by the denoising process as a component of their analysis.
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Introduction

The emerging field of metagenomics is concerned with

determining the numbers and types of organisms in a particular

environment. Studies of microbes (the ‘‘microbiome’’) have

principally focused on sequence analysis of the 16S ribosomal

RNA gene [1], which contains nine variable regions flanked by

sequences that are conserved across most bacterial species. The

advent of PCR, followed by new sequencing technologies such as

pyrosequencing, have offered us the potential to reach deep into

the rare biosphere. A single PCR reaction of DNA extracted from

a given sample can yield more than a million sequence reads in a

pyrosequencing run. While many of these reads may be easily

identified as belonging to well-studied species [2,3], some may not

match any sequences in the database, simply because the bacteria

have not been cultured or otherwise classified. Those reads may

represent new species, or they may be rare variants of a known

species that differ from the database sequence by just a few

nucleotides. Therefore, it becomes necessary to cluster the reads to

a certain percent identity (generally, 3% for species-level

clustering) to determine how many types of bacteria, or

operational taxonomic units (OTUs), are present in a given

sample.

Recent metagenomic studies have shown a much larger

diversity of prokaryotic species than previously thought, in samples

ranging from the human gut [4] to the deep sea [5]. These studies

have since been questioned in light of the realization that artifacts

can result in the overestimation of OTU numbers. These artifacts

include sequencing errors, PCR single-base errors, and PCR

chimeras [6].

Pyrosequencing, like Sanger sequencing, has a low but nonzero

error rate. In Roche-454 pyrosequencing, errors arise due to the

inaccurate determination of homopolymer lengths [7–9]. Studies

have been performed to analyze ways in which to improve the

accuracy of reads by using different filtering criteria [10].

However, in order to prevent an overestimation of OTU number,

additional criteria must be used, resulting in the removal of a large

percentage of reads [11].

In addition to pyrosequencing errors, PCR itself can introduce

noise. The polymerases used in PCR, like all polymerases, do not

replicate DNA perfectly. Also, when performing multi-template

PCR in a metagenomic study, the possibility exists for forming

chimeras. A chimera is a PCR product that is composed of parts of

two (or more) different templates, thought to result when the

product of an incomplete extension in one cycle mis-primes on a

different template in a subsequent cycle of the reaction.

To limit the effects of noise in marker-based metagenomic

analyses, ‘‘denoising’’ tools have been developed. One early

algorithm for removing noise was PyroNoise [6]. The principal

advance with this program was that it focused on the flowgrams –

the raw pyrosequencing data from the Roche-454 platform –
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instead of the DNA sequences. In this way, pyrosequencing errors

could be modeled more appropriately. PyroNoise used an iterative

expectation-maximization algorithm to cluster the flowgrams,

followed by an adaptation of the Mallard algorithm to screen for

PCR chimeras.

Recently, Quince et al. [12] demonstrated the use of an

improvement of this pipeline called AmpliconNoise. In Ampli-

conNoise, following the initial filtering steps, pyrosequencing

errors are removed by flowgram clustering (by an algorithm also

called ‘‘PyroNoise’’), but this is done without alignment, unlike the

original PyroNoise. After the sequences are truncated, another

algorithm, SeqNoise, removes PCR single-base errors by further

clustering the reads according to a maximum likelihood model

that incorporates PCR error rates. Finally, an algorithm called

Perseus is used to remove PCR chimeras.

AmpliconNoise was benchmarked on datasets generated using

known sets of reference templates (‘‘mock communities’’). The

sequential application of the algorithms of AmpliconNoise allowed

the correct OTU number at various levels of sequence difference

to be determined, and the reads after AmpliconNoise had

decreased error rates compared to the raw reads. Additionally,

by separating the steps of denoising, the run-time of the entire set

of algorithms was greatly reduced compared to the original

PyroNoise.

Related denoising algorithms have been developed in the

microbial ecology analysis packages QIIME [13] and mothur [14].

In QIIME, the denoising pipeline was designed as a faster version

of the original PyroNoise [15]. The algorithm denoiser aligns and

clusters flowgrams in a single step, so as to take into account both

pyrosequencing errors and PCR single-base errors. Following this,

the reads can be checked for chimeras by ChimeraSlayer [16] or

blast_fragments.

In mothur, the PyroNoise and SeqNoise algorithms of

AmpliconNoise have been recoded as shhh.flows and shhh.seqs

[17]. Chimera removal is accomplished by rewritten versions of

Perseus, ChimeraSlayer, or UCHIME [18]. These algorithms

were analyzed, along with various filtering and trimming programs

available in mothur, to produce a pipeline that minimized the

error rates while maintaining as many reads as possible.

Other denoising algorithms have been developed that do not

incorporate the analysis of flowgrams. Single-linkage preclustering

(SLP) [19] is based on the notion that reads containing errors

should be distributed around more abundant error-free reads.

Therefore, by preclustering those reads, one can produce OTUs

using just the error-free reads, thus reducing the number of

erroneous OTUs. Another algorithm, Acacia [20], has recently

been shown to produce results similar to those of AmpliconNoise

and the QIIME denoising pipeline while using a fraction of the

computational time.

Each of these denoising pipelines was validated and optimized

using mock community data, in which the true sequences and the

correct OTU number were known. However, they were designed

to be used in studies of real communities, so it is important to

evaluate their results in such cases. Here we propose methods by

which this can be accomplished. We break down each pipeline

into its component steps and reconstitute the sequence reads at

each stage (Fig. 1). Using this approach, we can determine what

changes have been made to the individual reads and whether those

changes are consistent with removing errors. If they are not, we

can adjust the parameters of the algorithms accordingly. The

changes are recorded in four categories: substitutions, insertions,

deletions, and ‘‘39 gap,’’ which is the number of bases removed (or

added) to the 39 end of a read.

Results and Discussion

For this study, we derived a metagenomic dataset from fourteen

individual nematodes that were selected from ocean sediment

samples taken from off the New Hampshire coast and the Gulf of

Mexico. Genomic DNA from these samples, which included the

DNA from any associated microbes, was used as the template in

PCR amplifications of two regions of the bacterial 16S ribosomal

RNA gene (V3–V5 and V6–V8). These amplicons were

pyrosequenced using the Roche-454 GS FLX platform with the

Titanium protocol (800 flows), resulting in more than 40,000

reads. These reads were processed through each of the pipelines

(Fig. 1).

AmpliconNoise
One of the most popular denoising pipelines is AmpliconNoise

[12], which consists of five steps (Fig. 1).

Filtering. The first step of AmpliconNoise is performed by

the script FlowsMinMax.pl for Titanium data. With our multiplex

data, it was easier to divide this step into its two component parts:

SplitKeys.pl and CleanMinMax.pl.

The application of SplitKeys.pl to our data resulted in the

extraction of 40,596 flowgrams from the sff.txt file into 56 different

bins (one for each combination of four PCR primers and fourteen

samples). Although it has been shown that reads with two or fewer

errors in the primer sequences do not contain significantly more

errors in the rest of the read [10,17], SplitKeys.pl required an

exact match of the mid tag - primer sequences. Allowing just a

single mismatch or in/del with our data would have resulted in an

additional 2,382 reads, an increase of 5.9%.

Next, CleanMinMax.pl filtered our data according to the

following process. Each flowgram was analyzed four flows at a

time (T – A – C – G; see File S1). It was truncated prior to a set of

flows if any of the following was true: (1) all four flow values were

less than 0.50; (2) any of the four was greater than 6.49 (in

FlowsMinMax.pl, this value is 9.49); (3) any of the four was greater

than 0.50 and less than 0.70. Following any truncation, the read

was thrown out if fewer than 360 flows remained. If more than 720

flows remained, the flowgram was truncated to 720.

As a result of CleanMinMax, 21.5% of the reads retrieved by

SplitKeys were eliminated (Table 1). Most of these eliminations

were due to a single flow value between 0.50 and 0.70 (which

occurred somewhere in a read’s first 360 flows), and more than

80% of the remaining reads were truncated due to the same

criterion. This criterion was justified in the AmpliconNoise paper

[12] by referencing a previous study. However, that study [10] did

not conclude that a single flow value in that range would place all

subsequent flows in question; it simply cited documentation from

454 that stated that reads should be limited to having less than 3%

of flows with those values.

After CleanMinMax, we used the AmpliconNoise script

ConvertDatFasta.pl to interpret DNA sequences from the cleaned

flowgrams. We then determined what alterations had been made

to each of the reads by comparing them (Stage 1A) to the original

reads (Stage 0) using our script AlignClusMus.pl.

As shown in Table 2, the 39 gap was negative due to the

truncations of CleanMinMax, which removed an average of 70.4

base pairs from the ends of the reads, up to a maximum of 311 bp.

Additionally, there were a total of 1,233 changes – substitutions,

insertions, and deletions – in the reads. These were due to

differences in the interpretation of flowgrams by ConvertDatFasta,

compared to that of the 454 software. All flow values that ended in

‘‘.50’’ were rounded up by ConvertDatFasta, whereas these flow

values were rounded down by the 454 software a majority of the
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time (data not shown). This discrepancy accounted for most of the

insertions. Most of the deletions were of ambiguous bases (Ns) in

the original reads. Although CleanMinMax was designed to

truncate the flowgrams prior to any ambiguous base (criterion (1)

above), it missed many ambiguous bases because it analyzed the

flow values four at a time and in only one frame (File S1).

PyroNoise. The goal of this step is to correct pyrosequencing

errors by clustering the flowgrams that passed the Filtering step.

PyroNoise takes two parameters. The parameter -c is the cut-off

used to form clusters to initialize the expectation-maximization

algorithm, and it has a default value of 0.01. The parameter -s is

the inverse of the characteristic cluster size used in the calculations

of the expectation step, and it has a default value of 60.0 [12].

We applied PyroNoise to our data using the default values. This

resulted in 9,192 clusters of varying sizes. Of those clusters, 75.5%

consisted of a single read, although this amounted to just 21.8% of

the total number of reads. The largest cluster contained 2,604

reads. Each cluster had a set of reads that mapped to it, along with

a single sequence. Since all subsequent steps of the pipeline were

performed on the cluster sequences only, we used these sequences

to represent all of the reads in their respective clusters (File S2). We

then determined what changes had been made to the reads (Stage

2A), using the Stage 1A reads as the reference.

Unlike the Filtering step, PyroNoise produced reads that either

stayed the same length or got longer, with an average 39 gap of

+69.2 bp (Table 2). This was due to the fact that, in all but five

clusters, the sequence for a given cluster was determined by its

longest read. Therefore, instead of forming a consensus, PyroNoise

selected a single read to be the representative for each cluster. If a

representative read had a difference at one position with some of

the other reads in its cluster – or even all of the other reads (File

S3) – that difference was spread to those reads. This occurred even

if the difference were legitimate, such as a polymorphism, or if the

representative read actually had an error at that position, due to

PCR, pyrosequencing, or even flowgram misinterpretation, as

outlined above. Additionally, by mapping onto longer reads, extra

bases were added to reads that did not necessarily belong to them.

PyroNoise also caused 13,647 changes to the reads (Table 2).

The plurality of these changes were substitutions, with roughly

equal numbers of insertions and deletions. Reads that did not

cluster with any others – clusters of size one – did not have any

changes (File S4A). To evaluate the changes, we examined the

reads’ flowgrams. We found that most of the insertions and

deletions (for example, File S5) resulted from changes in the

flowgrams that were consistent with the known pattern of

pyrosequencing errors [7–9].

However, when we examined substitutions, we found that most

of the changes were not supported by the flowgrams (File S6A).

The largest cluster formed by PyroNoise had a T R A substitution

made at one position to nearly 20% of its reads, despite the fact

Figure 1. The steps of three denoising pipelines. The reads were reconstituted at each stage following the steps, as described in the text. The
reads will be referred to by their stage numbers throughout this paper.
doi:10.1371/journal.pone.0060458.g001

Table 1. Results of CleanMinMax in the Filtering step of AmpliconNoise.

Too few flows (, 357)
No signal for four
flows

Large flow value (.
6.49)

Flow value between
0.50 and 0.70

Too many flows (.
720) Total number

Reads eliminated 3032 8 185 5503 N/A 8728

Reads truncated N/A 268 40 17734 7660 25702

40,596 flowgrams were retrieved by SplitKeys.pl and analyzed by CleanMinMax.pl.
doi:10.1371/journal.pone.0060458.t001
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that the corresponding flow values form two distinct groups that

do not appear noisy (File S6B). Such substitutions were unlikely to

be caused by pyrosequencing errors. In fact, the substitution error

rate of 454 pyrosequencing is known to be far lower than the

insertion or deletion rates, since substitution errors can only

appear as a result of an overcall being followed by an undercall, or

vice versa [7,8].

In an attempt to alter the spectrum of changes, we adjusted the

values of the two parameters of PyroNoise, -c and -s. The number

of substitutions was lowest when -c was 0.01, which is the

minimum value as well as the default (Fig. 2A). On the other hand,

increasing -s from the default of 60.0 greatly decreased the

substitutions, while having less of an effect on the numbers of

insertions and deletions (Fig. 2B). Therefore, keeping -c at the

default value while choosing a larger value for -s caused the

changes made by PyroNoise to be more consistent with the known

spectrum of pyrosequencing errors.

Accordion Effect. Next, we determined what the net effects

of the first two steps of AmpliconNoise were by comparing the

Stage 2A reads to the original (Stage 0) reads. As shown in Table

2, the total number of changes was nearly double the sum of the

previous two steps. The source of these extra changes derived from

the 39 gap. In the Filtering step, a majority of the original reads

were truncated, resulting in a decrease in read lengths (Fig. 3A).

This was followed by PyroNoise, which mapped the reads onto

longer ones in the clusters, thus increasing the read lengths. When

comparing this analysis to that of PyroNoise alone (Stage 1A R

2A), the extra changes were seen almost exclusively at positions

above 250 bp (Fig. 3B).

We call this the ‘‘accordion effect’’: shrinking reads in one step,

followed by lengthening them in the next step, with less than

desirable results. The extra bases that were added to a read in the

second step were not necessarily the same as those that were

removed in the first step. In some cases, they were very different.

This highlights the consequences of both the truncation criteria of

the Filtering step and the mapping of reads onto longer ones in

PyroNoise.

One positive effect of the Filtering and PyroNoise steps was that

89.8% of the Ns in the Stage 0 reads were changed to regular

bases in Stage 2A. Most of the Ns became what appeared to be the

correct bases, judging from the flow values (File S1). Although

these changes were recorded as substitutions in our analysis, they

should be regarded as potentially correct changes.

Truncation. Prior to being analyzed by SeqNoise, the

clusters’ sequences need to have their mid tags (and optionally

primers) removed, and to be truncated to 400 bp. The justification

for this truncation is that there is an increase in error rates at the

ends of reads [12]. While this is certainly true of pyrosequencing

errors, those errors were just removed in the previous step. The

next step is concerned with PCR single-base errors, which are not

more prevalent at one end of an amplicon versus the other.

Figure 2. Effects of aaltering the parmeters of PyroNoise. A: The
effects of altering the -c parameter in increments of 0.01, while keeping
-s at the default of 60.0. B: The effects of altering -s in increments of 10,
while keeping -c at the default of 0.01.
doi:10.1371/journal.pone.0060458.g002

Figure 3. The ‘‘accordion effect’’ of the Filtering and PyroNoise
steps. A: The original reads’ lengths (Stage 0) were reduced by the
Filtering step (Stage 1A). Note the increased number of reads in the 250
– 350 bp range. After clustering by PyroNoise (Stage 2A), the read
lengths were increased again, similar to Stage 0. B: The numbers of
changes at each position along the Stage 2A reads, when using either
Stage 0 or Stage 1A as the reference.
doi:10.1371/journal.pone.0060458.g003

The Consequences of Denoising Metagenomic Data

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e60458



Nevertheless, for our data, we removed the mid tags and

primers (one of which contained a degenerate base), and then

truncated the sequences to 400 bp. This resulted in an average 39

gap of –36.7 bp (Table 2), but no other changes to the reads. Then

we combined the cluster reads from multiple samples into one of

four bins (for each primer).

SeqNoise. The purpose of the next set of algorithms is to

remove PCR single-base errors by further clustering the clusters

formed by PyroNoise. SeqNoise takes the same two parameters as

PyroNoise. In this case, -c has a default value of 0.08, and -s has a

default value of 30.0, with values of 25.0 or 10.0 being

recommended for -s when analyzing Titanium data [12].

We applied SeqNoise to our data using the default values. This

resulted in 1,910 clusters, of which 839 (43.9%) consisted of a

single read. The largest cluster contained 3,369 reads, derived

from the largest cluster formed by PyroNoise (2,604 reads) and 331

other clusters of varying sizes from five different samples. Of the

859 clusters that were composed of multiple clusters from

PyroNoise, 34.1% contained reads from more than one sample,

and these clusters accounted for more than 80% of all the reads at

this stage.

The average 39 gap due to SeqNoise was minimal, but it caused

20,450 changes to the reads, most of which were substitutions

(Table 2). Some of the reads were altered drastically. For example,

ten reads had more than 20 substitutions each (data not shown).

Clusters containing 95 reads, of which there were two, had an

average of more than five changes per read (File S4B). Like with

PyroNoise, the process of picking a single representative read for

each cluster led to additional changes (Files S7, S8).

We determined the effects of varying the values of the two

parameters. Altering -c, while holding -s at the default of 30.0, had

little apparent effect on the numbers of changes (Fig. 4A). On the

other hand, increasing -s while keeping -c at the default of 0.08

caused all three types of changes to approach asymptotes, which

sum to around 8,000 total changes (Fig. 4B). Using the

recommended values for -s when analyzing Titanium data (25.0

and 10.0) led to a greatly increased number of changes compared

to the default. Finally, with -c at the minimum value of 0.01,

increasing -s caused all three types of changes to approach zero

(Fig. 4C).

Unlike with PyroNoise, where we could examine the flowgrams

and see if the changes were consistent with pyrosequencing errors,

there was no way to look at a given change made by SeqNoise and

determine whether or not it was correct. In fact, this is our

principal objection to SeqNoise. One cannot examine a given

DNA sequence difference and determine that it is a PCR single-

base error, as opposed to being representative of actual diversity.

Although SeqNoise relies on a matrix of mutation frequencies due

to PCR, nature has its own matrix of mutation frequencies which

follows a similar pattern: low-frequency transversions and higher-

frequency transitions. Whether a given sequence difference

occurred ten PCR cycles ago, as opposed to ten days ago in

nature, is extremely difficult to distinguish.

Perseus. The final step of the AmpliconNoise pipeline is

designed to remove PCR chimeras. We applied Perseus to our

data using the recommended parameter values. A total of 128

clusters (6.7% of the 1,910 clusters formed by SeqNoise) were

determined to be chimeras, and they consisted of 453 reads. Five

of those clusters were composed of reads from multiple samples.

The reads that passed Perseus, the Stage 5A reads, had no

alterations compared to the Stage 4A reads (Table 2), but there

were slightly fewer of them. These reads represent the final output

of the AmpliconNoise pipeline.

Net results. Finally, we determined what the net effects of

AmpliconNoise were by comparing the final denoised reads (Stage

5A) to the original reads (Stage 0). The 39 gap was -34.3 bp on

average (Table 2), ranging from -300 to +213 bp. Again, we must

point out that losing hundreds of base pairs from certain reads

represents a significant loss of data, and that adding hundreds of

base pairs to other reads is unjustified.

The total number of changes was 42,559, which amounted to

more than 1.3 per read. This total was also more than the

Figure 4. Effects of altering the parameters of SeqNoise. A: The
effects of altering the -c parameter in increments of 0.01, while keeping
-s at the default of 30.0. B: The effects of altering -s in increments of 10,
while keeping -c at the default of 0.08. C: The effects of altering -s in
increments of 10, while keeping -c at the minimum of 0.01.
doi:10.1371/journal.pone.0060458.g004
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individual steps of AmpliconNoise combined, mostly due to the

accordion effect of the Filtering and PyroNoise steps. On the other

hand, the number of changes was diminished by the Truncation

step, which reduced the lengths of reads, and Perseus, which

removed a subset of reads that had a total of 1,640 changes. It is

noteworthy that the reads from the putative chimeric clusters had

more than 3.6 changes per read, on average, because chimeras are

not expected to be more prone to sequencing or PCR single-base

errors.

CleanOpt. In an attempt to address some of the issues of

AmpliconNoise, we wrote a filtering script, CleanOpt.pl, which

produces truncated flowgrams analogous to those from Clean-

MinMax. Our script analyzes flowgrams flow by flow, instead of

four at a time, and it truncates a flowgram immediately prior to

any flow whose value is any of the following: (1) less than 0.50,

with the following two flow values also less than or equal to 0.50;

(2) greater than 6.49; (3) greater than or equal to 0.50 and less than

0.70. After this, the read is deleted if fewer than 360 flows remain.

For our data, this resulted in the elimination of 8,903 reads (File

S9A), slightly more than with CleanMinMax. The remaining

flowgrams were truncated to 720 flow values.

CleanOpt also interprets sequences from the flowgrams, with

minor differences from ConvertDatFasta. We determined what

changes had been made to the reads after CleanOpt compared to

the raw reads. Unlike after CleanMinMax, there were no

substitutions or insertions to the reads (Table 2, ‘‘CleanOpt

(trunc)’’), because the flowgrams were truncated prior to every N

and the flows that ended in ‘‘.50’’ were rounded down by

CleanOpt. In the cases where such flow values were rounded up

by the 454 software, this led to a deletion, which accounted for all

of the changes at this stage. However, the fewer inconsistencies

produced by this algorithm did not substantially affect the results

of PyroNoise or the accordion effect (Table 2).

Another option provided by CleanOpt is to bypass the

truncation criteria. The only criterion used in this case is the

minimum of 360 flows, which resulted in the elimination of 3,101

reads (7.6%). Since some of the remaining reads contained Ns, the

flowgrams were interpreted by CleanOpt such that an N was

added to a sequence whenever there were three consecutive flows

with no signal greater than 0.50.

When used with this option, CleanOpt caused minimal 39 gaps

in the reads (Table 2, ‘‘CleanOpt (no trunc)’’). The large number

of deletions were again due to rounding the ‘‘.50’’ flow values

down. The substitutions and insertions were caused by flow values

of 0.50 that were called by the 454 software, but were called Ns by

CleanOpt. However, of the 3,035 Ns in the original reads, all but

two were replaced in the reads correctly. These few differences

need to be weighed against the value of the reads that were neither

eliminated nor truncated in this process.

When PyroNoise was applied to these reads with the default

parameters, the number of changes was substantially more (an

increase of 153.8%) than it was following CleanMinMax.

However, the number of substitutions was less than the numbers

of insertions or deletions, which is more consistent with the known

spectrum of pyrosequencing errors, and the total number of

changes from Stage 0 R 2A was only slightly increased (19.2%)

from that following CleanMinMax. Also, the numbers of all three

types of changes from Stage 0 R 2A was less than the sum of the

previous two steps. Therefore, by maintaining the reads at their

original lengths with CleanOpt and bypassing the truncation

criteria, no accordion effect was observed after PyroNoise.

Qiime
The microbial ecology analysis package QIIME has its own

denoising pipeline [15]. The principal algorithm, denoiser.py, was

based on the original PyroNoise. It is preceded by two filtering

steps (Fig. 1).

split_libraries. The first filtering step is to use the split_li-

braries.py script in QIIME to retrieve the reads. The recom-

mended usage is to truncate the reads based on a sliding window

test of quality scores, followed by the removal of any reads outside

the given length parameters.

We applied split_libraries.py to our data using the recom-

mended parameters (-w 50, -l 150, -L 550). This resulted in the

extraction of 36,281 reads into four different bins (one for each

primer). Another 2,220 reads were lost due to the truncation of -w

occurring before the 150 bp minimum (File S9B).

We analyzed what changes had been made to these Stage 1B

reads compared to the original (Stage 0) reads. The average 39 gap

was -48.1 bp (Table 2), with as many as 358 bp removed from a

read. There were no other changes to the reads.

Another usage is to specify the -g option, which eliminates any

read that has a window of poor quality scores. This would have

resulted in the elimination of the 20,493 reads that were truncated

without -g (File S9B), most of which were from our longer

amplicon.

Pre-clustering. The next filtering step in this pipeline is to

cluster the reads whose sequences are identical over the shorter

read’s length. The clustering is performed by denoiser_preproces-

s.py. This script also retrieves the flowgrams for each of the

clusters’ representative reads, which are the longest reads in each

cluster, and it removes the mid tags and primers from them. It

does not truncate the 39 ends of the flowgrams based on the

truncations of the previous step.

Application of denoiser_preprocess to our data without run-

length encoding resulted in 22,151 clusters. As we did with

AmpliconNoise, we expanded the representative reads to each of

the reads in the corresponding clusters (File S2), and then

determined what changes had been made to these (Stage 2B)

reads. As expected, the 39 gap was large and positive (Table 2), but

there were also more than a thousand changes. This was due to

the fact that, for the first time, the flowgrams were being

reinterpreted into sequences at this stage. All flow values ending

in ‘‘50’’ were rounded up, which accounted for all of the insertions

and substitutions (which were conversions of Ns to regular bases).

The deletions were of Ns that were due to three consecutive flows

with insufficient signal, such as the example shown in File S1.

Denoiser_preprocess correctly inserted 532 Ns that were due to

four consecutive flow values below 0.50 (regardless of frame).

Since the truncations of the previous step were not taken into

account, there was no accordion effect. Instead, the excess changes

in the Stage 0 R 2B comparison were due exclusively to these

differences in flowgram interpretation.

Denoiser. The next step is the major algorithm of this

pipeline, designed to correct both pyrosequencing and PCR single-

base errors. This is performed by denoiser.py, which aligns and

clusters the flowgrams of the representative reads of the clusters

formed in the previous step. The script takes three parameters:

percent_id, low_cut-off, and high_cut-off.

We applied denoiser.py to our data using the default value of

0.97 for percent_id and specifying the --titanium option (which

automatically set the low_cut-off and high_cut-off parameters to

4.00 and 5.00, respectively). A total of 1,620 clusters were formed;

66.4% of these were singletons, but they amounted to only 3.0% of

the total number of reads. Of the 544 clusters containing more
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than one read, 62.3% were composed of reads from multiple

samples, and these clusters accounted for 87.7% of all the reads.

The 544 clusters each had a single read, called the ‘‘centroid,’’

that represented the cluster, whose reads were listed in a separate

mapping file. Another QIIME script, inflate_denoiser_output.py,

was used to reconstitute the reads at this stage, in a manner

analogous to our DenoiseMap script for AmpliconNoise (File S2).

Compared to the Stage 2B reads, these reads had an average 39

gap of +30.0 bp (Table 2), ranging from -206 to +397 bp. Also,

there were more than 4.3 changes per read on average, most of

which were substitutions. The singletons remained unchanged, but

some cluster sizes had more than 15 changes per read (File S10). A

total of 556 reads each had more than 30 changes. Since the

flowgram clustering by denoiser.py is done with alignment, the

changes are not distinguished as to which are correcting

pyrosequencing errors or PCR single-base errors. Therefore, we

have no way of evaluating whether the changes made are

consistent with correcting errors, other than to point to these

cases and the overall large number of changes.

We examined the effects of varying the parameters of

denoiser.py. With two of them fixed due to the --titanium option,

we could only adjust the sequence similarity clustering threshold,

percent_id. Increasing this value from the default of 0.97 had little

effect on the number of changes, and decreasing it also had little

effect until it got below 0.94 (Fig. 5). The only way to decrease the

number of changes was by not specifying the --titanium option and

reducing the two cut-off parameters. At lower cut-off values,

increasing the percent_id parameter further limited the changes

(File S11).

We also analyzed the results of denoiser.py when applied to the

reads that had been filtered using the -g option. This option had

resulted in the elimination of 56.5% of the reads, but the

remaining reads should have had fewer errors. However, denoiser

caused a slightly increased average number of changes per read

(4.6), and the changes were still mostly substitutions.

ChimeraSlayer. ChimeraSlayer [16] is one of the PCR

chimera detection programs available in QIIME. We aligned the

cluster representatives (centroids and singletons) using PyNAST

[21] via the QIIME script align_seqs.py. Then we applied

ChimeraSlayer, using the default parameters and the 16S Gold

database [16] as the reference. It identified 41 of the clusters (2.5%

of those formed by denoiser) as being chimeras, four of which

contained reads from multiple samples. The chimeric clusters

contained a total of 335 reads. We removed those reads from the

pool to produce the Stage 4B reads, the final product of the

QIIME denoising pipeline. These reads had no changes compared

to the Stage 3B reads (Table 2).

Net results. We compared the final denoised reads from this

pipeline (Stage 4B) to the original reads (Stage 0). The 39 gap was

+52.9 bp on average (Table 2), ranging from 2206 to +397 bp.

The total number of changes was more than 3.5 times greater

than with AmpliconNoise. Part of this discrepancy was due to

denoiser’s third clustering phase, which further clusters the

flowgrams in a non-greedy fashion. Avoiding this phase by not

specifying the --titanium option and setting the high_cut-off equal

to the low_cut-off at the default value of 4.0 decreased the overall

number of changes by 27.5%.

This pipeline also caused more changes than AmpliconNoise

because its less stringent default filtering criteria (when avoiding

the -g option) eliminated and truncated fewer reads. In addition,

the reads from multiple samples were clustered together in this

pipeline at the beginning. In AmpliconNoise, the reads were

separated by sample prior to the PyroNoise step, and they could

not be combined until after the mid tags were removed in the

Truncation step. This led to fewer clusters, and thus more

changes, in the QIIME denoising pipeline.

mothur
A new denoising pipeline in mothur was recently published

[17]. It includes recodings of the AmpliconNoise algorithms (Fig.

1).

Filtering. The filtering step in mothur offers a hybrid of the

options in the two previously discussed pipelines. The algorithm

trim.seqs has similar filtering criteria to that of split_libraries in

QIIME, and another algorithm, trim.flows, allows for the analysis

of flowgrams similar to CleanMinMax, but with more flexibility.

The default of trim.flows is to require an exact match of the mid

tags and primers, and to truncate flowgrams according to three

criteria: (1) prior to an ambiguous base; (2) prior to a flow value

between 0.50 and 0.70; and (3) to a maximum of 450 flows. After

the truncations, any flowgrams with fewer than 450 flows are

eliminated.

We analyzed our data with the default parameters of trim.flows.

This resulted in the extraction of 25,119 reads into 56 different

bins (one for each mid tag - primer combination). This meant that

38.1% of the reads were eliminated at this stage, most of which

were due to a single flow value between 0.50 and 0.70 (File S9C).

As we outlined in the CleanMinMax section, this criterion is

unsubstantiated, but it can be adjusted (or bypassed) in this

pipeline. All of the remaining flowgrams were truncated to 450

flows.

Trim.flows also interpreted sequences from the flowgrams, thus

producing the Stage 1C reads. Compared to the original reads,

they had a large, negative 39 gap (Table 2), due to the strict

maximum of 450 flows. There were also 399 changes to the reads,

resulting from differences in interpreting the flowgrams. Trim.-

flows rounded all ‘‘.50’’ flows up, and, like CleanMinMax, it

missed many Ns because it analyzed four flows at a time and in

only one frame (T – A – C – G). We were able to recapitulate the

output of CleanMinMax by altering the parameters of trim.flows

slightly (minflows = 360, maxflows = 720, and maxhomop = 6).

The resulting fasta sequences exactly matched the Stage 1A reads

of AmpliconNoise.

shhh.flows. The next algorithm clusters the filtered flow-

grams from the previous step. It is a recoding of AmpliconNoise’s

PyroNoise.

Figure 5. Effects of altering the percent_id parameter of
denoiser.
doi:10.1371/journal.pone.0060458.g005
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We applied shhh.flows using the default parameters to the reads

in each of the 56 bins separately (when we used the combined

flowgram file from trim.flows, we observed several cases of mid

tags being changed in reads that were sufficiently similar from

different samples). This resulted in 7,304 clusters, 75.8% of which

were singletons. Shhh.flows also produced files that contained the

sequences for each cluster and a mapping file that listed the reads

in each cluster. We used those files to reconstitute the Stage 2C

reads (File S2).

Compared to the Stage 1C reads, these reads had a minimal 39

gap (Table 2), because the reads were all approximately the same

length after trim.flows. The total number of changes was far less

than was seen with PyroNoise or QIIME’s denoiser (Table 2). This

was due to the fact that fewer reads were analyzed, and that those

reads were shorter because of the strict maximum of 450 flows in

the filtering step. However, despite the lower number of changes,

nearly half of them were substitutions, which is inconsistent with

the known spectrum of pyrosequencing errors. Like with

PyroNoise, we were able to decrease the number of substitutions

by increasing the sigma parameter.

Accordion effect. With the reads all kept to essentially the

same length after the filtering step and the minimal 39 gap of

shhh.flows, there was no accordion effect from these two steps

combined (Table 2). The total number of changes was less than the

sum of the two steps. In addition, 74.8% of the Ns were converted

to regular bases by shhh.flows, instead of remaining deleted after

trim.flows.

However, when we applied shhh.flows to the reads after the

‘‘CleanMinMax’’ parameters of trim.flows, the results were similar

to that of PyroNoise. That is, there was a large, positive 39 gap

from Stage 1C R 2C, and this caused a substantial accordion

effect. We also found that the results produced by shhh.flows,

especially in this case, were inconsistent on attempted replication;

with the same data, same algorithm, and same parameters, a

different output was produced with each execution.

trim.seqs. The next step of this pipeline is to remove the mid

tags and primers from the reads with trim.seqs. It is important to

note that Schloss et al. [17] considered this algorithm, with a

sliding window test of quality scores (similar to split_libraries in

QIIME), as producing results nearly as good as the first two steps

(trim.flows and shhh.flows) of this pipeline.

We used trim.seqs to remove the mid tags and primers, but

performed no other trimming of the reads. The reads had no

changes compared to the output from shhh.flows (Table 2).

shhh.seqs. This algorithm is based on SeqNoise from

AmpliconNoise. With the mid tags and primers removed, the

reads from multiple samples can be clustered together.

We used shhh.seqs with the default parameter, resulting in

2,554 clusters. More than half (56.6%) of these were singletons, but

this amounted to just 5.6% of the total number of reads. Only

11.6% of the clusters contained reads from multiple samples, but

those clusters accounted for 71.9% of all the reads at this stage.

Compared to the previous stage, these reads had a minimal 39 gap

and fewer than 6,000 changes, most of which were substitutions

(Table 2).

UCHIME. Mothur offers a variety of PCR chimera-screening

programs, but Schloss et al. [17] determined that UCHIME [18]

produced better results than the other algorithms. We used

chimera.uchime in mothur without a reference database. It

classified 145 clusters (5.7% of those formed by shhh.seqs) as

being chimeras, consisting of 337 reads. Five of those clusters

contained reads from multiple samples. We removed the putative

chimeric reads from the pool, thus producing the Stage 5C reads,

the final output of this pipeline. There were no changes from Stage

4C R 5C.

Net results. Compared to the original reads, the Stage 5C

reads had a large, negative 39 gap (Table 2), due the the strict

maximum length of trim.flows. There were 10,257 changes to the

reads, a little more than 0.4 changes per read. These numbers are

far less than those of AmpliconNoise and the QIIME denoising

pipeline.

The major difference in the outcome of this mothur pipeline

versus the others was established in the Filtering step. By setting a

minimum and maximum of 450 flows, trim.flows ensured that all

the reads were approximately the same length. The reads stayed at

these lengths, more or less, through the remaining steps of the

pipeline, ensuring that there would be no accordion effect.

Without the 39 ends of reads, which are more prone to

pyrosequencing errors, fewer changes needed to be made.

However, the overall decreased number of changes was achieved

at the expense of producing less sequence information than the

other pipelines – 43.2% less than AmpliconNoise, and 58.7% less

than the QIIME denoising pipeline (Fig. 6). Of course, the outputs

of those two pipelines were slightly artificially inflated, due to the

positive 39 gaps of PyroNoise, denoiser_preprocess.py, and

denoiser.py.

Other Denoising Pipelines
Other denoising pipelines have been developed that do not rely

on flowgram analysis.

Single-linkage preclustering. Single-linkage preclustering

(SLP) [19] is designed to cluster reads containing errors with more

abundant error-free reads. Since each cluster formed by SLP

contains a single sequence that will be used for downstream

analysis, the reads are being changed just like in the other

denoising pipelines.

We began the analysis of our data by filtering with split_librar-

ies.py in QIIME according to the criteria of Huse et al. [10].

Eliminating any reads containing an ambiguous base, with an

average quality score below 25, or of anomalous length resulted in

the extraction of 35,166 reads in four bins (one for each primer).

Compared to the original reads, these Stage 1D reads had no

changes, except that some had a small, negative 39 gap resulting

from the removal of the opposite primer at the 39 end (Table 2).

Next, we applied the unique.seqs algorithm of mothur, which

collapsed identical reads and produced an abundance file. We

used the kmerdist and needledist algorithms of ESPRIT [22] with

default parameters to calculate pairwise distances, as recom-

mended [19]. Finally, we clustered the reads with slp.pl using a

maximum distance of 0.02. This resulted in 1,683 clusters, 44.7%

of which were singletons. Although only 15.4% of the clusters

contained reads from multiple samples, they accounted for 83.3%

of the reads.

Each cluster had a single representative read, which we used to

reconstitute the Stage 2D reads (File S2). Compared to Stage 1D,

these reads had 95,207 changes, most of which were substitutions

(Table 2). Note that the numbers of insertions and deletions are

given in units of events, not base pairs. We did this because the

needledist calculation (based on quickdist [5]) counts insertions

and deletions of any size as single differences (File S12).

Because single-linkage allows a new read to join a cluster if it is

within the given distance of any read in that cluster, there exists

the possibility of increasingly divergent reads being linked

together. This is known as the chaining effect. For example, with

a maximum distance of 0.005, we observed chaining to a depth of

six, and the reads at that depth differed from the cluster center by

much more than one per 200 bp (File S13). The chaining effect
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also contributed to SLP’s version of the accordion effect. At a

distance of zero, where only identical reads should have been

clustered, 26,686 changes were made (Fig. 7). This was due to

cases of divergent reads’ being linked by a shorter read that was a

perfect match to both of them (File S14).

Therefore, it is important that reads analyzed by SLP be the

same length to avoid the accordion effect. Huse et al. [19]

accomplished this with their shorter amplicon reads by requiring

that the opposite primer be present. We did not use this

requirement with our data, since that would have resulted in the

elimination of most of the reads from our longer amplicon. It is

likely that a combination of the chaining and accordion effects

caused the paradoxical increase in error rates after SLP that has

been observed [12], because the analyzed reads were of different

lengths.

The mothur denoising pipeline has a variation of SLP called

pre.cluster, which Schloss et al. [17] considered a slightly

preferable alternative to shhh.seqs in the mothur denoising

pipeline. An important distinction is that pre.cluster is not a true

single-linkage algorithm, because it adds reads to a cluster only if

they are within the maximum distance to the cluster center. Thus,

it avoids the chaining effect altogether. Pre.cluster also analyzes

the aligned reads directly, thus skipping the issues arising from

needledist. However, it is still not clear in a real community study

that this algorithm is correcting errors as opposed to altering

natural variation, nor is it clear that the changes made would

improve the results of any downstream clustering process.

Acacia. Acacia [20] is a recently published denoising algo-

rithm. It filters the reads based on sequences and quality scores,

and then clusters them using hypothesis testing of homopolymer

lengths.

We analyzed our data with Acacia using the default parameters.

The 37,802 reads that passed the filtering were placed into 12,706

clusters, 80.5% of which were singletons. Although Acacia will

cluster reads from multiple samples together, only 22.8% of the

reads were in such clusters. All the clusters had a single consensus

sequence, but each read had its own denoised sequence that

sometimes varied from that of its cluster in length. We

concatenated these sequences to produce the output from the

Acacia pipeline.

Compared to the original reads, these reads had 20,170

changes, 38.5% of which were substitutions. Since Acacia attempts

to correct only homopolymer errors, one would expect fewer

substitutions. In fact, the number of substitutions was already

Figure 6. Sequence information produced by the denoising pipelines. The lengths of the reads produced at the end of the three major
denoising pipelines. The total sequence information is the area under the curve. The dotted lines represent the reads (post-Filtering) that were input
to each of the pipelines. Both AmpliconNoise and the QIIME denoising pipeline expand this sequence information.
doi:10.1371/journal.pone.0060458.g006

Figure 7. Effects of altering the -w parameter of SLP. The
insertions and deletions are in units of events.
doi:10.1371/journal.pone.0060458.g007
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diminished by Acacia at the expense of additional deletions (File

S15). We also found that the results produced by Acacia were

inconsistent on attempted replication.

Additional validation
To ensure that these results were not specific to our particular

dataset, we analyzed the dataset from a marker-based metage-

nomic study of three marine organisms (brown coral, orange coral,

and sponge). The 16S rRNA amplicon (V6–V8) was sequenced

bidirectionally (800 flows), resulting in 49,855 reads. They were

processed through the denoising pipelines and produced similar

results (File S16).

In the AmpliconNoise pipeline, the spectrum of changes

produced by PyroNoise showed more substitutions than insertions

and deletions unless the -s parameter was increased. There was a

very large accordion effect, but this was avoided by using our

CleanOpt script without truncations. The QIIME denoising

pipeline produced more than three times as many changes as

AmpliconNoise. The strict filtering criteria of mothur greatly

reduced the overall number of changes, but at the expense of

producing less sequence information than the first two pipelines.

Conclusions

We have denoised a real 16S rRNA metagenomic dataset and

analyzed the changes produced by each step of five denoising

pipelines. Even without knowing the true sequences, we have been

able to evaluate the effects of the algorithms, and we have

discerned several points at which the sequence reads were changed

in a manner inconsistent with removing noise. Others who utilize

these pipelines should use this approach to determine how their

reads are being transformed by the denoising process and to

optimize the results.

Fundamentally, all five pipelines are designed to reduce the

effects of noise – pyrosequencing errors, PCR single-base errors,

and PCR chimeras – in metagenomic analyses. Before considering

those sources of noise, we must first address the different filtering

criteria that each pipeline uses.

Filtering
Eliminating reads that are likely to contain many errors and

produce erroneous OTUs in downstream analysis, as well as

truncating reads prior to regions that are likely to be noisy, are

good ideas. However, most of the eliminations and truncations of

CleanMinMax in AmpliconNoise are due to a single unsubstan-

tiated criterion, and it fails to truncate prior to an ambiguous base.

This can be overcome using our script CleanOpt.pl, which

provides the option of truncating the reads according to the

intended criteria or not.

The Filtering steps in QIIME and mothur allow for additional

control over this process. In mothur, trim.flows analyzes the

flowgrams similar to CleanMinMax, but one has the opportunity

to avoid some of the negative results by adjusting the parameters.

Filtering in the QIIME pipeline is accomplished by analyzing

sequences and quality scores, and the user can choose from a

variety of well-established criteria. The only issue here is that the

truncations of the sequences are not applied to the flowgrams,

which are analyzed by denoiser. For SLP, we used QIIME’s

filtering script as well, because of the control it offered.

Pyrosequencing errors
In Roche-454 pyrosequencing, errors occur from the inaccurate

determination of homopolymer lengths. The original PyroNoise

algorithm addressed these errors by considering the flowgrams,

from which insight could be gained about the confidence of the

sequence calls. For example, suppose that two sequences differ by

an insertion, with one having 2 As and the other having 3 As. If

the corresponding flow values are 2.49 and 2.51, then they are

likely to be the same, but the flow values could also be 1.51 and

3.49, much further apart. We consider this, the analysis of

flowgrams, to be an essential part of any algorithm that is designed

to denoise marker-based metagenomic data produced by Roche-

454 pyrosequencing. PyroNoise (in AmpliconNoise), denoiser (in

QIIME), and trim.flows (in mothur) all use the information in the

flowgrams.

Any algorithm that is designed to correct pyrosequencing errors

should make changes to the sequence reads that are consistent

with the known spectrum of these errors – a much smaller number

of base substitutions compared to insertions and deletions. We

found that the PyroNoise part of AmpliconNoise caused a large

number of substitutions to our data, and these changes were not

supported by the flowgrams. We were able to optimize the results

of this step by increasing the -s parameter, and we did the same

with shhh.flows in mothur. Denoiser (in QIIME) attempts to

correct both pyrosequencing errors and PCR single-base errors in

a single flowgram clustering step, so we could not examine the

pattern of changes at this step specifically.

Another issue arises when establishing a sequence for a cluster of

reads. PyroNoise picks the longest read in each cluster as the

representative. This leads to the accordion effect, in which

additional changes are made to the 39 ends of reads that were

truncated in the Filtering step. If one uses our CleanOpt script

without truncations prior to PyroNoise, the accordion effect is

avoided. Similarly, in mothur, there is no accordion effect, because

all the reads are truncated to the same length by trim.flows. Of all

the denoising algorithms analyzed, only Acacia formed a true

consensus for each cluster, instead of picking a representative read.

PCR single-base errors
To identify PCR single-base errors, an algorithm must examine

a given sequence difference and determine that it is an error and

not representative of the actual diversity of a real community.

Unfortunately, this is difficult to do. SeqNoise (in AmpliconNoise)

and shhh.seqs (in mothur) use a matrix of estimated error

frequencies for PCR, but the polymerases of real organisms

produce a similar spectrum of mutations. In a real community

study, it is unclear that these algorithms are removing noise and

not forcing rare variants to join a consensus.

Another approach is to use single-linkage preclustering. The

SLP algorithm was designed to remove noise from data while

retaining the rare biosphere. However, single-linkage carries with

it the chaining effect, in which increasingly divergent reads are

clustered together. When analyzing reads of different lengths, SLP

also has its own accordion effect, with dissimilar reads being linked

by a shorter read, so it should only be used on reads that are the

same length. A related algorithm, pre.cluster in mothur, avoids

these negative effects by not allowing the chaining effect, but this

algorithm would be unlikely to affect the OTU clustering process

to follow.

We were able to adjust the number of changes made by

SeqNoise by manipulating its two parameters. However, even if

we were to calculate an expected number of PCR errors for a

given reaction, it would still be inappropriate to use SeqNoise at

the parameters that would produce this number of changes. We

would not be able to determine if the changes made were the

correct ones in a real community study. Instead, we believe that it

is best to take steps to minimize the number of errors in a PCR

reaction, such as by using proofreading enzymes and limiting the
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number of cycles. Beyond that, we recommend that no further

manipulation of the data take place, and point out that PCR

single-base errors are thought to contribute much less to noise than

pyrosequencing errors or PCR chimeras [17].

Truncations
The truncations of the reads, in the Filtering and later steps,

have profound effects on the outcomes of the pipelines. For

example, because of mothur’s truncating reads at 450 flows in the

Filtering step, the reads are trimmed to the same lengths, thus

avoiding any accordion effect in subsequent steps. However, this

strict length requirement also caused mothur to analyze fewer

reads and to produce less sequence information than the other

denoising pipelines.

In a marker-based metagenomic study that includes multiple

samples, the mid tags need to be removed from the 59 ends of the

reads before OTU clustering, so that one can identify the OTUs

that are shared among different samples. In denoising, it is

conceptually better to analyze reads from multiple samples

together as much as possible, so that reads from rare taxa have

a chance to cluster together. This occurs as a default in QIIME

(although it can be avoided by specifying the -S option), as well as

in SLP and Acacia, which explicitly offers the option of whether to

cluster reads from multiple samples or not. The Filtering steps of

AmpliconNoise and mothur do not remove the mid tags from the

flowgrams, so the reads must be clustered separately by sample

until after the Truncation step.

Consequences of denoising
The denoising pipelines were designed to remove the effects of

noise in metagenomic analyses, such as determining the number of

OTUs in a sample. In fact, they were benchmarked by performing

such analyses on mock communities with known components.

While applying one of these denoising pipelines to a real

community dataset may get us closer to the right answer, it is

important to consider at what expense this is achieved. If all rare

variants are removed or ‘‘corrected’’ to match more common

sequences, then this is not a positive outcome. Nor is it a positive

outcome if the taxonomic identities of certain reads are radically

altered. For example, two of our reads matched slight variants of a

Stenotrophomonas species and a Xanthomonas species (both order

Xanthomonadales) prior to denoising, and after denoising by

AmpliconNoise they were perfect matches to Pseudomonas (order

Pseudomonadales). Another read made the opposite journey,

starting as a 98% match to Pseudomonas putida and ending as a

100% match to Stenotrophomonas. Such cases illustrate the potential

consequences of algorithms that do more than simply remove

noise from the data.

Materials and Methods

Ethics statement
No specific permits were required for the described field studies.

No locations were privately owned or protected in any way. No

endangered or protected species were involved.

Sample preparation and sequencing
Fourteen individual nematodes were selected from ocean

sediment samples taken from off the New Hampshire coast and

the Gulf of Mexico. Genomic DNA was isolated by incubating the

nematodes in lysis buffer [23] at 65u for 2 hr, followed by 5 min at

95u. This resulted in the isolation of nematode DNA, along with

the genomic DNA from any associated organisms.

Two regions of the bacterial 16S ribosomal RNA gene were

amplified by PCR using DyNAzyme
TM

EXT DNA polymerase

(Finnzymes). The PCR primers consisted of a 25-bp adaptor

sequence (Roche-454), followed by a 10–11 bp multiplex identifier

(mid) tag [24] that was unique for each nematode, followed by one

of the following four primers: 341F - CCTACGGGAGGCAG-

CAG; 926R - CCGTCAATTCMTTTGAGTTT; 968F -

AACGCGAAGAACCTTAC; 1401R - CGGTGTGTA-

CAAGGCCCGGGAACG [25]. The products were purified and

sequenced on the Roche-454 GS FLX Titanium platform (800

flows). Both amplicons (341F - 926R and 968F - 1401R) were

sequenced bidirectionally.

The output standard flowgram files were concatenated and

converted to text form using the Roche-454 Tools programs sfffile

and sffinfo, respectively. The flowgram files have been submitted

to the NCBI Sequence Read Archive (accession SRR653182), and

the mapping file is given as File S17.

Denoising pipelines
AmpliconNoise V1.25 was implemented according to Quince et

al. [12] and the User Guide and the Tutorial that are provided

with the downloaded scripts. The denoising pipeline in QIIME

1.5.0 [13] was implemented according to Reeder and Knight [15]

and the QIIME website (qiime.sourceforge.net), along with the

4.29.2010 release of ChimeraSlayer [16]. The denoising pipeline

in mothur v.1.25.1 [14], along with UCHIME v4.2.40 [18], was

implemented according to Schloss et al. [17] and the mothur

website (www.mothur.org). The SLP pipeline was implemented

according to Huse et al. [19] and the MBL website (vamps.m-

bl.edu/resources/). Acacia was implemented according to Bragg

et al. [20].

Reconstituting reads
To evaluate the consequences of each step in the denoising

process, we reconstituted the reads at each of the stages using our

DenoiseMap scripts (Files S18, S19, S20, S21). The original reads

(Stage 0) were given by the fasta file provided by the 454 software.

In AmpliconNoise, the Stage 1A reads were created by

concatenating the fasta files created by ConvertDatFasta, which

interpreted the flowgrams that were cleaned by CleanMinMax

(the fasta files produced directly by CleanMinMax did not

accurately reflect the reads at this stage). The other Stage 1 reads

were similarly made from the fasta files produced by split_libraries

(in QIIME and SLP) and trim.flows in mothur. For the remaining

stages, the reads were created by matching each read from the

mapping file to the corresponding cluster’s sequence in the

sequence file (File S2).

When reconstituting the reads, we reattached mid tag and

primer sequences to them when necessary, beginning with Stage

3A in AmpliconNoise, Stage 1B in QIIME, Stage 3C in mothur,

Stage 1D in SLP, and Stage 1E in Acacia.

Quantifying changes
To determine what changes had been made to the reads, we

used our script AlignClusMus.pl (File S22). In brief, this script

takes two multifasta files, a query and a reference, as inputs. It

aligns each sequence in the query file to the corresponding

sequence from the reference file using ClustalW 2.1 [26], with a

reduced gap-opening penalty (-gapopen = 1). The 39 gap is

recorded, and the extra bases are removed from the longer

sequence. Then, another alignment is performed using MUSCLE

v3.8.31 [27], again with a reduced gap-opening parameter (-

gapopen -100). This alignment result is analyzed for substitutions,

insertions, and deletions. The insertions and deletions are recorded
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in units of both base-pairs and events. In this paper, these are

given in units of base-pairs unless otherwise indicated.

For our data, allowance was made for the ambiguous base in the

926R primer. A sample output from AlignClusMus.pl is given as

File S23.

CleanOpt
Our filtering script, CleanOpt.pl (File S24), analyzes the

individual flows of each flowgram retrieved by SplitKeys, up to

the last flow called by the 454 software. It provides the option of

truncating the flowgrams according to the intended criteria of

AmpliconNoise or not. In either case, the format of the resulting

files matches that of CleanMinMax, so that any files can be further

analyzed by the PyroNoise step of AmpliconNoise.

Supporting Information

File S1 Flowgram interpretation by AmpliconNoise. A

small selection of eight flow values from the flowgram of a read,

along with the interpreted sequence at three stages. The first flow, of

the nucleotide T, caused a light emission of 1.91 units in this

particular well of the sequencing plate. The 454 software (Stage 0)

interpreted this signal as corresponding to the sequencing strand

incorporating two Ts. Next, the nucleotide A was flowed, but the

low signal (0.01) meant that A was not the next nucleotide on the

sequencing strand. Similarly, the 454 software called two Cs for the

next flow value of 1.66. After this, none of the next three flows had a

sufficient signal to call a base. Since, following the two Cs, the next

base must have been one of G, T, or A, the 454 software called an

N. Normal base calling followed this with the last two flows shown.

The AmpliconNoise script CleanMinMax.pl, because it analyzed

only one frame of four flows (T - A - C - G), did not notice the three

flow values with insufficient signal. Therefore, it did not truncate the

flowgram prior to these flows, and ConvertDatFasta.pl interpreted

this section of the flowgram such that the N was deleted (Stage 1A).

After flowgram clustering by PyroNoise (Stage 2A), the putatively

correct base was inserted into the sequence.

(PDF)

File S2 The files used to reconstitute the reads at each
stage of the denoising pipelines.

(PDF)

File S3 Alignment of a cluster of three reads formed by
PyroNoise. A: The longest read was chosen as the representative

for the cluster, even though this caused a deletion in both of the

other reads. B: The flow values suggest that the correct

homopolymer length was more likely to be three than four.

(PDF)

File S4 Changes caused by PyroNoise and SeqNoise. A:

The total number of changes – substitutions, insertions, and

deletions – was determined by comparing each read post-

PyroNoise (Stage 2A) to that pre-PyroNoise (Stage 1A). These

changes were summed and divided by the total number of reads in

each cluster size. Inset: A close-up of the smaller cluster sizes. B:

The same analysis performed on the reads post-SeqNoise (Stage

4A) compared to those pre-SeqNoise (Stage 3A).

(PDF)

File S5 A deletion made by PyroNoise. A small section of

the flowgrams of a read (454 accession number ‘‘FY1WZ’’) that

had a deletion, along with two other reads with which it was

clustered. The flow value of 4.80 was judged by PyroNoise as not

being distinct from the corresponding flow values of the other

reads with which it was clustered. Therefore, this value was

changed to 4, resulting in a reduction of the homopolymer of five

Ts to four.

(PDF)

File S6 A substitution made by PyroNoise. A: A small

section of the flowgrams of a read (‘‘A81VH’’) that had a T R A

substitution. In this case, two flow values were changed: the T

from 1.94 to 1, and the A from 0.95 to 2. B: A more systematic

view of the cluster shown in A. Flow values 421 (T) and 422 (A)

were recorded for the reads in that cluster. Although neither of the

two groups appears noisy, PyroNoise determined that the group at

(2T, 1A) had pyrosequencing errors and changed those reads to

match the others at (1T, 2A).

(PDF)

File S7 Alignment of a cluster of three reads formed by
SeqNoise. Each of the three reads was a singleton after PyroNoise.

Because of the choice of ‘‘HJ69D’’ as the representative read, a T R
C substitution was made to both of the other reads.

(PDF)

File S8 Alignment of a cluster of three reads formed by
SeqNoise. The three reads differ in three positions, at each of

which two of the reads agree. None of the three reads matches the

dominant base at all three positions. Therefore, forming a true

consensus requires a sequence that matches none of the three.

(PDF)

File S9 Results of other pipelines’ Filtering steps. A:

CleanOpt. B: split_libraries (QIIME). C: trim.flows (mothur).

(PDF)

File S10 Changes caused by denoiser. A: The total number

of changes per read was calculated for each cluster size. Inset: A

close-up of the smaller cluster sizes.

(PDF)

File S11 Effects of altering the cut-off parameters of
denoiser. By setting low_cut-off and high_cut-off equal to each

other, the third clustering phase of denoiser is avoided. A:

percent_id = 0.97. B: percent_id = 0.99.

(PDF)

File S12 Alignment of two reads in SLP. The needledist

algorithm of Esprit, based on quickdist, considers insertions and

deletions of any size as being a single event. Therefore, it calculates

the distance between these two reads as 1 mismatch / (212 matches +
1 mismatch) = 1/213 = 0.004695. These reads will be clustered by

SLP if the cluster width parameter, -w, is greater than this distance.

(PDF)

File S13 Pairwise alignment of three reads clustered by
SLP. A: A chain of reads that are clustered together by SLP. B:

The distance between the first and last reads far exceeds the cluster

width of 0.005, because of the chaining effect.

(PDF)

File S14 Pairwise alignments of three reads clustered
by SLP. A, B: Pairs of reads that are identical over the shorter

read’s length. When using a width of 0, the first and third reads are

clustered together via the second read, despite their nonzero

distance (C).

(PDF)

File S15 Alignment of two reads clustered by Acacia. At

two positions where the reads disagree, Acacia caused a deletion in

both, instead of creating a substitution in one of the them. The

reason for the deletion of the C near the 39 end of the read

‘‘FH6HB’’ is unknown.

(PDF)

The Consequences of Denoising Metagenomic Data

PLOS ONE | www.plosone.org 13 March 2013 | Volume 8 | Issue 3 | e60458



File S16 Changes made at each step of the denoising
pipelines to an independent dataset.
(PDF)

File S17 The mapping file for our dataset. The primer

sequences are given, followed by the corresponding mid tag

sequences for each of the fourteen samples.

(CSV)

File S18 DenoiseMapAmpNoise.pl script.
(TXT)

File S19 DenoiseMapQiime.pl script.
(TXT)

File S20 DenoiseMapMothur.pl script.
(TXT)

File S21 DenoiseMapSLP.pl script.
(TXT)

File S22 AlignClusMus.pl script.
(TXT)

File S23 A sample output from AlignClusMus.pl.
(XLS)

File S24 CleanOpt.pl script.

(TXT)

File S25 Rank-abundance curves. A: The output reads from

each of the denoising pipelines, as well as the original reads, were

clustered (separately) to form 97% OTUs by the QIIME script

pick_otus.py. B: A close-up of the 15 most abundant OTUs. Note

the non-logarithmic y-axis.

(PDF)

File S26 Rank-abundance curves of the multi-stage
pipelines. A: AmpliconNoise. B: QIIME. C: mothur. D: SLP.

(PDF)
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