
Identifying and Classifying Trait Linked Polymorphisms
in Non-Reference Species by Walking Coloured de Bruijn
Graphs
Richard M. Leggett1, Ricardo H. Ramirez-Gonzalez2, Walter Verweij1, Cintia G. Kawashima1, Zamin Iqbal3,

Jonathan D. G. Jones1, Mario Caccamo2, Daniel MacLean1*

1 The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, United Kingdom, 2 The Genome Analysis Centre, Norwich Research Park, Colney, Norwich, United

Kingdom, 3 Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom

Abstract

Single Nucleotide Polymorphisms are invaluable markers for tracing the genetic basis of inheritable traits and the ability to
create marker libraries quickly is vital for timely identification of target genes. Next-generation sequencing makes it possible
to sample a genome rapidly, but polymorphism detection relies on having a reference genome to which reads can be
aligned and variants detected. We present Bubbleparse, a method for detecting variants directly from next-generation reads
without a reference sequence. Bubbleparse uses the de Bruijn graph implementation in the Cortex framework as a basis and
allows the user to identify bubbles in these graphs that represent polymorphisms, quickly, easily and sensitively. We show
that the Bubbleparse algorithm is sensitive and can detect many polymorphisms quickly and that it performs well when
compared with polymorphism detection methods based on alignment to a reference in Arabidopsis thaliana. We show that
the heuristic can be used to maximise the number of true polymorphisms returned, and with a proof-of-principle
experiment show that Bubbleparse is very effective on data from unsequenced wild relatives of potato and enabled us to
identify disease resistance linked genes quickly and easily.
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Introduction

Genetic polymorphisms between genomes of individuals in a

population, such as Single Nucleotide Polymorphisms (SNPs), are

invaluable markers for tracing the genetic basis of inheritable traits

or diseases. Rapid detection of polymorphisms and creation of

large libraries of SNPs is vital for timely investigation and

identification of genes associated with medically and agronomi-

cally important phenotypes. Next-generation sequencing (NGS)

can sample genomes comprehensively in only hours, but making

use of the typically short reads remains a challenge. Detection of

SNPs and short Indels is typically achieved by aligning reads to a

reference genome and identifying where the consensus from the

aligned reads differs from the reference sequence. Factors such as

the need for a reference sequence and the implicit assumption of a

monomorphic sample mean that the consensus approach is limited

in organisms for which we lack a reference genome, outbred

diploid samples, bulked population data or analysis of metagen-

omes. The ability to identify genetic differences between two (or

more) sequenced but not assembled, and genetically divergent

genomes would be of great benefit to biotechnologists wishing to

create libraries of genetic markers for breeding and disease

programs in as short a time as possible. The major obstacles to

identifying genetic differences directly from NGS reads are the

volume of sequence data that must be assessed and the accurate

detection of variants in reads that individually are often prone to

error. But even with perfect reads the alignment-based methods

will struggle with complex genomic regions or in the presence of

indels.

De Bruijn graphs are directed graphs of overlapping symbols

that are directly suited to representing ordinal relationships

between same length sub-sequences of reads (typically called

kmers, being of arbitrary length k) (Figure 1A). They can be

implemented in efficient data structures for large collections of

kmers and have proven to be of great utility as the underlying data

model over which numerous de novo assembly algorithms have

been implemented [1,2,3].

Methods based on the de Bruijn graph have been implemented

recently that can efficiently identify differences in sequence read

sets [4] but do not yet extend to allowing direct classifications

based on genetic background. Some very specialised pipelines

have also been developed for the tracking of genetic loci through

populations on reduced representation Illumina data [5]. Iqbal et

al. [6] produced the first model and de novo assembly algorithms

for variant discovery and genotyping from sequence data without

using a reference genome. By encoding different datasets in

different colours in the graph (e.g. each colour representing a

single sample, or a single pool/population), they introduced novel
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methods for detecting variants and distinguishing populations or

individuals by finding alleles with differential colouring. They

described how variants induce ‘‘bubble’’ structures in the graph,

which could be confounded with sequencing errors or repeated

kmers. Given a specific genome of interest, a variant-size and a

kmer size, the power to detect variants was modelled. The authors

noted that without a reference, it was difficult to distinguish read

errors and repeats from genuine SNPs.

We present here an extension of the method in Iqbal et al. [6],

which has in principle greater power to discover SNPs. The

method relies on implementing a minimal error-cleaning routine,

followed by a depth-first search in the graph to find bubbles and

has the explicit goal of reliably identifying real and useful

homozygous and heterozygous SNPs from samples of varied

genetic background. The method relies on differential coverage on

the different branches of a bubble from two different samples. For

example a homozygous SNP in a resistant individual or population

would appear in the graph as a bubble with two different coloured

branches, that is kmers from only one sample on each side of the

bubble. Similarly a heterozygous allele in a disease resistant

organism that is homozygous in a susceptible variant would

manifest as a bubble with a dual coloured branch for the allele for

susceptibility (Figure 1C). We control specificity by ranking called

variants using differential coverage on the two alleles. We

demonstrate the power of combining multicoloured graphs with

an appropriate experimental design, by identifying SNPs linked to

Phytophthora infestans resistance in crosses of resistant and susceptible

accessions that are relatives of potato.

Results and Discussion

Our software for identifying SNPs, Bubbleparse, uses the

efficient de Bruijn graph representation provided by Cortex [6],

and implements a new algorithm for identifying bubbles. Though

Cortex provides a method of variant calling, the algorithm is

designed only to detect clean bubbles and more complicated

structures require a reference for identification. Our algorithm

identifies more complex bubbles without the use of a reference.

Given sufficient coverage, the method can call all possible variants,

but also errors, paralogs and misassemblies. Therefore we control

specificity with a classification and ranking system that we

benchmark below and show to be effective.

Bubble detection
A de Bruijn graph is a labeled directed graph represented by a

pair G~(V ,E), consisting of a set of vertices, V , and a set of

edges, E. Each vertex (or node) of the graph represents a kmer,

which is a nucleotide sequence of length k that differs from

connected kmers by a single nucleotide.

Figure 1. Bubbles in the de Bruijn graph. (A) Representation of a simple 11 nt sequence as a de Bruijn graph (top) and then with a SNP (bottom).
Nodes represent kmers – sequences of k nucleotides – and edges join together kmers that overlap by k21 nucleotides. A SNP causes a bifurcation in
the graph and the new path joins up with the original path after k nodes. (B) de Bruijn graph representations of a single heterozygous SNP (top) and a
SNP followed by a second SNP within k nt (bottom). (C) Our bubble classification system assigns a type according to the number of colours present
on each path through the bubble. Thus a bubble corresponding to a heterozygous SNP from an organism in which the resistant variant contains 2
alleles and the susceptible contains 1 allele would produce a bubble with 2 colours on one path and 1 colour on a second path and would be
classified as a type ‘‘2,1’’. Similarly, a bubble corresponding to a heterozygous SNP from an organism in which both the resistant and susceptible
variants contain 2 alleles would be classified as a type ‘‘2,1’’. Finally, a less common example where 2 alleles are present in one variant and 3 in
another would appear as a type ‘‘2,2,1’’.
doi:10.1371/journal.pone.0060058.g001
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A path through the graph can be represented by P~(V ,E),
where V is a set of n vertices, v(1):::v(n) and E is a set of n{1
edges, e(1):::e(n{1), such that the target node of e(i) is the source

node for e(iz1).

Two paths, Pi~(Vi,Ei) consisting of ni vertices and

Pk~(Vk,Ek) consisting of nk vertices, form a bubble if

vi(1)~vk(1)

vi(ni)~vk(nk)

ei(x)=ek(x), for all x:

In the first step of bubble finding, we examine each node in the

graph looking for one of two kinds of possible branch point.: ‘Y’

nodes feature one path in one direction and 2 (typically) or more

(up to 4, one for each nucleotide) in the opposite direction; and ‘X’

nodes feature 2 or more paths in both directions. Branch points

are places where the path through the graph diverges and if these

paths later re-converge, a bubble is formed. Therefore, the next

step is to explore each node flagged in the first step and see if the

paths originating from it later converge on a common node. This

is achieved by building a list of all paths from a given branch node,

up to a maximum number of bifurcations traversed, which is a

depth-first search. These paths are then compared step-by-step,

looking for a common node of convergence. A parameter, d,

determines the number of levels of bifurcation that will be allowed

when exploring potential bubble paths. A value of 1 means that 1

level of bifurcation will be explored before the algorithm abandons

further exploration of the path. Thus, the maximum number of

paths that will be explored is equal to 41+d.

When a point of convergence is identified, we have the start and

end nodes of a bubble and can easily produce a set of nucleotide

sequences representing the paths through the bubble. For practical

use, such as the design of primers, we need to find flanking

sequences at either side of the bubble. These are obtained by

walking the graph as far as possible from the start and end nodes,

until we reach another branch node.

This bubble detection algorithm has been implemented as a

new module within Cortex, independent of and separate from the

standard variant calling options. The primary advantage of our

new algorithm is that it allows the reference-free detection of more

complicated bubble structures than Cortex does (see below for

experimental verification), but also that it allows us control over

the information that is available to the Bubbleparse ranking

algorithm. The output of this new module is a pair of files that can

be read by the Bubbleparse ranking tool. Once the collection of

bubbles is created, Bubbleparse gives each a type classification

determined by the number of paths through the bubble and the

number of colours that follow each path (Figure 1C). Bubbleparse

creates these classifications and collates quantities such as node

coverage per colour path, kmer quality score, coverage ratio and

produces a ranked list of SNPs subdivided according to bubble

type.

Bubble detection and classification is sensitive and fast
but creates many false positive SNP calls at greater graph
search depths

The reference free exploration of the graph is expected to

generate high numbers of false positives induced by repeats in the

underlying genome and numerous artefacts in the sequence reads

that can cause bubble structures that are not due to polymor-

phisms. In order to quantify this error level and to examine the

efficiency with which we could detect true SNPs in bubble

collections from experimentally generated reads, we compared our

SNP calls with those from a commonly used SNP calling pipeline

based on reference alignment, as well as with a curated high-

quality set of SNPs from an external genetic variation project. We

used reads from the Bur-0, Tsu-1 (31–40 nt) and Ler-1 (40–80 nt)

ecotypes of Arabidopsis thaliana released by the 1001 Genomes

Project and available from the Sequence Read Archive at EMBL

(ENA SRA Experiments SRX000702 to SRX000704), against A.

thaliana Col-0 reads. The Bur-0 reads provided approximately 506
coverage, the Tsu-1 reads 386 coverage, while for Ler-1 we

present results for a range of coverage values from 406 to 3406.

Alignment against the reference was performed using BWA [7]

and SNPs called using SAMTools [8]. In order to have a high

degree of confidence that a homozygous SNP was genuine, we

required 95% of the reads covering a position to carry the same

nucleotide and for that nucleotide to be different to the one in the

same position in the Col-0 reference. For Bur-0, this resulted in

SAMTools calling 351,493 and 182,419 SNPs at minimum

alignment coverage of 10 and 20 respectively. For Tsu-1, the

values were 261,970 and 88,597.

In Bubbleparse, reads were assembled into the de Bruijn graph,

removing paths of nodes with coverage 2 or below and tips less

than 100 nucleotides in length. Bubble detection was run using

depth from 0 to 3 and k from 15–31. The contigs representing

bubbles were BLASTed [9] against the TAIR9 reference in order

to find their locations and to build a list of predicted SNP

locations.

Bubbleparse identified many bubbles in each comparison

(Figure 2), (maximum 893,627 for Col-0/Bur-0 at depth 3 and

k = 19. The number of bubbles found increased with depth of

search as expected and roughly mirrored the number of distinct

kmers, which were maximal at k = 19 or k = 21 for all Bur-0 and

Tsu-1 (Figure S1), but decreased sharply as k moved away from

this.

Comparing the canonical SNP positions, obtained by pileup,

with the Bubbleparse matches allowed us to estimate sensitivity

and compare this with the proportion of real SNPs retained in our

bubble collections. The number of real SNPs found in our bubble

collections increased with depth of search to a maximum of

86.82% of SNPs identified in Tsu-1 (Figure 3) for depth 3

indicating that the search algorithm is effective at detecting

bubbles representing real SNPs. Figure 3 shows that this sensitivity

comes at the cost of a significant amount of specificity at greater

search depths, such that the proportion of real SNPs in the

collection drops from 61.99% at its highest (for Bur-0 at k = 17 and

bubble search depth of 0 with minimum coverage for calling a

canonical SNP of 10) to 3.53% at its lowest (for Tsu-1 at a bubble

search depth of 3 and minimum read depth coverage for calling a

canonical SNP of 20 at k = 31). Together these results indicate that

the graph traversal algorithm is effective at finding bubbles and

that the simple bubbles discovered by low depth graph searches

are more likely to represent a SNP than the complex structures

discovered by a deeper graph search. We believe that the complex

structures in the graph may more often represent underlying

genomic characteristics such as k length repeats or read errors,

rather than differences in sequence between ecotypes.

Too much read depth can reduce rates of SNP detection
and produce higher rates of false positives

To test the effects of high read coverage and to compare our

data with a heavily examined and well-curated canonical set of

SNPs we carried out a similar analysis with the Arabidopsis ecotype

Ler-1. For this, we used the 1001 Genomes projects own list of

Classifying Polymorphisms in Non-Reference Species
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SNPs, generated as described by Schneeberger et al. [10]. We

considered these lists of SNP positions as a reference set against

which to compare those discovered by our method. For Ler-1 we

varied the average coverage of kmers in reads sent to Bubbleparse

rather than varying the depth coverage limit for the reference set

SNP calling as for Bur-0 and Tsu-1, up to the maximum available

3406 (Methods S2). We observed a similar pattern to that with the

previous ecotypes, many bubbles were found to a maximum

1,226,068 at depth 2 for k = 21, and sensitivity was of similar

magnitude with a maximum of 52.66% of canonical SNPs found

at optimum k for bubble counts as in the Bur-0 and Tsu-1 data

(Figure 2B). The efficiency of the search for real SNPs is best close

to the k value that maximises the kmer count. Also as before,

increasing the depth of search into the graph increases the

sensitivity at the cost of false positives. Increasing the depth of

sequencing coverage did little to improve the sensitivity or number

Figure 2. Effect of depth of search on number of bubbles found by Bubbleparse. Graphs showing numbers of bubbles found for Bur-0 and
Tsu-1 with search depth set to 0, 1, 2 and 3 at constant read coverage (top) and for Ler-1 at varied read coverage (bottom).
doi:10.1371/journal.pone.0060058.g002
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Figure 3. Identification of Arabidopsis thaliana SNPs. Percentages of canonical SNPs found (solid lines) and percentage of Bubbleparse identified
SNPs that were found in the canonical set (dotted lines) for Bur-0 and Tsu-1 with search depth set to 0, 1, 2 and 3 at constant read coverage (top) and
for Ler-1 at varied read coverage (bottom).
doi:10.1371/journal.pone.0060058.g003
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of false positives with modest gains from 406to 506and decreases

after that (Figure 3B). While a basic level of coverage is required to

give confidence that bubbles are the result of SNPs and indels in

the target organism, increasing the number of reads also increases

the amount of error in the data, causing the formation of false

bubbles and increasing the complexity of bubbles formed by

polymorphisms. The similarity in pattern of results between the

ecotypes indicates that the algorithm is robust to differences in

input data and behaves reproducibly between sets.

Bubble search and classification is fast
Table S1 provides demonstrative execution times for assembly

of de Bruijn graph, identification of potential SNPs and output of

contigs for the Col-0 vs. Tsu-1 experiment. Assembly and

classification were carried out on a range of individual machines

within a workload managed cluster containing nodes with up to

128 Gb RAM available. The maximum sensitivity searches are

complete with mean time 29 h.

Comparisons with existing tools
Our bubble detection algorithm was designed to detect more

complicated bubble structures than the more conservative

approach adopted by the Cortex bubble caller. To confirm this

was the case, we used the same Bur-0, Tsu-1 and Ler-1 (506)

Arabidopsis reads as input to the latest version of Cortex_var

(1.0.5.13) and verified the bubbles it output using the same method

as for Bubbleparse. At optimal kmer size for each tool, Cortex_var

called a lower percentage of the canonical SNPs than Bubbleparse

for all values of the Bubbleparse depth parameter (Figure 4). For

Bur-0 and Tsu-1, Cortex_var called around 40% of the canonical

SNPs and Bubbleparse was able to locate over 80% at higher

search depths. For Ler-1, Cortex_var called 20% of the canonical

SNP list, while Bubbleparse called 38% at depth 0 and 53% at

depth 2. As previously, this increased ability to find SNPs does

bring increased false positives. For Bur-0 and Tsu-1, the false

positive rate is comparable for Cortex_var and Bubbleparse, while

for Ler-1, Cortex_var produced slightly less false positives (Figure

S3).

Because Bubbleparse has been designed for reference-free

situations, where a BWA/SamTools approach cannot be applied,

comparison with these kinds of reference-based tools is problem-

atic. In the previous section, we used BWA/SamTools derived

SNP lists as a canonical set in order to assess Bubbleparse

performance. In a separate experiment, we created a simulated

mutant of the E. coli genome containing 100,000 randomly

positioned SNPs. Using SimSeq, a tool created for the Assembla-

thon project [11], we produced 76 nt simulated Illumina reads of

the reference E. coli and the mutant at approximately 206
coverage and using SimSeq’s supplied Illumina GAIIx error

profile. Both sets of reads were used as input to Bubbleparse and

for comparison, we used BWA/SamTools to call SNPs based on

the mutant reads aligned to the original E. coli reference. The

BWA/SamTools combination was able to locate 86,275 of the

SNPs, with only 1 false positive. Bubbleparse located 93,446 of the

SNPs, with 12,917 additional false positives (Figure S4). This result

underlines the ability of Bubbleparse to achieve comprehensive

reference-free SNP recall, but also the importance of effectively

ranking the SNPs to mitigate the effect of false positives.

A ranking heuristic for the SNPs allows us to maximise
the number of real SNPs detected

The number of bubbles collected in the graph search in all our

tests was very large, indicating that the search is effective, but

ultimately the numbers are far too large to be useful to an

experimenter seeking to make a catalogue of useful SNPs. To

allow for the accurate detection of graph structures that represent

real SNPs and therefore to make the Bubbleparse results as useful

as possible we assessed methods of ranking the bubbles. We

collected attributes of the raw input sequence, namely: average

coverage of the kmers in the bubble and quality scores given to the

polymorphism by the basecalling software (total Q score is

obtained by summing the quality values of the first divergent

nucleotide of each path through the bubble), and attributes of the

structure of the bubbles: the length of the path through the bubble

(a bubble with all paths the same length and a path length equal to

kmer size indicates a clearer SNP) and total difference (the amount

that the mean path coverage percentage differs from an expected

coverage %. For example, in a heterozygous vs homozygous

experiment, we expect 100% coverage on one path, 0% on the

other for the homozygous allele and 50%, 50% for the

heterozygous).

We examined the bubble collections for the Ler-1 506 data at

k = 21, search depth = 1, sorted the bubble table by each attribute

in turn and calculated the proportion of real SNPs in sets of 100

bubbles, based on comparison with the 1001 genomes list.

Arbitrary ranking of the table by the internal index of each

bubble (bubble number) provided a baseline for detection of real

SNPs throughout the bubble collection, the proportion of real

SNPs in this ranking was constant through the bubble collection

(Figure 5) indicating that the internal processing of bubbles prior

Figure 4. SNP finding in Cortex_var and Bubbleparse. Percentages of canonical SNPs found by Cortex_var (dotted lines) and by Bubbleparse
at various search depths (solid lines) for Bur-0, Tsu-1 and Ler-1.
doi:10.1371/journal.pone.0060058.g004
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to applying ranking does not output bubbles representing real or

miscalled SNPs preferentially. The sequence based attributes were

less useful than the arbitrary ranking at discriminating the real

SNPs. When quality alone was used as a ranking metric the first

50,000 bubbles did not contain any real SNPs. From 50000

onwards, there was a steady increase in the accuracy up to a fairly

consistent 60% thereafter (Figure 5). The poor initial accuracy

may be an artefact of inflated total Q score due to higher than

average kmer coverage such as that caused by sequence repeats.

Ranking by coverage was also somewhat inefficient initially and as

with the quality metric, there were no real SNPs in the first 50,000

bubbles; again this is likely caused by repeats. After the first 50,000

bubbles, there is erratic performance, with wildy varying highs and

lows, which we believe are procedural artefacts due to repeats in

the sampled genome and the SNP calling approach used

(Figure 5B). The bubble structure based total difference score

was much more effective than the sequence based measures and

gave between 40–60% accuracy over the first 0–10,000 SNP calls,

significantly higher than the baseline rate given by the match

number. We reasoned that by specifying structural properties in

our ranking before sequence properties we would preselect for

more real SNPs and minimise the impact of repetitive regions, thus

we developed a simple heuristic for ranking bubbles, the

Bubbleparse ranking heuristic, which makes use of the following

in order:

1. The type classification of a bubble – determined by the

number of colours on each path through the bubble

(Figure 1C). There is a separate ranked list for each bubble

type.

2. Contig length – a bubble with contig length greater than or

equal to the minimum contig length will be ranked higher than

one with a contig length lower than the minimum. A minimum

contig length is required for effective biological application - for

example design of primers.

3. Equality of path length - a bubble with all paths the same

length will rank higher than one with different path lengths,

that is SNPs rank higher than Indels.

4. Length of path through the bubble - a bubble with all

path lengths equal to kmer size is ranked more highly than one

with path lengths not equal to kmer size.

5. Mean coverage % - bubbles where the mean coverage

through each path is within a specified tolerance of the

expected coverage % are ranked more highly than those with

coverage outside the tolerance.

6. Other incomplete paths - a complete path through the

bubble in a given colour is required for that colour to count

towards the type classification; however, a partial colour path

suggests uncertainty and causes the bubble to be ranked lower

than one without any additional partial paths.

7. Total Q score - bubbles are ranked on total Q score,

obtained by summing the quality values of the first nucleotide

(ie. the first divergent nucleotide) of each path through the

bubble. If no quality scores are available, this step is omitted.

8. Combined coverage – the combined coverage is obtained

by summing the mean coverage values of each path through

the bubble.

Accompanying pseudocode for this heuristic can be found in

Supporting Methods S1. Based on comparison with the 1001

genomes SNP list, the Bubbleparse heuristic was successful at

maintaining a very high accuracy of 80–90% SNP detection across

the first 10,000 bubbles in our sample set (Figure 5). As expected,

this accuracy rate declines with distance down the list, but a

number of peaks can be observed, beginning just after the 100,000

ranked SNP. These are due to the individual components of the

ranking heuristic and comprise predicted SNPs which, though

having scored highly according to one measure, fail on another.

For example, the first peak represents the most highly ranked of

the SNPs which were dropped lower because they contained

additional incomplete paths through the bubble; the peak

illustrates that some of these were still good SNPs of the expected

allele frequency, but the rapid drop-off indicates that it was still

desirable for the algorithm to demote these bubbles. These

discontinuities illustrate that there may still be scope for further

optimisation of the ranking methodology in the future – perhaps

through the use of machine learning techniques.

It was not possible to plot a ROC curve for the performance of

the heuristic, as we do not make a binary distinction between

bubbles due to SNPs and those due to other artefacts - which

means that calculating true and false negatives has no meaning.

Instead, the top of the ranked list represents bubbles for which

there is high confidence that they are SNPs and are linked to the

expected heterozygosity, while those at the bottom of the list

represent bubbles with a low likelihood of being a real linked SNP.

To provide further confirmation of the tool’s performance, we

used Sanger sequencing to test the top 48 Bubbleparse ranked

SNPs, as well as 3 sets of 16 SNPs that were placed at the 25%,

50% and 75% boundaries of all SNPs which were in contigs of 200

nt or greater (this length chosen for effective oligo design). We

looked to see if the SNPs were in the 1001 genomes list by aligning

contigs to the TAIR9 reference. Of the top 48, we were able to

locate 39 SNPs in the 1001 genomes list; however, the sequencing

successfully confirmed 46 of the SNPs, at the predicted position

and with the predicted alleles (Table 1). The remaining 2 results

were inconclusive, due to problems with the sequencing or the

primers used. 45 of the remaining 48 SNPs placed at 25%, 50%

and 75% in the ranked list were also confirmed, with 3 failed

sequencing attempts (Table 1). Again there were SNPs confirmed

by sequencing which we were unable to find in the curated list.

We then examined the SNPs that were confirmed by

sequencing but which we were not able to find in the curated

list. Of these 23 SNPs, we were able to match 14 by relaxing the

alignment criteria (Materials and Methods). This left 3 SNPs that

we were unable to align to the reference and 6 of the 91 confirmed

SNPs, which, though easily aligning to the reference, were not in

the curated list. This result leads us to believe that Bubbleparse

provides even higher accuracy than that indicated in Figure 5.

Examining the locations of the 6 SNPs not found in the curated

list, 4 turned out to be unknown proteins or non-coding genes

(Table S2). There is insufficient data to draw firm conclusions, but

these sorts of regions may contain repetitive elements that made

detection of the SNPs harder.

Bubbleparse is a fast and effective tool for detection of
resistance-linked SNPs in unsequenced genomes

In proof-of-principle experiments, we tested the Bubbleparse

method with bulked Illumina sequenced normalized cDNA from

30 resistant and 30 susceptible individuals of an F1 population

from a cross between Phytophthora infestans resistant Solanum

berthaultii and susceptible Solanum stenotomum. These plants were

manually scored for resistance and found to have 50% resistance

in the bulk resistant population, thus we expected the resistant

genotype to be heterozygous and present at roughly 50%. We

sequenced each normalized library at approximately 406
coverage (assuming 20,000 genes expressed with average size of

1500 bp and complete normalization). We ran Bubbleparse at a

Classifying Polymorphisms in Non-Reference Species
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kmer size of 31 and with cleaning options set to remove tips of 100

nodes or less and any node of coverage of only 1. Bubbleparse

identified 201,000 SNPs of different patterns of heterozygosity

directly from reads (Figure 6). 68,000 linked SNPs (34 percent of

all SNPs) at the expected heterozygosity pattern were found. The

ranked result table was inspected and we selected 27 predicted

SNPs, according to 4 different sets of criteria, for verification with

Sanger sequencing. The first 10 of these SNPs were taken from the

top of the Bubbleparse ranked list, representing SNPs with

coverage ratios close to the expected heterozygosity and high

absolute coverage; the remaining three groups were chosen from

lower down the ranked list (within the top 22,000 out of the 68,000

linked SNPs at the expected heterozygosity) and were chosen

because, while not presenting optimal results for all ranking

parameters, they displayed either a close match to the expected

ratio, high coverage, or high total quality score. Overall, 23 out of

Figure 5. Efficacy of five different methods for ranking bubbles. In the top graph, moving down the ranked tables, groups of 100 bubbles
were taken and compared with the canonical set to calculate the percentage of ‘true’ bubbles. In the bottom graph, groups of 1000 bubbles were
taken, allowing the majority of the bubbles to be included. Ranking by the Bubbleparse heuristic produces a much higher true positive rate than any
of the alternative methods over the top 50,000 SNPs. From around the 100,000 mark, the Bubbleparse line exhibits a saw shape, the peaks of which
are caused by the individual constituents of the ranking heuristic. Note, in the top graph, the blue trace (total coverage) is obscured by the green
trace, as both are almost 0.
doi:10.1371/journal.pone.0060058.g005
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27 (.85%) were confirmed as SNPs with 14 out of 27 as

heterozygous SNPs directly linked to the resistant trait (Table 2),

giving us a set of verified trait-linked SNPs in a straightforward

analysis. Despite the small number of candidate SNPs we were

resourced to analyse experimentally, validating more than 50%

true positives across the different ranking priorities in this simple

proof-of-principle experiment provides a strong indication that the

method we present is effective. Interestingly, in our plant

experiments we were unable to reliably identify short indels;

theoretically indels should manifest as bubbles with branches of

differing lengths, and although these could be found in the graph

we were very rarely able to confirm them as real in subsequent

sequencing experiments. This may indicate that the graph around

indels is more difficult to search than that around SNPs.

Our benchmarking and real data analyses show that Bubble-

parse is a very fast and sensitive tool for creating catalogues of

SNPs in a simple analysis in very short time frames. The

experiment ran quickly so that in around 24 hrs, we were able

to go from brand new Illumina sequence read data to a high

quality set of heterozygous SNPs linked to a trait of agronomic

importance that could be used as markers in downstream analyses.

The Bubbleparse ranking scheme gives the tool extra discrimina-

tive power enabling us to find SNPs with very high accuracy, at

levels that are easily comparable and competitive with alignment

based methods for the examined classes of SNPs. The ranking is

prioritised here for finding SNPs in the bubble collection of

expected homo-/heterozygosity patterns but the Bubbleparse

output is verbose and bubbles can easily be re-ranked for other

purposes. This would make it possible to investigate alternative

algorithms for ranking, perhaps based upon machine learning

techniques, and in so doing, seek to remove the discontinuities

found in the Arabidopsis ranking graphs reported in Figure 5. The

flexibility of Bubbleparse makes it useful for a wide range of

genetic backgrounds and sample types including complex crosses,

multi-population samples and environmental metagenomes.

The Bubbleparse source code can be downloaded from https://

github.com/richardmleggett/bubbleparse.

Materials and Methods

Validation of Arabidopsis thaliana predicted SNPs
The validation of the Bubbleparse predicted SNPs was

performed using PCR amplification and Sanger sequencing. We

designed oligos (Table S3) to match locations where SNPs were

predicted.. 40 ng of total genomic DNA of Arabidopsis thaliana

strains Col-0 and Ler-1 were used in a PCR reaction (94uC
30 seconds, 53uC 35 seconds, 72uC 60 seconds, 35 cycles) with

non-proofreading DNA polymerase. 2 ml of the clean PCR

reaction (,20 ng) was used in the Sanger sequencing with either

a forward or reverse sequence oligo. The chromatograms were

analysed using the program DNASTAR Lasergene version 8.

To compare these SNPs with the curated list, we aligned the

contigs to the TAIR9 reference genome using BLAST, looking for

matches of 98% identity and 98% length. For the subsequent

investigation into SNPs that were confirmed, but could not be

found in the curated list, we relaxed the alignment criteria to 93%

identity and 93% length in order to find the additional matches.

Further relaxation of alignment criteria did not produce further

matches.

Potato plant material
We used 30 resistant and 30 susceptible plants from a cross

between diploid parents, a resistant Solanum berthaulltii (PI1477731)

[12] (Rauscher et al., 2006) and a susceptible Solanum stenotomum

(CGN19035).

Potato sample preparation
Total RNA was extracted from two young leaves of each

resistant and each susceptible plant by using TRIzol reagent

(Invitrogen) from which 2.5 mg total RNA of each individual was

bulked up to generate a bulked resistant (BR) and a bulked

susceptible (BS) sample. PolyA+ RNA was extracted (Invitrogen)

and double stranded cDNA (ds cDNA) was generated by using a

SMART cDNA library kit (Clonetech). Next, we normalized the

cDNA (duplex-specific nuclease, Evrogen) and after SfiI (New

England Biolabs) digestion, we selected fragments (.500 nt) with

Table 1. Results of Arabidopsis thaliana Sanger sequencing.

Position in bubbleparse list SNPs sequenced Confirmed SNPs Unconfirmed SNPs Problems with sequencing Number in curated list

Top 48 46 0 2 39

25% 16 15 0 1 13

50% 16 15 0 1 10

75% 16 15 0 1 11

From the ranked list of all SNPs predicted by Bubbleparse in contigs of over 200 nt, the top 48, as well as 16 from 25%, 50% and 75% down the list were tested with
Sanger sequencing. This confirmed all but 5 as being real SNPs between Col-0 and Ler-1. The remaining five all had sequencing problems – such as the sequence ending
before the SNP was reached – so are not confirmed as false postives.
doi:10.1371/journal.pone.0060058.t001

Figure 6. Types of Solanum SNPs discovered by Bubbleparse.
Graph showing the types of SNPs discovered by Bubbleparse for the
cross between Phytophthora infestans resistant Solanum berthaultii and
susceptible Solanum stenotomum. Because of the nature of the cross,
we expect to find heterozygous resistance-linked SNPs and Bubbleparse
produced a list of 68,084 of these, from which we selected 27 for
sequencing.
doi:10.1371/journal.pone.0060058.g006
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Chroma Spin 1000 columns. In order to prepare the samples for

Illumina sequencing, we acoustically sheared the cDNA to

fragments of average 200 bp (Covaris, settings: Duty cycle 20%,

Intensity 5, cycles per burst 200, time 120 seconds) and ligated

adapters to the fragments (Paired-End DNA Sample Prep Kit,

Illumina). Subsequently, we size selected fragments (5% poly-

acrylamide gel) of 300 bp that were sequenced on the Illumina

machine (76 nt read, paired-end). All methods were according the

manufacturers protocols.

Validation of predicted potato SNPs
To validate the outcome of the Bubbleparse SNP prediction, we

designed oligos to match locations where a SNP was predicted

(Table S4). 1 ng of ds cDNA, generated with the SMART cDNA

library, was used in a PCR reaction (94uC for 30 seconds, 55uC
for 30 seconds, 72uC 60 seconds, 35 cycles) with non-proofreading

DNA polymerase and 1 ml of the reaction (5–10 ng) was used in

Sanger sequencing with either a forward or reverse sequence oligo.

The chromatograms were analyzed in VNTI ContigExpress

(Figure S2).

Supporting Information

Table S1 Speed of execution. The table provides typical

execution times for assembly of de Bruijn graph, identification of

potential SNPs and output of contigs for the Col-0 vs. Tsu-1

experiment. Times are for illustration only, as assemblies were

carried out on a range of individual machines within a workload

managed cluster. Increased numbers of kmers result in larger

graphs, requiring more processing time to walk them. Increased

levels of depth mean the bubble finding algorithm explores a much

larger portion of the graph around a bubble, also resulting in

increased execution time.

(DOC)

Table S2 Sequenced SNPs not in the 1001 genomes list.
For SNPs that were confirmed by Sanger sequencing, but not in

the 1001 genomes list, the table shows the position of alignment to

the TAIR9 reference, as well as loci from the TAIR browser at

www.arabidopsis.org.

(DOC)

Table S3 Arabidopsis thaliana experiment oligos.

(DOC)

Table S4 Solanum berthaultii experiment oligos.

(DOC)

Figure S1 Kmer counts for different values of k in the
Bur-0 and Tsu-1 datasets.

(TIFF)

Figure S2 Chromatograms for Solanum berthaultii
experiment. Typical chromatograms from Sanger sequencing

confirmation of SNPs. In each case, the top graph represents the

resistant bulk cDNA, the bottom graph the susceptible bulk cDNA

and dotted lines indicate the predicted SNP location. (A) An

example of a linked heterozygous SNP, with the resistant showing

both a C and a G at the SNP position, while the susceptible shows

only a G. (B) An example of an unlinked heterozygous SNP, where

both resistant and susceptible show a C and a G at the SNP

position. (C) An example homozygous SNP, with the resistant and

susceptible each showing a single, different, nucleotide. (D) An

example of an unconfirmed SNP, where there is no apparent

nucleotide difference at the predicted SNP position.

(TIFF)

Figure S3 SNP finding compared in Cortex_var and
Bubbleparse. Graphs showing percentage of canonical SNPs

found and the percentage of predicted SNPs confirmed for

Bubbleparse (BP, solid lines) at a range of search depths

(d = 0,1,2,3) and Cortex_var (CV, dotted lines). (A) Bur-0 results

for minimum BWA/SamTools pileup of 10 (left hand column) and

20 (right hand column). (B) Tsu-1 results for minimum pileup of 10

(left hand column) and 20 (right hand column). (C) For Ler-1, a

curated SNP list was available, so only one column.

(TIFF)

Figure S4 Bubbleparse SNP recall for synthetic E. coli.
Graph showing percentage of SNPs found by bubbleparse,

percentage of true positive SNPs output by bubbleparse and

percentage of false positive SNPs output for a simulated E.coli

dataset. Input was a set of simulated reads from the E. coli genome

and a second set of simulated reads from an E. coli genome

containing 100,000 simulated SNPs. Both sets of reads were

designed to mimic 76 nt Illumina reads of approximately 206
coverage. Bubbleparse was run with minimal cleaning (removing

paths of coverage 1 or less and tips of 100 nodes or less) and search

depth 1.

(TIFF)

Table 2. Results of Solanum Sanger sequencing.

Type of SNP confirmed

Heterozygous linked SNP
Heterozygous unlinked
SNP Homozygous SNP Total

Maximise ratio and coverage 5/10
4/10

1/10
10/10

Maximise ratio 2/6
2/6 - 4/6

Maximise coverage 5/6
1/6 - 6/6

High total quality score 2/5
1/5 - 3/5

Total 14/27
8/27

1/27
23/27

We chose 27 predicted SNPs to test with Sanger sequencing. These were chosen from the Bubbleparse ranked list according to four sets of criteria, with all SNPs placed
within the top 22,000 of the 68,000 linked SNPs at the expected heterozygosity. The largest number, 10, were chosen from the top of the list, which contains bubbles
which are close to the expected allele ratio and also of high coverage. A second group were chosen which were very close to the expected allele ratio, but not such
good coverage. A third group had very good coverage, but were not so close to the expect allele ratio. Finally, a fourth group was chosen which had high quality scores,
but not necessarily as close a ratio or as good a coverage as previous groups. Overall, we found a high rate of true SNPs – with 23 out of 27 sequences containing a SNP
in the position predicted by Bubbleparse, of which 14 displayed the predicted heterozygous alleles. The group chosen from the top of the ranked list showed high
accuracy, with 9 out of 10 SNPs confirmed, but high rates were also shown for the other groups, though sample sizes were small.
doi:10.1371/journal.pone.0060058.t002
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Methods S1 Implementation of bubbleparse heuristic.
(DOC)

Methods S2 Variation of coverage for Ler-1 experi-
ments.
(DOC)

Acknowledgments

The authors are very grateful to the help of E.R Ward and B.H Wulff for

their support.

Author Contributions

Conceived and designed the experiments: DM MC RML JDGJ.

Performed the experiments: RML WV CGK. Analyzed the data: RML

DM RHRG MC WV CGK. Contributed reagents/materials/analysis

tools: ZI MC. Wrote the paper: RML DM WV CGK.

References

1. Pevzner PA, Tang H, Waterman MS (2001) An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci U S A 98(17): 9748–9753.

2. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res 18(5): 821–829.
3. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I (2009)

ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):
1117–1123.

4. Peterlongo P, Schnel N, Pisanti N, Sagot MF, Lacroix V (2010) Identifying SNPs

without a Reference Genome by Comparing Raw Reads. In Proceedings of the
17th international conference on String processing and information retrieval. pp.

147–158.
5. Catchen J, Amores A, Hohenlohe P, Cresko W, Postlethwait J (2011) Stacks:

building and genotyping loci de novo from short-read sequences. G3 (Bethesda) 1:

171–182.
6. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G (2012) De novo assembly

and genotyping of variants using colored de Bruijn graphs. Nat Genet 44(2):
226–232.

7. Li H, Durbin R (2009). Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25: 1754–60.

8. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence

Alignment/Map format and SAMtools. Bioinformatics, 25: 2078–2079.

9. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215(3): 403–10.

10. Schneeberger K, Ossowski S, Ott F, Klein JD, Wang X, et al. (2011) Reference-

guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad

Sci U S A 108(25): 10249–10254.

11. Earl D, Bradnam K, St John J, Darling A, Lin D, et al. (2011) Assemblathon 1: A

competitive assessment of de novo short read assembly methods. Genome Res

21: 2224–2241.

12. Rauscher GM, Smart CD, Simko I, Bonierbale M, Mayton H, et al.

Characterization and mapping of Rpi-ber, a novel potato late blight resistance

gene from Solanum berthaultii. Theor Appl Genet 112: 674–687.

Classifying Polymorphisms in Non-Reference Species

PLOS ONE | www.plosone.org 11 March 2013 | Volume 8 | Issue 3 | e60058


