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Abstract

A group of closely related myosins are characterized by the presence of at least one MyTH/FERM
(myosin talin homology 4; band 4.1, ezrin, radixin, moesin) domain in their C-terminal tails. This
domain interacts with a variety of binding partners, and mutations in either the MyTH4 or FERM
domains of myosin VII and XV result in deafness, highlighting the functional importance of each
domain. The N-terminal MyTH/FERM region of Dictyostelium myosin VIl (M7) has been
isolated as a first step toward gaining insight into the function of this domain and its interaction
with binding partners. The M7 MyTH4/FERM domain (MF1) binds to both actin and
microtubules in vitro, with dissociation constants of 13.7 and 1.7 M, respectively. Gel filtration
and UV spectroscopy reveal that MF1 exists as a monomer in solution and forms a well-folded,
compact conformation with a high degree of secondary structure. These results indicate that MF1
forms an integrated structural domain that serves to couple actin filaments and microtubules in
specific regions of the cytoskeleton.
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Unconventional myosins have diverse cellular roles that are dictated, in large part, by class-
specific tail domains that target each motor to specific cargo or subcellular locations. A
subgroup of these motors, myosin VII (M7), myosin X (M10) and myosin XV (M15), is
referred to as MyTH/FERM myosins because of the presence of one or two MyTH/FERM
domains (myosin talin homology 4; band 4.1, ezrin, radixin, moesin) in their C-termini. The
MyTH/FERM myosins are closely related both phylogenetically and functionally - for
example, all MyTH/FERM myosins are localized to the tips of actin-rich projections such as
filopodia or stereocilia and play a role in the extension of these structures -+ 2 3.4, MyTH/
FERM domains are also found in other motors and proteins with roles in cytoskeletal
function, including a plant kinesin and MAX-1 5 6. While solo FERM domains are found in
a large number of proteins, including talin and focal adhesion kinase, MyTH4 domains are
frequently N-terminal to a FERM domain, suggesting a functional integration of the two.
The importance of the myosin MyTH/FERM domain is highlighted by the finding that
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mutations in either the MyTH4 or FERM domains of M7a and M15a result in deafness in
human patients 7: 8: 9 10,

The MyTH/FERM domains of M7, M10 and M15 interact with a variety of proteins,
including both microtubules and actin. A plant kinesin MyTH4 domain cosediments with
microtubules 8, and the combined MyTH/FERM domains of human and Xenopus M10
interact with microtubules 112, M10 colocalizes with microtubules in the meiotic spindle
of Xenopus oocytes, is found at mitotic spindle poles in embryos 11 13 and is required for
correct mitotic spindle orientation 13 14, The isolated C-terminal FERM domain of
Drosophila M7a binds actin with moderate affinity (~30 M) ° and the FERM domain of a
Tetrahymena MyTH/FERM myosin is found in actin immunoprecipitates 16. The tails of
these myosins can thus bind to either actin or microtubules, enabling them to slide actin
against either microtubules or another actin filament or even tether actin or microtubules to
actin.

Detailed characterization of the biophysical and structural properties of the MyTH/FERM
domain, along with the ability to determine the nature of its interaction with partner proteins
that serve to anchor or regulate myosin activity, is necessary to fully understand MyTH/
FERM myosin function, as well as the role of other proteins that have this domain. The
social amoeba Dictyostelium expresses a class 7 myosin (DdM7) that contains two MyTH/
FERM domains separated by an SH3 domain 7. This myosin is required for filopod
extension and cell-substrate adhesion, roles quite similar to those described for

M10 L 21718 The tail domain of DAM?7 interacts specifically with another FERM domain
protein required for adhesion, talinA, 1° which modulates the dynamic membrane
association of DdM?7 20, The contribution of the MyTH/FERM domains to DdM?7 function is
not yet known. In the present study, the ability to readily express protein domains fused to
the motor domain of myosin 11 21 was exploited to purify and characterize the N-terminal
MyTH/FERM domain of DdM?7 as a first step toward a more detailed understanding of this
combined domain and its interaction with both actin and microtubules.

Isolation of the DdM7 N-terminal MyTH4/FERM domain

The N-terminal MyTH4/FERM domain of DdM7 (MF1 - residues 1085-1620) (Fig. 1A)
was fused to the C-terminal end of the myosin Il motor domain (S1) 2% and after lysis under
rigor conditions, the fusion was highly enriched in the cytoskeleton fraction (Fig. 1B).
Following release from the cytoskeleton with MgATP, cleavage from S1 with TEV and
metal affinity chromatography, purified MF1 was obtained (Fig. 1B) and its identity
confirmed by mass spectrometry (Fig. 1C).

MF1 binding to F-actin

FERM domains are considered to interact primarily with the cytoplasmic tails of membrane
receptors. It has only recently been appreciated that they can also bind directly to F-

actin 1% 22 The talin FERM domain interacts directly with actin and while the affinity is not
known, it has been suggested that it is sufficient to account for the interaction of talin to
actin 22, The affinity of MF1 for actin was measured by cosedimentation 23 and the binding
curve reveals a single Kq of 13.7 £ 2.6 .M (Fig. 2). The finding that MF1 has a nearly 2-
fold greater Kq for actin binding, in comparison to the fly M7a C-terminal FERM domain
(~30 uM) 15 | suggests that the MyTH4 domain could increase the binding affinity, possibly
by causing the actin-binding sequence to be more exposed and accessible. These results
indicate that the FERM-actin interaction is conserved but generally of low affinity.
However, the existence of two domains within the M7 molecule that interact weakly with F-
actin would result in stronger overall actin binding.

J Mol Biol. Author manuscript; available in PMC 2013 March 25.
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MF1 binding to Microtubules

The interaction of myosin MyTH4 domains with microtubules is known, but the binding
strength has not been measured. The interaction of MF1 with microtubules was assayed by
cosedimentation 24 and the resulting binding curve yields a single Kq of 1.7 + 0.5 uM (Fig.
3), indicating a stronger affinity for microtubules than for actin. The curve unexpectedly
showed saturation at 0.25 fraction bound, initially suggesting that a significant portion of the
MF1 preparation was unable to interact with microtubules. A similar low binding saturation
was observed for the actoMF1 interaction (Fig. 2). The supernatant from the highest tubulin
concentration (10 M) was recovered, additional microtubules added (10 M tubulin, final
concentration) and the sample re-centrifuged (Fig. 3). Approximately 25% of MF1 from the
supernatant cosedimented with the microtubules, as observed in the initial binding assay
(Fig. 3B), indicating that the low overall saturation binding was not due to a large fraction of
the preparation being denatured. These results show clearly that the isolated MF1 domain is
in equilibrium between two conformational states, one of which does not bind to
microtubules or actin and one that does.

Overall MF1 Structure and Stability

The crystal structures of two myosin MyTH/FERM domains in association with known
binding partner peptides have recently been solved 1225 26, The MyTH4 domain is a bundle
of helices, 6 of which are highly conserved. The FERM domain, consistent with previously
published x-ray and NMR studies of FERM domains from talin, radixin, moesin, merlin, and
protein 4.1R 27:28:29 adopts the canonical three-lobe cloverleaf structure, with the three
subdomains denoted F1, F2, and F3. In both the M7a and M10 MyTH/FERM structures, the
MyTH4 and FERM domains interact with one another, forming a functional and structural
supramodule. Consistent with these findings, gel filtration analysis of the purified MF1
reveals that it is a tightly folded monomer with a calculated Stokes radius of 2.74+0.34 nm
(Fig. 4A). The far-UV circular dichroism (CD) spectrum of MF1 also confirms that it is a
highly helical protein with intense CD bands at both 208 nm and 222 nm (Fig. 4B). Analysis
of the CD spectrum, using CDPro Analysis 39, yielded an estimated secondary structure of
55% + 3% a-helix and 21% + 4% B-sheet. The thermal unfolding of MF1 secondary
structure occurred in one transition, with an onset of unfolding at ~35°C and a transition
midpoint (Ty,) at 42°C (Fig. 4C). The sharp transition indicates highly cooperative unfolding
of MF1.

The secondary structure of the mammalian M7a and M10 MyTH/FERM domains are 46%
a-helix/15% B-sheet and 49% a.-helix/14% B-sheet, respectively (determined using
STRIDE 3! and Protein Data Bank files 3PVL and 3PZD). The a-helix and p-sheet content
of DdM7 MF1 are predicted to be slightly higher than calculated for mammalian M7a and
M10, with 55% = 3% a-helix and 21% * 4% B-sheet based on fitting of the far-UV CD
spectrum (Fig. 4B). The differences in secondary structure may be attributed to the sequence
divergence between amoeba and vertebrate MyTH/FERM domains and/or that MF1 exists in
the apo state.

The amoeba Dictyostelium discoideum is evolutionary quite distant from vertebrates32, A
comparison of the MyTH-FERM domain sequences from mouse M7a (residues 993-1567,
GenBank AAB40708.1) and human M10 (residues 1503-2047, GenBank AAF68025.2) to
DdM7 MF1 reveals a low sequence identity of 20% for both and sequence homology of
36% and 39%, respectively. Sequence alignment reveals the DdM7 N-terminal MyTH4
sequence is substantially shorter than both the M7a and M10 MyTH4 sequences. The
missing sequence of DdM7 encompasses helices 3 and 4 of the mammalian M7a MyTH
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domain, suggesting that the DdM7 MF1 MyTH4 structure differs slightly from that of M7a,
although the 6-helix core is predicted to remain intact 2°.

A positively charged patch on the MyTH4 domain of human M10 consisting of eight
positively charged residues has been implicated in MT binding 26. Consistent with this
possibility, mutation of two of these (K1647 and K1650) is sufficient to abolish all binding
to tubulin acidic tails 12. Three of these eight positively charged residues are conserved
between the human M10 and DdM7 MF1 MyTH4 domains (R1643, K1647, K1654 in M10;
R1257, K1261, and K1268 in DAM7), suggesting that MF1 may also bind to MTs by a
similar electrostatic interaction.

Conclusion

MyTH/FERM domains are present in numerous cytoskeletal signaling and motor proteins
and much remains to be learned about their combined structure and function. The structure
of MyTH/FERM domains is predicted to be conserved throughout evolution despite a high
degree of sequence divergence of these domains. The ability of MF1 to bind both actin and
microtubules suggests an important role for this domain in linking cytoskeletal elements. M7
and M10 are localized to regions of the cell where actin and microtubules are both

present 11: 33, M10 and M15 can link microtubule-based structures to actin, 11 13 1434 pyt
the contribution of microtubule binding to M7 activity is not yet clear. Fly M7a is
monomeric in vitro and most likely exists in a folded conformation, with the FERM domain
interacting with and inhibiting the motor domain 1°. The MyTH/FERM regions might be
partially or fully blocked from binding to microtubules or actin in this configuration.
Consistent with this possibility is the observation that DdM?7 is largely cytosolic 1 19,
Activation of the folded myosin, either by as yet unknown regulatory factors that dimerize
M7 35 or the presence of high local concentrations of either actin or microtubules, might
expose these sites. Our data also suggest an alternative mechanism, in which there exist two
conformations of the MyTH/FERM domain itself, only one of which is available for actin or
microtubule binding. This poised equilibrium is an obvious target for regulatory control, as
shown recently for the myosin regulatory light chain 36. Once the binding sites are available,
the tail could interact with both actin and microtubules, enabling cortical DAM7 to actively
stabilize the leading edge of the cells by strengthening cell-substrate adhesions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Isolation of the N-terminal MyTH/FERM domain of DdM 7

(A) Schematic illustration of DAM7 highlighting the major domains, including the 1Q motifs
(ovals), single alpha-helix (S), N-terminal MyTH/FERM domain (M1, FERM1), SH3
domain (black rectangle) and C-terminal MyTH/FERM domain (M2, FERM2). The S1-MF1
fusion is also shown, with the myosin Il motor domain (S1) and the locations of the TEV
cleavage site and His tags indicated. The S1-MF1 fusion was generated using a modified
pDXA-mako 4b expression plasmid 21, (B) Purification of MF1 as monitored by SDS-
PAGE. Coomassie stained gel showing the total cell lysate (Lyse), rigor cytoskeleton (Tx
Pell), cytoskeleton following TEV cleavage (TEV cleav), soluble fraction following
centrifugation of the cleaved cytoskeleton pellet (TEV sup) and purified MF1. Details of
MF1 purification are provided in Supplementary Information. (C) Determination of the
molecular mass of MF1 by ESI MS.
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FIGURE 2. Binding of MF1 to actin

(A) Fraction bound MF1 with increasing actin concentration. Data was fit to a hyperbola
yielding Ky = 13.7 £ 2.6 .M. Data shown represent three independent experiments. (B)
Data in A were obtained from SDS-PAGE of pellets from cosedimentation of MF1 with
actin. Binding assays were performed by mixing increasing concentrations of actin with 2.5
pM MF1 in 10 mM imidazole, 2 mM MgCl,, 1 mM ATP, 0.1 mM DTT pH 7.5 buffer
followed by centrifugation at 340,000 x g using a TLA100.3 rotor (Beckman Coulter) to
pellet the actoMF1 complex. Supernatant and pellet samples were run on 10% SDS-PAGE
gels that were stained with Coomassie G and band intensity analyzed by densitometry using
Image J.
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FIGURE 3. Binding of MF1 to tubulin

(A) Fraction bound MF1 with increasing tubulin heterodimer concentrations. Data was fit to
a hyperbola, yielding Kg = 1.7 + 0.5 M. Data represent five independent experiments. (B)
Data in A were obtained from SDS-PAGE of pellets from a representative cosedimentation
experiment. Sample 10(2) shows the cosedimentation of unbound MF1 to microtubules after
initial binding assay. Microtubule binding assays were performed by mixing increasing oM
concentrations of tubulin (Cytoskeleton (Denver, CO) or gift from Dr. Holly Davidson,
Notre Dame) with 2.5 uM MF1 in 10 mM PIPES, 5 mM MgCl,, 1 mM EGTA, pH 7.0
buffer, incubated for 30 min at room temperature, followed by centrifugation at 90,000 x g
for 10 min at 25°C to pellet the tubulin-MF1 complex. The pellet was resuspended in 10
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mM PIPES, 5 mM MgCl,, 1 mM EGTA, 5 mM CaCl, pH 7.0 at 4°C, allowing MTs to

depolymerize. Supernatant and pellet samples were run on 10% SDS-PAGE gels that were
stained with Coomassie G. Band intensities were analyzed by densitometry using Image J.
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FIGURE 4. Structure and stability of MF1

(A) Gel Filtration elution profile of MF1. The elution was monitored by measuring the
absorbance at 280 nm as a function of elution volume. MF1 was run on a calibrated
ToyoPearl HW-55F (Tosoh Biosciences LLC) packed column with a diameter of 2.2 cm and
height of 78 cm in 25 mM HEPES (pH 7.4), 50 mM NaCl, and 0.1 mM EGTA. A total of 1
mL of 0.5 — 1 mg/mL MF1 was loaded on the column with a flow rate of 1.5 mL/minute and
4 mL fractions were collected. The Stokes radius of MF1 was determined to be 2.74+0.34
nm (n=3). (B) MF1 Far-UV CD spectrum. CD spectra were recorded in the far- (190-250
nm) UV region using a JASCO J-815 spectrophotometer with an automated temperature
controller and a temperature-jacketed spectral cell. A path length of 1 mm was used with
spectra recorded at 1 nm intervals for 10 uM MF1 in phosphate buffer pH 7.0 at 25°C.
Baseline scans were obtained using the same acquisition parameters with buffer alone;
which were subtracted from the respective CD data scans of MF1. The raw CD signal 8,
(millidegrees of ellipticity) was converted to mean residue molar ellipticity.with spectra
analyzed using CDPro Analysis Software 30. Experimental CD spectrum (solid line) and
best fit spectrum from CDPro Analysis (dotted line). (C) Thermal denaturation curve of
MF1 measured by changes in mean residue ellipticity. The temperature was increased from
10 to 70°C with a step size of 1°C with the CD in millidegrees of ellipticity measured at
each temperature after incubation for 2 min.
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