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Summary
Identification of complex molecular networks underlying common human phenotypes is a major
challenge of modern genetics. In this study we develop a method for NETwork-Based Analysis of
Genetic associations (NETBAG). We use NETBAG to identify a large biological network of
genes affected by rare de novo CNVs in autism. The genes forming the network are primarily
related to synapse development, axon targeting and neuron motility. The identified network is
strongly related to genes previously implicated in autism and intellectual disability phenotypes.
Our results are also consistent with the hypothesis that significantly stronger functional
perturbations are required to trigger the autistic phenotype in females compared to males. Overall,
the presented analysis of de novo variants supports the hypothesis that perturbed synaptogenesis is
at the heart of autism. More generally, our study provides proof of the principle that networks
underlying complex human phenotypes can be identified by a network-based functional analysis
of rare genetic variants.

Identification of complex molecular networks underlying common human phenotypes is a major
challenge of modern genetics. Recent evidence suggests that rare variants, including copy number
variations (CNVs), play a significant role in the etiology of autism spectrum disorders (ASD).
Although many such variants have been identified, the specific molecular networks associated
with this complex disorder remain largely unknown. In this study we develop a method for
NETwork-Based Analysis of Genetic associations (NETBAG). We use NETBAG to identify a
large biological network of genes affected by rare de novo CNVs in autism. The genes forming the
network are primarily related to synapse development, axon targeting and neuron motility. The
identified network is strongly related to genes previously implicated in autism and intellectual
disability phenotypes. Our results are also consistent with the hypothesis that significantly stronger
functional perturbations are required to trigger the autistic phenotype in females compared to
males. Overall, the presented analysis of de novo variants discovered through an unbiased
genome-wide study supports the hypothesis that perturbed synaptogenesis is at the heart of autism.
More generally, our study provides proof of the principle that networks underlying complex
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human phenotypes can be identified by a network-based functional analysis of rare genetic
variants observed in a large collection of affected individuals.

Introduction
The ongoing revolution in genomic and sequencing technologies has allowed researchers to
routinely perform genome-wide association studies (GWAS) for multiple common human
diseases and phenotypes (Frazer et al., 2007; Hardy and Singleton, 2009). Although these
studies have successfully identified hundreds of significant associations, common
polymorphisms reaching genome-wide significance usually explain a relatively small
fraction of disease heritability (Goldstein, 2009). There is a growing consensus in genetics
that the most valuable contribution of GWAS studies will be in the identification of
functional pathways underlying the observed phenotypes (Hirschhorn, 2009). In addition, it
is likely that a significant fraction of so-called missing heritability (Manolio et al., 2009),
which has eluded association studies, is accounted for by rare single nucleotide mutations
and structural genomic variations (McClellan and King, 2010).

A notable example of a disease with a very complex allelic architecture is autism – one of
the most common neurological disorders (Geschwind, 2008). Autism spectrum disorders are
characterized by impaired social interactions, abnormal verbal communication, restricted
interests and repetitive behaviors. Due in part to better detection strategies, the combined
prevalence of ASD has been steadily increasing for several decades and is now approaching
a staggering 1% in the human population. Although autism has a very strong genetic
component, with an estimated heritability as high as 90% based on studies of monozygotic
twins (Hyman, 2008), GWAS-based searches have implicated only a few genes that are
associated with common polymorphisms reaching genome-wide significance (Wang et al.,
2009; Weiss et al., 2009). In addition, the agreement between published findings remains
poor (Manolio et al., 2009) and underlying genetic determinants for this disease still remain
largely unknown. Importantly, there is growing evidence that rare sequence mutations and
de novo copy number variations (CNVs) (Marshall et al., 2008; Moessner et al., 2007; Pinto
et al., 2010; Sebat et al., 2007) significantly contribute to autism etiology (Zhao et al., 2007).

The main challenge in the analysis of rare genetic variations, such as de novo CNVs, is
precisely their rarity, i.e. the fact that a vast majority of the observed genetic events are
unique. Consequently, each rare variant by itself is not statistically significant, so an
integrative conceptual framework is required to understand their overall functional impact.
We hypothesized that recently obtained genome-wide de novo CNV data (Levy et al., 2011)
could allow identification of the underlying biological pathways and processes if considered
in the context of functional biological networks (Feldman et al., 2008; Iossifov et al., 2008).
Here we develop a method for NETwork-Based Analysis of Genetic associations
(NETBAG) and demonstrate its utility in autism. The presented approach can determine
whether the observed rare events en masse affect a significantly interconnected functional
network of human genes.

Results
NETBAG method overview

To implement our approach we first built a background network that connects any pair of
human genes with a weighted edge encapsulating our a priori expectation that the two genes
participate in the same genetic phenotype (see Experimental Procedures and Supplementary
Experimental Procedures). This background network was based on a combination of various
functional descriptors, such as shared gene ontology (GO) annotations (Ashburner et al.,

Gilman et al. Page 2

Neuron. Author manuscript; available in PMC 2013 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2000), functional pathways in KEGG (Kanehisa and Goto, 2000), shared interaction partners
and co-evolutionary patterns (see Experimental Procedures). Similar methods have been
previously used to build functional networks in humans and several model organisms (Lee et
al., 2004; Lee et al., 2008). In contrast to the aforementioned studies, edges in our network
represent the likelihood that two genes participate in a similar genetic phenotype rather than
necessarily share cellular functions. Importantly, no deliberate biases toward genes
previously implicated in autism or biological functions related to nervous system were used
in building the network. The likelihood network was assembled using a large set of known
disease-gene associations that were carefully curated for our previous study (Feldman et al.,
2008). This set contains 476 genes associated with 132 different genetic diseases (see
Experimental Procedures).

Using the constructed network, we searched for functionally connected clusters of human
genes affected by de novo CNVs (Figure 1). The genes within the observed CNV regions
were first mapped to the nodes corresponding to these genes in the network (Figure 1B).
Clusters of genes were assigned scores based on the strength of their connections, and a
greedy search algorithm (see Experimental Procedures) was then used to find high-scoring
clusters of genes within the CNV regions (Figure 1C). In this search procedure genes from
any CNV region could be selected to be members of the growing cluster (Figure 1C), but to
prevent large CNV regions from dominating clusters, we allowed no more than one or two
genes from a given CNV to participate in a cluster (Figure 2A and Figure 2B, respectively).

A gene cluster was scored by considering the sum of log likelihood-based edges between all
genes within the cluster. Such a scoring scheme is conceptually equivalent to calculating the
expected likelihood that all genes within the cluster will participate in the same genetic
phenotype. To account for the fact that functional interactions between genes in a cluster are
not independent, we employed a previously developed de-weighting heuristic (Lee et al.,
2004) described in the Experimental Procedures; similar results were obtained with or
without the de-weighting procedure (see Table S1). To calculate the p-value for the resulting
clusters, random events were generated with the same gene count, or alternatively with the
same genomic length, as in the observed de novo CNV dataset. The greedy algorithm was
then applied to search for high-scoring clusters formed by genes from these random events.
P-values were assigned to clusters based on the distribution of scores in the randomized data
clusters (see Experimental Procedures).

We and others have previously used various network-based methods to analyze genetic data
from rare and common diseases (Feldman et al., 2008; Franke et al., 2006; Iossifov et al.,
2009; Iossifov et al., 2008; Lango Allen et al., 2010; Raychaudhuri et al., 2009). NETBAG
differs from the previous approaches in several important ways. Specifically, the underlying
weighted network does not represent a molecular interaction network or a set of predefined
functional pathways, but instead the prior likelihood that any pair of human genes is
involved in the same genetic phenotype. NETBAG then defines a formal procedure for
identifying strongly connected clusters among a large set of genetically perturbed genes and
evaluating the genome-wide cluster significance. The relative importance of specific genes
forming a cluster is then evaluated based on the contribution of genes to the overall cluster
score. We are currently working on making the NETBAG method available as a web server;
in the meantime, we will be happy to share the developed methodology with any interested
parties.

Functional gene network identified from rare de-novo CNVs
The NETBAG approach was directly applied to the experimental CNV dataset described in
the companion paper by Levy et al. This set contained 75 rare de novo CNVs encompassing
746 unique human genes. For our analysis, we combined all overlapping events into a single
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region and removed all events that did not intersect any genes; we also removed six very
large CNV events (length >5 Mb). As a result, the final set used for our analysis contained
47 CNV regions from affected individuals intersecting 433 genes. In addition, Levy et al.
also identified ultra-rare CNVs inherited by autistic subjects but not their siblings; inherited
CNVs were classified as ultra-rare, if at least one of the corresponding genes was not
affected by any other event from the study. Applying the same pre-processing procedure
resulted in 156 CNV regions with 419 genes associated with rare inherited events in autistic
children.

Using the data described above, we identified statistically significant gene clusters affected
by de novo CNV events associated with autistic individuals. Significant clusters detected
using either one-gene-per-CNV (p-value=0.02) or the two-genes-per-CNV (p-value=0.02)
clustering are shown in Figure 2. If genes forming the high scoring clusters were masked, no
other significant clusters were detected in the data.

In contrast, no statistically significant clusters were obtained using ultra-rare inherited CNVs
from affected individuals (the best cluster p-value=0.6) The absence of a significant cluster
in the ultra-rare inherited dataset, which had a comparable number of genes to the de novo
events, suggests that the inherited CNVs contain a significantly smaller fraction of casual
genes, i.e. genes associated with autistic phenotype. This conclusion is also supported by the
observation by Levy et al. that there is less bias in transmission of ultra-rare inherited events.
In other words, autistic children were almost as likely as their unaffected siblings to inherit
an ultra-rare event. This is in sharp contrast to the de novo events, which were nearly four
times more frequent in the autistic children (7.9% in autistic children versus 2.0% in
unaffected siblings).

The contribution of each gene to the cluster score, i.e. the functional connection to other
cluster genes, is not uniform. To capture each gene’s contribution to the cluster score we
performed Markov Chain Monte Carlo (MCMC) simulations, sampling clusters based on
their scores. The size of each gene (node) in Figure 2 is proportional to the each gene’s
membership in high-scoring clusters during the sampling simulations (see Experimental
Procedures, Supplementary Experimental Procedures). Similar node sizes were also
obtained based on the average connection strength from each gene to the other genes in the
cluster (Pearson’s r= 0.8, p-value = 4*10−11).

Interestingly, we found that genes affected by de novo CNVs observed in females are
significantly more important for the overall cluster score than genes affected by CNVs in
males, i.e. female genes have stronger average connections with other genes from the
identified network (see Figure S2, One-tail Mann-Whitney test, female > male, p-
value=0.013). This observation is illuminating because one of the striking phenotypic
characteristics of autism is the male-to-female incidence ratio of more than 5:1 for high-
functioning ASD (Newschaffer et al., 2007). It has been previously suggested (Zhao et al.,
2007) that stronger genetic perturbations are required, on average, to trigger an autistic
phenotype in females than males due to currently unknown compensatory mechanisms. Two
mechanisms may lead to stronger perturbations in females: CNVs encompassing a larger
number of genes that are associated with ASD, and CNVs intersecting individual genes that
produce a more deleterious impact when disrupted. The analysis of de-novo events in
affected individuals lends support to both of these mechanisms: the CNVs in females are
indeed significantly larger (with median of 10 genes per CNV in females, 3 genes per CNV
in males, two-tail Mann Whitney P-value=0.02), and genes derived from female CNVs are
more functionally important for the network shown in Figure 2. Using simulations of
random CNVs we also confirmed that the difference in the relative importance of female
versus male nodes is unlikely (P=0.024) to be a simple consequence of the larger CNV sizes
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in females (see Supplementary Materials, Figure S2, C). We believe that both of the
aforementioned mechanisms are at play. Indeed, it would be surprising that stronger
perturbation can be inflicted exclusively by larger CNVs and not disruption of high impact
genes, and vice versa.

Functional characterization of the identified network
Analysis of the established annotation resources, such as Swiss-Prot (Consortium, 2007),
GeneCards (www.genecards.org), WikiGenes (www.wikigenes.org), IHOP (Hoffmann and
Valencia, 2004), suggests that a significant fraction of genes in the identified network either
play a well-defined functional role in the brain or have been previously implicated in
neurodegenerative and psychiatric disorders. Only ~25% (54 of a randomly selected 214) of
all genes within the de novo CNV regions have been previously associated with brain-
related phenotypes. However, when we consider genes in the identified clusters this
proportion rises drastically (p-value < 10−3), to ~67% (Figure 2A, 30 out of 45) for the one-
gene-per-CNV clustering or ~ 52% (Figure 2B, 38 out of 72) for the two-genes-per-CNV
clustering (see Table S2 for functional description of cluster genes).

To characterize in more detail the specific biological processes related to the cluster in
Figure 2A, we investigated the strength of functional interactions between the cluster genes
and various Gene Ontology (GO) categories (Ashburner et al., 2000). GO categories
represent a curated set of functionally related genes described by a controlled vocabulary.
For human genes in each of 1454 GO categories we calculated their average log likelihood
interaction score (using the background network) with the genes in the identified cluster
(Figure 2). The GO-specific significance of these interaction scores was calculated by
comparison with scores of randomly generated CNV events with the same gene count at in
real data by Levy et al. A False Discovery Rate (FDR) procedure was used to correct for
multiple hypothesis testing (see Experimental Procedures). The 25 GO categories with
lowest Q-values, indicating the highest connection significance to the autism associated
cluster, are shown in Table 1 (see Table S3 for other significant GO categories). These GO
categories are primarily related to actin network dynamics and reorganization,
synaptogenesis, axonogenesis, cell-cell adhesion, small GTPase signaling and neurite
development. Consequently, the identified functional network is associated with a diverse
collection of molecular and cellular processes essential for proper synaptogenesis and axon
guidance. We note that is it not possible to obtain the same functional results by a statistical
analysis of significantly overrepresented GO terms for all 433 gene within the de-novo
CNVs from affected individuals (See Supplementary Experimental Procedures for details).
The significant GO terms presented in Table 1 specifically describe the functional
connection of the network in Figure 2.

Using the same methodology, we found that the cluster in Figure 2A is strongly related to
the set of genes previously implicated in autism (p-value=0.001, see Supplementary
Experimental Procedures) and genes associated with intellectual disability phenotypes (p-
value=0.017). The collections of genes responsible for these phenotypes were manually
compiled recently by Pinto et al. (Pinto et al., 2010) through an extensive review of the
literature and available databases. In spite of strong functional connections, the overlap
between genes in the aforementioned sets and the genes identified in our analysis is
relatively small (~3%). Thus, our study significantly expands the collection of genes
implicated in ASD. The cluster genes are also strongly connected (p-value=0.013) to
proteins identified experimentally by recent proteomic profiling of postsynaptic density
(PSD) from human neocortex (Bayes et al., 2011).
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Discussion
At the core of the processes listed in Table 1 is the development and maturation of synaptic
contacts in the brain. The functional relationships between proteins in the identified cluster
can be better appreciated if considered in the context of molecular interactions involved in
formation and maturation of the excitatory (glutamatergic) synapse (Figure 3). The
excitatory synaptic connections are formed between axons and dendritic spines, which are
complex and dynamic post-synaptic structures containing thousands of different proteins
(Alvarez and Sabatini, 2007; Tada and Sheng, 2006). The formation, maturation and
elimination of dendritic spines lie at the core of synaptic transmission and memory
formation (Roberts et al., 2010; Yang et al., 2009). In Figure 3 the genes that are members
of the identified network are shown in yellow, other functionally related genes within rare de
novo CNV regions from Levy et al. are in blue and genes previously implicated or discussed
in the context of autism are highlighted using orange borders. Although the picture shows a
dense and interconnected web of molecular interactions, the processes depicted in the figure
can be understood in terms of several signaling and structural pathways. Many of these
pathways ultimately converge on the regulation of the growth and branching of the actin
filament network, which is essential for spine structural remodeling and morphogenesis.

The initial contacts between axons and dendrites are mediated by specific adhesion-related
proteins, such as neurexin and neuroligin (e.g. NRXN1 and NLGN3, genes perturbed by rare
de novo CNVs associated with ASD are underlined here and below) (Sudhof, 2008). On the
postsynaptic side of an excitatory synapse, the initial axon-dendrite contacts ultimately
develop into a complex and dense structure, the postsynaptic density (PSD), dominated by
several types of glutamate receptors (such as AMPA and NMDA), various scaffolding
proteins (DLG4/PSD95, DLG2, SHANK2/3, SynGAP1, DLGAP2) and trafficking/signaling
proteins (CTNND2). In total, the PSD contains many hundreds of distinct proteins (Bayes et
al., 2011; Sheng and Hoogenraad, 2007). Information for activity-dependent regulation of
spine morphology is passed through an intermediate level of signaling protein, such as Rho
family (Linseman and Loucks, 2008) of small GTPases (RhoA/B, Cdc42, Rac1) to
downstream targets (LIMK1 and PAK1/2/3) connected to proteins modifying morphology
of the actin network (cofilin and Arp2/3) (Blanchoin et al., 2000). The activity of the
GTPases is regulated pre- or post-synaptically by many guanine exchange factors (GEFs),
GDP dissociation inhibitors (GDIs, such as GDI1) and GTP-activating proteins (GAPs).
Many other proteins shown in Figure 3, such as FLNA, CTNNA3, DOCK8, SPTAN1,
CYFIP1, either bind directly to the actin network or mediate interaction of actin filaments
with other proteins.

The WNT signaling pathway plays a crucial role in diverse processes associated with
formation of neural circuits (Salinas and Zou, 2008). This pathway is also known to be
directly involved in the regulation of dendrite morphogenesis (Rosso et al., 2005; Salinas et
al., 1994). WNT signaling is accomplished through the canonical branch (DVL, AXIN1,
beta-catenin) and the non-canonical branch (DVL1/2/3, Rac1 and JNK); both of these
pathway branches converge on regulation of actin network morphogenesis. Similar to WNT,
the reelin signaling also plays a prominent role in the context of autism phenotype and
specifically dendritic spine morphogenesis (Fatemi et al., 2005; Niu et al., 2008). Signaling
by secreted extracellular RELN protein acts though VLDR and Apoer2 receptors and the
PI3K/Akt pathway (Jossin and Goffinet, 2007) regulating the mammalian target of
rapamycin (mTOR) pathway (Kumar et al., 2005; Shaw and Cantley, 2006). Another
important pathway converging on mTOR involves MAPK3/ERK, which can be activated by
Ras and NF1. mTOR integrates various inputs from upstream growth-related pathways, and
is also known to regulate dendrite morphogenesis (Tavazoie et al., 2005).
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Although we discussed proteins in the context of dendritic spine development (Figure 3 and
text above), many of the aforementioned proteins also participate in diverse cellular
processes and are reused in the context of axon guidance and neuron motility (Shen and
Cowan, 2010). Such recycling of proteins is natural because actin network dynamics are
essential for such processes as growth of axonal filopodia, which are used in searching for
growth cone guidance cues (Tessier-Lavigne and Goodman, 1996). The presence of DCC
protein in the identified network (Figure 2 and Figure 3), also suggests an important role of
perturbed axonal guidance in autism. Although DCC is also involved in dendrite
development (Suli et al., 2006), this receptor and its signaling protein, netrin, are primarily
essential for guiding axons to their final destinations (Tessier-Lavigne and Goodman, 1996).
Several signaling pathways highlighted in Figure 3, such as the WNT and reelin pathways,
also play prominent roles in neuron motility (Reiner and Sapir, 2005; Salinas and Zou,
2008). In addition, several specific proteins, such as PAKs and LIMK, which regulate the
dynamics of actin network, are reused in axonal morphogenesis. Consequently, malfunction
of many proteins shown in Figure 3 may influence autistic phenotypes through their role in
either dendrite or axon signaling, or possibly a combination of these processes.

Considering the genes hit by rare de novo variants from the perspective of the functional
molecular network (Figure 3) allowed us to investigate the likely morphological
consequences of some CNVs. There is growing evidence that changes in dendritic spine
morphology contribute to a number of neurological disorders (Halpain et al., 2005). A
decrease in the density of dendritic spines in regions of the cerebral cortex has been linked
to schizophrenia (Blanpied and Ehlers, 2004; Garey et al., 1998; Glantz and Lewis, 2000).
On the other hand, an increase in spine size or density has been also connected to Fragile X
syndrome, a disorder frequently associated with autism (Fiala et al., 2002; Kaufmann and
Moser, 2000). Following the logic that CNV deletions should decrease while duplications
increase the dosage of the affected genes, we can infer – based on the structure and
regulatory logic of the functional network in Figure 3 – the morphological effects of 13 gene
perturbations on dendritic spines. Specifically, we found that in 11 out of 13 cases (~85%)
the gene perturbations caused by the observed CNV events should increase either dendritic
spine growth or their density (see Table S4). This result is consistent with recent findings
that autistic individuals have increased spine density in portions of their cerebral cortex
(Hutsler and Zhang, 2010; Woolfrey et al., 2009) and possibly a local brain over-
connectivity (Scott-Van Zeeland et al., 2010).

Overall, the results of this study, the first to our knowledge, demonstrate that autism-
associated rare de novo CNVs, observed in an unbiased genome-wide study, form a large
and statistically significant functional network responsible for synaptogenesis, axon
guidance and related molecular processes. Therefore, our analysis strongly supports the
hypothesis that autism is primarily a disease of synaptic and neuronal connectivity
malfunction (Zoghbi, 2003). The identified functional network also reveals a striking genetic
complexity of autism. The genetic events we observe affect the whole arc of molecular
processes essential for proper synapse formation and function. Similar genetic complexity is
already apparent in many cancers (Network, 2008; Wood et al., 2007) and - as we and others
believe - will be a hallmark of many other common human phenotypes and maladies (Wang
et al., 2010). In spite of the observed complexity, our study provides an important proof of
the principle that underlying functional networks responsible for common phenotypes can be
identified by an unbiased analysis of multiple rare genetic perturbations from a large
collection of affected individuals.

The functional network presented in Figure 3 contains approximately 70 genes, with about
40% of them perturbed by rare de novo CNVs observed by Levy et al. As more genetic data
are analyzed it is likely that the network will grow in size and significance. Considering that
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up to a thousand (Sheng and Hoogenraad, 2007) distinct proteins are associated with
postsynaptic density or that hundreds of different GAPs/GEFs modify activity of Rho
GTPases that are associated with actin network remodeling, it is likely that many hundreds
of genes could ultimately contribute to the autistic phenotype. This estimate, based on the
functional network, is consistent with independent estimates based on recurrent mutations
and the overall incidence of autism in the human population (Zhao et al., 2007; Levy et al.,
2011). Deleterious variants in different genes contributing to autistic phenotype will almost
certainly have different penetrance and vulnerabilities. The identification of the complete set
of genes responsible for ASD and understanding their respective contributions to the
phenotype will require analyses of next generation sequencing data coupled with
investigation of underlying molecular networks.

Experimental Procedures
Copy Number Variation (CNV) dataset

In our analysis we used the CNV dataset obtained in a companion study by Levy et al. The
dataset contained 75 rare de novo CNV events from autistic children. Six very large CNV
events, spanning more than 5 Mb each, were not considered in our analysis. The initial CNV
dataset contained several overlapping events, including a set of 10 events all within the
region 16p11.2. Any overlapping CNVs were collapsed into single events to avoid double
counting of genes. We ignored all CNV events that did not contain any annotated human
gene based on the NCBI genome build 36. After aforementioned preprocessing steps, our
final CNV set from autistic children contained 47 loci in total affecting 433 human genes;
the average number of genes within each de novo CNV region was ~9, with the median of 3
genes per regions. Levy et al. also identified 157 ultra-rare inherited CNVs transmitted
between parents and autistic children. Inherited CNVs were classified as ultra-rare if the
genes within these events were not affected by any other inherited events in the study. We
applied the same pre-processing steps to these inherited CNVs, resulting in 156 regions
affecting 418 genes.

Building the background likelihood network
To perform the NETBAG analysis, we built a background network connecting all pairs of
human genes. Every gene pair in this network was assigned a score proportional to the log of
the ratio of the likelihood that the two genes participate in the same genetic phenotype to the
likelihood that they do not (see Supplementary Experimental Procedures). Importantly,
although similar in spirit to integrative methods that have been used previously to build
functional networks in several model species (Lee et al., 2004; Lee et al., 2008), the edges in
our network represent the likelihood to participate in the same genetic phenotype rather than
share a functional and molecular interaction.

The likelihood network was build using, as a positive gold standard, the carefully curated set
of human genes compiled recently by Feldman et al. (Feldman et al., 2008). This set
contains 476 human genes associated with 132 different genetic phenotypes. As a negative
gold standard we used a set of randomly selected pairs of human genes that are not known to
be associated with identical diseases phenotypes. Importantly, no genes previously
implicated in ASD or any biologically related functions were used in the network
construction. The likelihood score was derived based on naive Bayesian integration of
various descriptors of proteins function: shared GO annotations, participation in the same
KEGG pathways, shared protein domains in InterPro, direct protein-proteins interactions
and shared interaction partners from multiple databases (BIND, BioGRID, DIP, HPRD,
InNetDB, IntAct, BiGG, MINT, and MIPS), sequence homology between the gene pair
calculated using BLAST (Altschul et al., 1997), and two measures of similarity in co-
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evolutionary patterns: phylogenetic profile similarity and chromosomal co-clustering across
genomes (Chen and Vitkup, 2006). We cross-validated the quality of the background
network by showing that it can be successfully used to prioritize (rank) genes, located within
a chromosomal region, across a variety of genetic phenotypes (see Supplementary
Experimental Procedures for details).

Search for high scoring clusters affected by CNVs
To score a cluster of genes in the network (Figure 1) we combined the scores for all gene
pairs forming the cluster. The direct multiplication of the corresponding likelihoods
(network edges) is conceptually equivalent to assuming that all connections within the
cluster are independent; we refer to this procedure as the naïve scoring scheme. Second, we
applied a simple de-weighting scheme used previously for functional data integration (Lee et
al., 2004). For each gene forming the cluster the de-weighting scheme scores the strongest
connection in full, and then decreases the other connections in order of their strength in a
linear fashion (see Supplementary Experimental Procedures). Effectively, the de-weighting
scheme gives more weight to strongest gene-gene connections within the cluster. The
detected functional clusters were significant under both scoring schemes.

A greedy growth algorithm was used to find strongly connected clusters of genes located
within CNV regions (Figure 1). Specifically, the search algorithm was started from every
possible gene in CNV regions, then the gene with the strongest connection to the first gene
was added. At all subsequent iterations, genes located within CNV regions that most
increased the cluster score were added. Only one (results in Figure 2A) or two (Figure 2B)
genes per each CNV region were allowed in the growing cluster. This growth procedure was
run until no further genes could be added. For each cluster size, clusters obtained by starting
with each gene within CNV regions were compared and the cluster with the highest score
was selected.

Evaluating significance of cluster scores
We first determined the p-value for the best cluster at each cluster size; we refer to this as
the local p-value. Local p-values were calculated based on re-running the greedy search
algorithm using random human genome regions identical (either in length or gene number)
to those observed by Levy et al. Second, to determine the most significant cluster across
sizes, we compared the lowest local p-value obtained from the real data, to the distribution
of lowest local p-values obtained in the 10,000 trails from the randomized regions.
Effectively, this allowed us to assign a p-value to our local p-value; we refer to this as the
global p-value. The global p-value is more stringent because it accounts for multiple
hypotheses testing, arising due to different cluster sizes; in our manuscript we refer to global
p-value simply as p-value. In the aforementioned calculation of local and global p-values we
used two alternative randomization procedures for human genomic regions: we either
preserved the genomic size of CNVs or the gene counts to the values observed in the real
data. All randomized regions were generated using the NCBI human genome build 36
(hg18). The functional cluster identified in our work was significant under both
randomization schemes (preserving length of CNVs or gene counts) and cluster scoring
methods (naïve and de-weighted). The p-values for different randomization procedures are
given in Table S1.

In addition to the randomization of genomic regions we wanted to ensure that our results
were not due to some general topological features of the background network. To explore
this possibility, we randomly shuffled the background network while preserving the
distribution of connection strengths for each gene (see Supplementary Experimental
Procedures). We then repeated the NETBAG search using the de novo CNVs from affected
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children. This search using the shuffled network identified no significant clusters or GO
terms.

Analysis of genes contribution to cluster score
Contributions of different genes to the score of the identified functional cluster (Figure 2)
vary substantially. To capture that, we devised a formal method to assign weights to
individual genes reflecting their contribution to high scoring clusters. The method is based
on two distributions over clusters: p(C), in which clusters with high scores are assigned a
high probability, and a uniform distribution, pu(C), in which all clusters are equally likely
(See Supplementary Experimental Procedures). Each individual gene was then given a score
equal to the ratio of the number of clusters that contain the gene sampled from p(C) to the
number sampled from pu(C). As a result, the genes which were more frequently included in
high-scoring clusters were assigned higher ratios. We used Markov-Chain Monte Carlo
(MCMC) to sample 5 million clusters from each of the two distributions.

Calculation of Functional Relationships between the cluster and various GO categories
To characterize the identified cluster we investigated its interactions with a collection of a-
priori defined functional sets of human genes. For this purpose, we utilized the 1454 gene
sets corresponding to the Gene Ontology (GO) categories used in the MSigDB database
(Subramanian et al., 2005). Using the background likelihood network, we calculated, for
each gene set, its average interaction to the identified cluster shown in Figure 2. To
determine the significance of the calculated interaction scores we built gene set-specific
background distributions by generating random clusters from the randomized genomic
regions with the same gene count as in Levy et al. We used the background distribution to
assign an empirical p-value for every gene set, and then applied the FDR procedure to
address the multiple hypotheses involved in testing all gene sets within the collection (see
Supplementary Experimental Procedures).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported in part by a grant from the Simons Foundation (SFARI award number SF51 to MW), the
National Centers for Biomedical Computing (MAGNet) grant U54CA121852 to Columbia University. SRG was
supported in part by the training grant T32 GM082797. We are grateful to all of the families at the participating
SFARI Simplex Collection (SSC) sites, as well as the principal investigators (A. Beaudet, R. Bernier, J.
Constantino, E. Cook, E. Fombonne, D. Geschwind, D. Grice, A. Klin, R. Kochel, D. Ledbetter, C. Lord, C.
Martin, D. Martin, R. Maxim, J. Miles, O. Ousley, B. Pelphrey, B. Peterson, J. Piggot, C. Saulnier, M. State, W.
Stone, J. Sutcliffe, C. Walsh, E. Wijsman).

We would also like to sincerely thank Simons Foundation Autism Research Initiative for generous financial
support, Linda Van Aelst, Thomas Jessell, Gerald Fischbach, Marian Carlson, Alan Packer, Barry Honig, Itsik
Pe’er, Lauren DeMaria, and Stephen Johnson for helpful discussions.

References
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and

PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;
25:3389–3402. [PubMed: 9254694]

Alvarez VA, Sabatini BL. Anatomical and physiological plasticity of dendritic spines. Annu Rev
Neurosci. 2007; 30:79–97. [PubMed: 17280523]

Gilman et al. Page 10

Neuron. Author manuscript; available in PMC 2013 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS,
Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nat Genet. 2000; 25:25–29. [PubMed: 10802651]

Bayes A, van de Lagemaat LN, Collins MO, Croning MD, Whittle IR, Choudhary JS, Grant SG.
Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat
Neurosci. 2011; 14:19–21. [PubMed: 21170055]

Blanchoin L, Pollard TD, Mullins RD. Interactions of ADF/cofilin, Arp2/3 complex, capping protein
and profilin in remodeling of branched actin filament networks. Curr Biol. 2000; 10:1273–1282.
[PubMed: 11069108]

Blanpied TA, Ehlers MD. Microanatomy of dendritic spines: emerging principles of synaptic
pathology in psychiatric and neurological disease. Biol Psychiatry. 2004; 55:1121–1127. [PubMed:
15184030]

Chen L, Vitkup D. Predicting genes for orphan metabolic activities using phylogenetic profiles.
Genome Biol. 2006; 7:R17. [PubMed: 16507154]

Consortium TU. The Universal Protein Resource (UniProt). Nucleic Acids Res. 2007; 35:D193–197.
[PubMed: 17142230]

Fatemi SH, Snow AV, Stary JM, Araghi-Niknam M, Reutiman TJ, Lee S, Brooks AI, Pearce DA.
Reelin signaling is impaired in autism. Biol Psychiatry. 2005; 57:777–787. [PubMed: 15820235]

Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations.
Proc Natl Acad Sci U S A. 2008; 105:4323–4328. [PubMed: 18326631]

Fiala JC, Spacek J, Harris KM. Dendritic spine pathology: cause or consequence of neurological
disorders? Brain Res Brain Res Rev. 2002; 39:29–54. [PubMed: 12086707]

Franke L, van Bakel H, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C. Reconstruction of
a functional human gene network, with an application for prioritizing positional candidate genes.
Am J Hum Genet. 2006; 78:1011–1025. [PubMed: 16685651]

Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A,
Hardenbol P, Leal SM, et al. A second generation human haplotype map of over 3.1 million SNPs.
Nature. 2007; 449:851–861. [PubMed: 17943122]

Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR, Hirsch SR. Reduced
dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol
Neurosurg Psychiatry. 1998; 65:446–453. [PubMed: 9771764]

Geschwind DH. Autism: many genes, common pathways? Cell. 2008; 135:391–395. [PubMed:
18984147]

Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in
schizophrenia. Arch Gen Psychiatry. 2000; 57:65–73. [PubMed: 10632234]

Goldstein DB. Common genetic variation and human traits. N Engl J Med. 2009; 360:1696–1698.
[PubMed: 19369660]

Halpain S, Spencer K, Graber S. Dynamics and pathology of dendritic spines. Prog Brain Res. 2005;
147:29–37. [PubMed: 15581695]

Hardy J, Singleton A. Genomewide association studies and human disease. N Engl J Med. 2009;
360:1759–1768. [PubMed: 19369657]

Hirschhorn JN. Genomewide association studies--illuminating biologic pathways. N Engl J Med.
2009; 360:1699–1701. [PubMed: 19369661]

Hoffmann R, Valencia A. A gene network for navigating the literature. Nat Genet. 2004; 36:664.
[PubMed: 15226743]

Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism
spectrum disorders. Brain Res. 2010; 1309:83–94. [PubMed: 19896929]

Hyman SE. A glimmer of light for neuropsychiatric disorders. Nature. 2008; 455:890–893. [PubMed:
18923510]

Iossifov I, Rodriguez-Esteban R, Mayzus I, Millen KJ, Rzhetsky A. Looking at cerebellar
malformations through text-mined interactomes of mice and humans. PLoS Comput Biol. 2009;
5:e1000559. [PubMed: 19893633]

Gilman et al. Page 11

Neuron. Author manuscript; available in PMC 2013 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Iossifov I, Zheng T, Baron M, Gilliam TC, Rzhetsky A. Genetic-linkage mapping of complex
hereditary disorders to a whole-genome molecular-interaction network. Genome Res. 2008;
18:1150–1162. [PubMed: 18417725]

Jossin Y, Goffinet AM. Reelin signals through phosphatidylinositol 3-kinase and Akt to control
cortical development and through mTor to regulate dendritic growth. Mol Cell Biol. 2007;
27:7113–7124. [PubMed: 17698586]

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;
28:27–30. [PubMed: 10592173]

Kaufmann WE, Moser HW. Dendritic anomalies in disorders associated with mental retardation.
Cereb Cortex. 2000; 10:981–991. [PubMed: 11007549]

Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY. Regulation of dendritic morphogenesis by Ras-
PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci. 2005; 25:11288–11299.
[PubMed: 16339024]

Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU,
Vedantam S, Raychaudhuri S, et al. Hundreds of variants clustered in genomic loci and biological
pathways affect human height. Nature. 2010; 467:832–838. [PubMed: 20881960]

Lee I, Date SV, Adai AT, Marcotte EM. A probabilistic functional network of yeast genes. Science.
2004; 306:1555–1558. [PubMed: 15567862]

Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM. A single gene network accurately
predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet. 2008;
40:181–188. [PubMed: 18223650]

Levy D, et al. Rare de novo and transmitted copy number variation in autistic spectrum disorders.
Neuron. 2011 (this issue).

Linseman DA, Loucks FA. Diverse roles of Rho family GTPases in neuronal development, survival,
and death. Front Biosci. 2008; 13:657–676. [PubMed: 17981578]

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM,
Cardon LR, Chakravarti A, et al. Finding the missing heritability of complex diseases. Nature.
2009; 461:747–753. [PubMed: 19812666]

Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren
Y, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet.
2008; 82:477–488. [PubMed: 18252227]

McClellan J, King MC. Genetic heterogeneity in human disease. Cell. 2010; 141:210–217. [PubMed:
20403315]

Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B,
Roberts W, Szatmari P, Scherer SW. Contribution of SHANK3 mutations to autism spectrum
disorder. Am J Hum Genet. 2007; 81:1289–1297. [PubMed: 17999366]

Network CGAR. Comprehensive genomic characterization defines human glioblastoma genes and
core pathways. Nature. 2008; 455:1061–1068. [PubMed: 18772890]

Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, Mandell DS, Miller LA, Pinto-
Martin J, Reaven J, et al. The epidemiology of autism spectrum disorders. Annu Rev Public
Health. 2007; 28:235–258. [PubMed: 17367287]

Niu S, Yabut O, D’Arcangelo G. The Reelin signaling pathway promotes dendritic spine development
in hippocampal neurons. J Neurosci. 2008; 28:10339–10348. [PubMed: 18842893]

Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C,
Abrahams BS, et al. Functional impact of global rare copy number variation in autism spectrum
disorders. Nature. 2010; 466:368–372. [PubMed: 20531469]

Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM, Sklar P, Scolnick EM, Xavier RJ,
Altshuler D, Daly MJ. Identifying relationships among genomic disease regions: predicting genes
at pathogenic SNP associations and rare deletions. PLoS Genet. 2009; 5:e1000534. [PubMed:
19557189]

Reiner O, Sapir T. Similarities and differences between the Wnt and reelin pathways in the forming
brain. Mol Neurobiol. 2005; 31:117–134. [PubMed: 15953816]

Roberts TF, Tschida KA, Klein ME, Mooney R. Rapid spine stabilization and synaptic enhancement at
the onset of behavioural learning. Nature. 2010; 463:948–952. [PubMed: 20164928]

Gilman et al. Page 12

Neuron. Author manuscript; available in PMC 2013 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC. Wnt signaling through Dishevelled, Rac and
JNK regulates dendritic development. Nat Neurosci. 2005; 8:34–42. [PubMed: 15608632]

Salinas PC, Fletcher C, Copeland NG, Jenkins NA, Nusse R. Maintenance of Wnt-3 expression in
Purkinje cells of the mouse cerebellum depends on interactions with granule cells. Development.
1994; 120:1277–1286. [PubMed: 8026336]

Salinas PC, Zou Y. Wnt signaling in neural circuit assembly. Annu Rev Neurosci. 2008; 31:339–358.
[PubMed: 18558859]

Scott-Van Zeeland AA, Abrahams BS, Alvarez-Retuerto AI, Sonnenblick LI, Rudie JD, Ghahremani
D, Mumford JA, Poldrack RA, Dapretto M, Geschwind DH, Bookheimer SY. Altered functional
connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2.
Sci Transl Med. 2010; 2:56ra80.

Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A,
Kendall J, et al. Strong association of de novo copy number mutations with autism. Science. 2007;
316:445–449. [PubMed: 17363630]

Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;
441:424–430. [PubMed: 16724053]

Shen K, Cowan CW. Guidance molecules in synapse formation and plasticity. Cold Spring Harb
Perspect Biol. 2010; 2:a001842. [PubMed: 20452946]

Sheng M, Hoogenraad CC. The postsynaptic architecture of excitatory synapses: a more quantitative
view. Annu Rev Biochem. 2007; 76:823–847. [PubMed: 17243894]

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy
SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;
102:15545–15550. [PubMed: 16199517]

Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;
455:903–911. [PubMed: 18923512]

Suli A, Mortimer N, Shepherd I, Chien CB. Netrin/DCC signaling controls contralateral dendrites of
octavolateralis efferent neurons. J Neurosci. 2006; 26:13328–13337. [PubMed: 17182783]

Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol.
2006; 16:95–101. [PubMed: 16361095]

Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL. Regulation of neuronal
morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci. 2005; 8:1727–
1734. [PubMed: 16286931]

Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996; 274:1123–
1133. [PubMed: 8895455]

Wang K, Bucan M, Grant SF, Schellenberg G, Hakonarson H. Strategies for genetic studies of
complex diseases. Cell. 2010; 142:351–353. author reply 353–355. [PubMed: 20691891]

Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS, Salyakina D, Imielinski M, Bradfield
JP, Sleiman PM, et al. Common genetic variants on 5p14.1 associate with autism spectrum
disorders. Nature. 2009; 459:528–533. [PubMed: 19404256]

Weiss LA, Arking DE, Daly MJ, Chakravarti A. A genome-wide linkage and association scan reveals
novel loci for autism. Nature. 2009; 461:802–808. [PubMed: 19812673]

Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et
al. The genomic landscapes of human breast and colorectal cancers. Science. 2007; 318:1108–
1113. [PubMed: 17932254]

Woolfrey KM, Srivastava DP, Photowala H, Yamashita M, Barbolina MV, Cahill ME, Xie Z, Jones
KA, Quilliam LA, Prakriya M, Penzes P. Epac2 induces synapse remodeling and depression and
its disease-associated forms alter spines. Nat Neurosci. 2009; 12:1275–1284. [PubMed: 19734897]

Yang G, Pan F, Gan WB. Stably maintained dendritic spines are associated with lifelong memories.
Nature. 2009; 462:920–924. [PubMed: 19946265]

Zhao X, Leotta A, Kustanovich V, Lajonchere C, Geschwind DH, Law K, Law P, Qiu S, Lord C,
Sebat J, et al. A unified genetic theory for sporadic and inherited autism. Proc Natl Acad Sci U S
A. 2007; 104:12831–12836. [PubMed: 17652511]

Gilman et al. Page 13

Neuron. Author manuscript; available in PMC 2013 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Zoghbi HY. Postnatal neurodevelopmental disorders: meeting at the synapse? Science. 2003; 302:826–
830. [PubMed: 14593168]

Gilman et al. Page 14

Neuron. Author manuscript; available in PMC 2013 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Highlights

1. Rare de novo CNVs associated with autism contain functionally connected
genes

2. NETBAG method identifies a significant functional network affected by rare
variants

3. Identified network is related to synaptogenesis, axon guidance, and neuronal
motility

4. Genes perturbed in females carry more weight in the network than genes in
males
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Figure 1.
Outline of the NETwork-Based Analysis of Genetic associations (NETBAG), the method
used in our study to identify significant and functionally related gene networks affected by
de novo CNV events. (A) A background network of human genes is constructed in which
nodes indicate genes and edges represent the likelihood that two genes participate in the
same genetic phenotype. (B) One or two genes are selected from each of de novo CNV
region to form a cluster. The genes are mapped to the likelihood network and a combined
score is calculated for each cluster based on interactions between its genes. (C) A greedy
search procedure is used to identify the cluster with maximal score. (D) The significance of
the cluster with maximum score is determined by comparing it to the distribution of
maximal scores from randomly selected genomic regions with similar gene counts. See
Figure S1 for a further description of the NETBAG approach.
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Figure 2.
Gene clusters found using NETBAG analysis of de novo CNV regions observed in autistic
individuals. A) The highest scoring cluster obtained using the search procedure with up to
one gene per each CNV region. B) The cluster obtained using the search with up to two
genes per region. In the figure genes (nodes) with known functions in the brain and nervous
systems are colored in orange (see Table S2 for functional information about the genes
forming the cluster). Node sizes represent the importance of each gene to the overall cluster
score. Edge widths are proportional to the prior likelihood that the two corresponding genes
contribute to a shared genetic phenotype. For clarity, we show only edges corresponding to
the two strongest connections for at least one node.
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Figure 3.
Genes associated with the morphogenesis of dendritic spines. Dendritic spines are
dynamically forming protrusions from a neuron’s dendrite which mediate excitatory
connection to axons and determine synaptic strength. The proteins shown in the figure play
crucial roles in formation of physical contacts between axons and dendrites, organization of
postsynaptic density (PSD), and signaling processes controlling spine morphology. Many of
the signaling pathways ultimately converge on the regulation of the growth and branching of
the actin filament network, which is essential for spine structural remodeling. The proteins
encoded by genes from the identified functional cluster (Figure 2) are shown in yellow,
other genes hit by de novo CNV from Levy et al., in blue, and genes previously implicated
or discussed in the context of autism are highlighted using orange borders.
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Table 1

Gene Ontology (GO) terms highly connected to the functional network in Figure 2A. We defined a score that
reflects the degree to which the network genes interact with gene sets assigned to various GO categories (1454
in total). For every GO category, a background distribution was built by generating clusters from randomly
chosen CNV regions with the same gene count as observed in real data by Levy et al. These distributions were
used to derive False Discovery Rate (FDR) corrected q-values accounting for the multiple hypothesis tests
(one test for every GO gene set, see Experimental Procedures).

Gene Ontology Term GO Category q-value

GO:0007015: actin filament organization Biological process < 0.01

GO:0030424: axon Cellular component < 0.01

GO:0048469: cell maturation Biological process < 0.01

GO:0007611: learning and or memory Biological process < 0.01

GO:0044456: synapse part Cellular component < 0.01

GO:0045202: synapse Cellular component < 0.01

GO:0007163: establishment and or maintenance of cell polarity Biological process 0.01

GO:0045216: intercellular junction assembly and maintenance Biological process 0.01

GO:0019201: nucleotide kinase activity Molecular function 0.01

GO:0005912: adherens junction Cellular component 0.01

GO:0007409: axonogenesis Biological process 0.01

GO:0016323: basolateral plasma membrane Cellular component 0.01

GO:0030041: actin filament polymerization Biological process 0.01

GO:0051258: protein polymerization Biological process 0.01

GO:0021700: developmental maturation Biological process 0.01

GO:0030863: cortical cytoskeleton Cellular component 0.01

GO:0000904: cellular morphogenesis during differentiation Biological process 0.01

GO:0005925: focal adhesion Cellular component 0.01

GO:0030427: site of polarized growth Cellular component 0.01

GO:0032271: regulation of protein polymerization Biological process 0.01

GO:0031175: neurite development Biological process 0.01

GO:0048666: neuron development Biological process 0.01

GO:0030055: cell matrix junction Cellular component 0.01

GO:0030832: regulation of actin filament length Biological process

GO:0030036: actin cytoskeleton organization and biogenesis Biological process 0.01
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