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Abstract Temporally and spatially controlled activation

of the Aurora A kinase (AURKA) regulates centrosome

maturation, entry into mitosis, formation and function of

the bipolar spindle, and cytokinesis. Genetic amplification

and mRNA and protein overexpression of Aurora A are

common in many types of solid tumor, and associated with

aneuploidy, supernumerary centrosomes, defective mitotic

spindles, and resistance to apoptosis. These properties have

led Aurora A to be considered a high-value target for

development of cancer therapeutics, with multiple agents

currently in early-phase clinical trials. More recently,

identification of additional, non-mitotic functions and

means of activation of Aurora A during interphase neurite

elongation and ciliary resorption have significantly

expanded our understanding of its function, and may offer

insights into the clinical performance of Aurora A inhibi-

tors. Here we review the mitotic and non-mitotic functions

of Aurora A, discuss Aurora A regulation in the context of

protein structural information, and evaluate progress in

understanding and inhibiting Aurora A in cancer.
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Introduction

Aurora A kinase (official gene symbol AURKA) has many

aliases, including, most commonly, Aurora, and also Aurora-

2, serine/threonine kinase 15 (STK15), serine/threonine

kinase 6 (STK6), breast tumor amplified kinase (BTAK),

Aurora-related kinase 1 (ARK1), Homo sapiens Aurora/

IPL1-related kinase (HsAirk1), Eg2, and Ipl- and Aurora-

related kinase 1 (IAK1). As these names indicate, this protein

is a member of the Aurora/IPL1-related kinase family of

serine/threonine kinases. The founding member of the fam-

ily, Ipl (increase-in-ploidy) 1, was first identified in 1993 in a

screen for mitotic mutants that failed to undergo normal

chromosome segregation in Saccharomyces cerevisiae [1].

Ipl1-like kinases were independently identified in cell cycle

studies in Xenopus laevis and Drosophila melanogaster [1–

5]. The Xenopus laevis Eg2 transcript emerged in a screen for

Xenopus egg mRNAs that became deadenylated after fer-

tilization. The Eg2 gene encodes a kinase that was

subsequently defined as a regulator of the G2/meiosis I

transition in Xenopus oocytes and of mitotic spindle function

in Xenopus laevis eggs [3, 4]. Severe mutations at the Dro-

sophila aurora locus result in pupal lethality and a mitotic

arrest characterized by the presence of monopolar spindles;

less severe mutations include defects in centrosome sepa-

ration, formation of astral microtubules, chromosome

segregation, and spindle positioning [5–9]. All of the early

studies in model organisms indicated a requirement for this

protein in mitotic progression.

Subsequent studies determined that Ipl1 is the unique

S. cerevisiae representative of a family that diverges into two

Ipl1-like kinases (Aurora A and Aurora B) in Drosophila,

C. elegans, and X. laevis, and three Ipl1-like kinases (Aurora

A, Aurora B, and Aurora C) in mammals. All of these kinases

have been found to have essential functions in mitosis and/or

meiosis. However, among the three mammalian kinases,

Aurora A has attracted very significant attention in the past

decade, based on the recognition that it is overexpressed in

many tumors arising from breast, colon, ovary, skin, and other
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tissues, and because it has been shown to function as an

oncogene when exogenously expressed in numerous cell line

models [10–14]. Aurora A overexpression, whether in natu-

rally occurring tumors or following deliberate overexpression,

is associated with increased numbers of centrosomes and

multipolar spindles, which arise as a consequence of failed

cytokinesis. For these reasons, Aurora A has been a popular

target for development of targeted therapeutic agents for

cancer, with multiple Aurora-A-specific or pan-Aurora kinase

inhibitors undergoing clinical assessment. At the same time,

continuing investigation of Aurora A has unexpectedly sug-

gested that the activity of this protein is not confined to

regulation of mitosis, with new functions observed in inter-

phase and post-mitotic cells. Given the recent nature of these

discoveries, they are not yet broadly appreciated, although

they may both impact the use of Aurora-A-targeted drugs in

the clinic and also expand the general understanding of the

biological role of this protein in cell physiology.

In this review, we describe and discuss signaling by

human Aurora A in normal cell division and the deregu-

lation of Aurora A signaling in cancer. We also review the

current status of drugs targeting Aurora A for cancer and

summarize recent insights into Aurora A function emerg-

ing from structural biology and from systems biology

resources. Because of space constraints, we do not discuss

functions of the other Aurora kinases in depth. For useful

recent reviews of the function of Aurora B, see [15, 16]; at

present, Aurora C function is much less well understood.

Aurora A actions relevant to mitosis

Aurora A expression, localization, and activities as cells enter

and exit mitosis are summarized in Fig. 1. Initial genetic

studies of Aurora A mutants all identified defects in the for-

mation and control of the bipolar spindle in mitosis. A more

detailed analysis of Aurora A expression, activation, and

direct phosphorylation substrates parses Aurora A’s contri-

bution to a series of steps that extend earlier in the cell cycle,

establishing conditions for appropriate progress into and

through mitosis. Aurora-A-regulated processes include cen-

trosome maturation and separation, followed by assembly of

a bipolar spindle, trigger of mitotic entry, alignment of

chromosomes in the metaphase, and cytokinesis/abscission:

proteolytic degradation of Aurora A is necessary before cells

progress to G1. Aurora-A-interacting proteins relevant to

these activities are listed in Table 1, and the functions of some

of the most important are summarized below.

Centrosome maturation

During the S phase, following centrosomal duplication,

Aurora A starts to accumulate at the centrosomes. As cells

progress toward the point of mitotic initiation, centrosomes

undergo a maturation process that renders them capable of

nucleating the many microtubules that form the mitotic

spindle and allows them to act as a signaling platform for

mitotic regulators [17, 18]. During this maturation process,

which is most noticeable in the late G2 phase, centrosomes

expand in diameter owing to the accretion of a pericent-

riolar mass (PCM) composed of c-tubulin, the c-tubulin

ring complex (c-TURC), and a number of additional reg-

ulatory proteins [18]. PCM protein recruitment during

centrosome maturation is controlled by centrosome protein

of 192 kDa [Cep192/spindle defective 2 (Spd-2)], which

helps target Aurora A to the centrosome as well as activate

the protein in mitosis [19]. Defective expression of Aurora

A or some of its activators, such as Bora and NEDD9,

similarly leads to defects in centrosome maturation

[20, 21].

At the centrosome, Aurora A helps in recruiting

c-tubulin, centrosomin, LATS2, TACC, and NDEL1 to the

PCM [22–26]. Comparison of studies performed in Dro-

sophila, C. elegans, and mammals indicates some variance

in Aurora-A-dependent PCM growth depending on the

organismal and cellular context, with Aurora A being

required for c-tubulin recruitment in C. elegans and in

Drosophila sensory organ precursor cells [22, 27], but not

in Drosophila neuroblasts or S2 cells [7]. Aurora A phos-

phorylation of the LATS2 kinase promotes its recruitment

to the centrosome [23]. At least in some cell systems,

LATS2 is required for recruitment of c-tubulin, working in

Fig. 1 Aurora A in the cell cycle. Aurora A begins to accumulate

significantly at centrosomes in the S phase and is activated at the

boundary between the G2 and M phases. Active Aurora A propagates

along the mitotic spindle to the midzone, with most of the protein

being inactivated and degraded before cytokinesis with only low

levels detectable in early G1 cells
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Table 1

Gene Aurora A

phosphorylates

Phosphorylation

on Aurora A

Localization Function Reference

Activator TPX2 ND T288 Centrosome Activation of kinase activity, targeting

to microtubules

[78, 146]

Ajuba ND T288 Centrosome [86]

NEDD9 (HEF1) S296 T288 Centrosome Activation of kinase activity [21]

BORA T288 Cytoplasm Activation [20]

Ca2?/calmodulin S51/S53/54/S66/67/S98 Centrosome Rapid activation [105]

Nucleophosmin B23 (NPM) S89 Centrosome Activation [104]

Phosphatase inhibitor (I-2) T288 independent Centrosome Activation [101]

Arpc1b T21 T288 Centrosome Activation [99]

Calmodulin T288 Centrosome Activation [143]

PAK1 T288, S342 Centrosome Activation [74]

Inhibitor PP1 Dephosphorylate T288 ? [102]

P53 Nucleus [172]

Gadd45a [241]

PP6 Spindle pole [102]

Substrate BRCA1 S308 – Centrosome G2/M transition of cell cycle [41]

PLK1 T210 Cytoplasm [31]

CDC25B Cytoplasm [33]

Centrin S122/S170 Centrosome [242]

LATS2 S83 – Centrosome [23]

GEF-H1 S885 – Centrosome [72]

TACC3 (human) S34/S552/S558

(human)

– Centrosome [7, 49,

52]

NDEL1 S251 – Centrosome [26]

HDAC6 ND – Basal body of

primary cilium

Activation of kinase activity [130]

Ski ND – Centrosome ? Mitosis

? Oncogenic

[243]

Hepatoma upregulated

protein (HURP)

S627/S725/

S757/S830

– Protein stabilization [61]

p53 S215/S315 – Protein degradation [244]

PP1 [102]

TPX2 S48/S90/S94 T288 Nucleus and

mitotic spindle

[79]

Eg5 – Mitotic spindle Centrosome maturation and separation [57]

Histone H3 S10 – Chromosomes [245]

CENP-A S7 – Centrosome [65]

CENP-E T422 – [64]

CEP192 T295 (equivalent to

T288 in humans)

Centrosome Activation, targeting to centrosomes [19]

CPEB Cytoplasm [246]

LIMK1 S307/T508 ND (not at T288) Centrosome Activation [56]

LIMK2 S283/T494/

T505

Cytoplasm,

nucleus

[247]

SRC ND ND Cytoplasm Kinase activity enhancement [196]

RalA S194 ND Cytoplasm RalA translocation; increased motility,

anchorage-independent growth

[182,

183]

AKT S473 – Cytoplasm Kinase activity enhancement [181]

IjBa S32/S36 – Cytoplasm Degradation [180]

Polycystin-2 (PC2) S829 ? ER, primary

cilium ?

Negative regulation of protein function [131]

Functions and regulation of Aurora A 663

123



concert with the Aurora A partner Ajuba [24]. Another

target of Aurora A in centrosome maturation is nuclear

distribution element-like 1 (NDEL1), an evolutionarily

conserved coiled-coil-containing protein. Aurora A phos-

phorylation of NDEL1 on S251 in the late G2 phase is

required for NDEL1 localization to the centrosome and

also subsequently triggers the ubiquitin-mediated degra-

dation of NDEL1; expression of a phosphomimetic mutant

of NDEL1 fully compensates for the centrosome matura-

tion defect seen with depletion of Aurora A [26].

Downstream, one important role of NDEL1 in the G2

phase is targeting of TACC3 (also known as maskin, and

discussed extensively below in relation to control of spin-

dle function) to the centrosome [26].

Timing of mitotic entry

Concurrent with centrosomal maturation, Aurora A also

supports the activation of the CDK1/cyclin B complex to

allow nuclear entry. CDK1/cyclin B activation occurs ini-

tially at the centrosome before propagating throughout the

cell [28, 29], with this initial activation being dependent on

positive-reinforcement cycles involving Aurora A. Aurora

A in association with its partner Bora phosphorylates T210

in the T-loop of the PLK1 phosphatase during the G2

phase; Bora is later degraded in a PLK1-dependent manner

after entry into mitosis [30–32]. PLK1 promotes the

recruitment of Aurora A to the centrosome in the late G2

phase, where Aurora A phosphorylates the CDK-activating

phosphatase CDC25B (cell division cycle 25B) on S353,

promoting mitotic entry [33]. Activated PLK1 also pro-

motes the activation of CDK1/cyclin B by inducing the

degradation of the CDK-inhibitory kinase WEE1, and by

activating phosphatase CDC25C [34, 35].

Studies in Xenopus oocytes have identified an additional

role for Aurora A in regulating the accumulation of cyclin

B1 by enhancing its mRNA translation [36–40]. In cycling

extracts from non-mitotic oocytes, a complex containing

TACC3/maskin, the translational control factor CPEB,

eIF4E, and PUM2 binds the maternal cyclin B1 mRNA,

precluding the formation of an active translation initiation

complex. Upon cell entry into the M phase, Eg2 (Aurora A)

phosphorylates CPEB on S174, causing the complex to

dissociate and inducing cyclin B1 mRNA polyadenylation

and translation [36–40]. Although well documented in

Xenopus, this particular activity of Aurora A has not been

Table 1 continued

Gene Aurora A

phosphorylates

Phosphorylation

on Aurora A

Localization Function Reference

Binding

partners

TACC1 Centrosome,

spindle pole

[25]

Centrosomin (CNN) Spindle pole [248]

N-Myc Spindle Protein stabilization [187]

Destruction Chfr Spindle pole Promotes Ubq-dependent proteosomal

degradation

[112]

Protein phosphatase 2A

(PP2A)

– – Spindle pole Promotes Ubq-dependent proteosomal

degradation

[117]

Cdh1 Spindle pole Promotes Ubq-dependent proteosomal

degradation

[111]

Cdc20 Spindle pole Promotes Ubq-dependent proteosomal

degradation

[111]

AURKAIP1 (AIP) – – Spindle pole Ubq-independent proteasome

dependent degradation

[122,

123]

Antizyme 1 (Az1) – – Spindle pole Ubq-independent proteasome

dependent degradation

[121]

GSK-3b S245/S387 S290/S291/S349 Spindle pole Promotes Ubq-independent proteasome

dependent degradation

[106]

FBXW7 T217/E221

binding sites

– Spindle pole Promotes Ubq-independent proteasome

dependent degradation

[124]

Fas-associated factor 1 (FAF1) S289/S291 ND Promotes

Ubq-independent proteasome

dependent degradation

[249]

PHLDA1 S98 Cytoplasm Promotes Ubq- dependent degradation [250]

PUM2 – – Centrosome Protective against degradation [107]

Ubiquitin-specific cysteine

protease 2a (USP2a)

– – Centrosome Inhibits degradation, deubiquitination [119]
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demonstrated in mammalian somatic cells, and may be

species-specific.

Aurora A also controls the G2/M transition via inter-

actions with the C-terminal domain of centrosomally

localized BRCA1 (breast cancer associated gene 1) [41]

that help localize BRCA1 to the centrosome [42]. Further,

Aurora A phosphorylation of S308 of BRCA1 is required

for M phase entry; exposure of cells to the DNA damage

induced by ionizing radiation triggers a cell cycle check-

point in part through elimination of this phosphorylation.

At present, downstream targets of BRCA1 in this pathway

are not defined.

Some Aurora A activities that are critical for mitotic

entry do not impact centrosomally localized partners and

are also coordinated with CDK1/Cyclin B effector func-

tion. For example, mitochondria must undergo fission,

allowing equal post-mitotic segregation between daughter

cells. Aurora A phosphorylation of the Ras family GTPase

RALA on S194 drives RALA to the mitochondria, where it

associates with its effector RALBP1 and with the dynamin-

related GTPase DRP1. DRP1 is separately directed to the

mitochondria by phosphorylation by activated CDK1/

cyclin B. Together, the RALA–RALBP1–DRP1 complex

effectively regulates mitochondrial fission [43].

Construction and control of a bipolar spindle

A critical mitotic role of Aurora A is in supporting the

appropriate functioning of the centrosome as a microtu-

bule-organizing center (MTOC) in mitosis. In all

metazoans assessed to date, mutation or depletion of

Aurora A causes formation of spindles with abnormally

organized poles, including characteristic monopolar struc-

tures, and weak, sparse, or short astral microtubules [5, 7,

22, 44–47]. Aurora A control of the mitotic spindle has

been the target of intense study, and a number of critical

effectors have been identified.

Transforming acidic coiled-coil (TACC) family proteins

are evolutionarily conserved, lack known catalytic activity,

and feature a 200 amino acid coiled-coil motif at their

C-terminus to promote protein interactions; their role in

association with Aurora A in the formation and action of a

bipolar spindle is exhaustively discussed elsewhere [48].

Briefly, Aurora A expression is correlated with that of

TACC1, TACC2, and TACC3, and Aurora A forms com-

plexes with TACCs 1 and 3 [49–51]. TACC proteins

interact with proteins of the highly conserved ch-TOG/

XMAP215 family to stabilize microtubules at centrosomes.

This stabilization involves the complex binding to the

minus ends of microtubules and thus opposing the activity

of a microtubule-destabilizing kinesin, mitotic centromere

associated kinesin (MCAK/XKCM1) [49, 52]. In Dro-

sophila cells with inactivating aurora mutations, or aurora

depleted by RNAi, the abnormal organization of the spin-

dle poles and abnormally short arrays of astral

microtubules correlate with the loss of the Drosophila

D-TACC from centrosomes [7]. Aurora A also influences

formation of bipolar spindles by directly phosphorylating

MCAK on S196 to regulate its activity on mitotic asters,

and on S719 to promote its association with spindle poles

[53]. Together, these events induce conversion of mitotic

asters to a fully developed bipolar spindle.

Besides its role in regulated M phase entry, Aurora A

inhibits an additional activity of the BRCA1 ubiquitin

ligase in negative regulation of centrosomal microtubule

nucleation, working in tandem with protein phosphatase 1a
(PP1a) [42, 54]. At present, the essential targets of BRCA1

relevant to mitotic MTOC activity for the spindle pole are

not known. Centrosomal LIMK1 has been proposed to

support spindle formation through modulating a dialog

with the actin filament system [55, 56]. Aurora A phos-

phorylates LIMK1 on S307, with this phosphorylation

being important for maintaining mitotic co-localization of

the two proteins, and hence directs LIMK1 activity.

The earliest defined mitotic target of Aurora A phos-

phorylation was the kinesin-related, evolutionarily

conserved protein XlEg5 of Xenopus and this phosphory-

lation was demonstrated to be important for spindle

assembly and stability [57]. Subsequent studies suggested a

model in which Aurora A control of Eg5 influences cen-

trosomal separation by regulating Eg5 specification of

microtubule sliding, i.e., by directly forcing apart centro-

somes [48]. A more recent study focused on the interaction

between Aurora A/Eg5 and a kinetochore-based spindle

assembly pathway involving the protein Mcm21R, which

uses poleward microtubule flux to help push centrosomes

apart [58].

Spindle nucleation arises from the centrosome, from

chromatin, or in the absence of either given an appropriate

initiating cue [59]. While most attention focuses on the role

of Aurora A at centrosomes in the formation of the spindle

aster, Aurora A is capable of inducing formation of spin-

dle-like asters in the absence of the nucleating function of

the centrosome or chromatin [60]. This activity involves

interaction between Aurora A and TPX2 (target protein for

Xenopus kinesin-like protein 2), and a group of proteins

including HURP [61], XMAP215, and Eg5 [62]. Under

physiological conditions, these interactions and Aurora A

activation are stimulated by Ran-GTP, which is enriched in

the vicinity of the kinetochore and chromatin (a pathway

reviewed extensively elsewhere [63]). Aurora A phos-

phorylates a single conserved residue close to the motor

domain of another kinesin, centromere protein A (CENP-E/

kinesin-7), which is a major mitotic regulator of bipolar

spindle dynamics. A binding site for the PP1 phosphotase

overlaps this phosphorylation site; Aurora A

Functions and regulation of Aurora A 665

123



phosphorylation disrupts PP1 binding to CENP-E. This

Aurora A/PP1 switch is required not only for congression of

polar chromosomes through modulation of CENP-E motor

activity, but also for CENP-E-dependent delivery of PP1 to

the kinetochore, which is important for stable biorientation

of chromosomes [64]. CENP-A is a variant of histone H3

that is a component of the nucleosome core of centromeric

chromatin at the kinetochore. Aurora A phosphorylates S7

of CENP-A, an essential step for the attachment of micro-

tubules to the kinetochore, and consequently for

chromosome alignment and segregation [65, 66].

Another Aurora A partner, RASSF1A, is a tumor sup-

pressor that binds microtubules to arrest cell growth in the

M phase [67]. Aurora A phosphorylation of RASSF1A

interrupts its microtubule binding activity, and also relieves

RASSF1A-dependent inhibition of the APC/Cdc20 protein

degradation complex, permitting M phase progression [67,

68]. Aurora A also coordinates chromosome segregation

and anaphase microtubule dynamics later in mitosis. Aurora

A propagates from the centrosome to the spindle and then to

the midzone, before much of the protein is degraded at the

midbody [69]. Aurora A has recently been found to be

mitotically SUMOylated, which may contribute to its

localization control [70]. After moving onto the spindle,

Aurora A contributes actively to the ability of the APC/

Cdh1 complex to form a robust spindle midzone in late

mitosis [69]. SAF-A (scaffold-attachment factor A) is

required for chromosome segregation, in part through

association with the Aurora A–TPX2 complex. An essential

function of SAF-A is to recruit Aurora A to the spindle

microtubules [71]; together, SAF-A, Aurora A, and TPX-2

influence chromosome congression, kinetochore–microtu-

bule attachments, and stability of kinetochore microtubules.

Finally, together with other mitotic kinases, Aurora A also

helps time mitotic progression by phosphorylating and thus

restraining the activity of the RhoA activator GEF-H1; loss

of Aurora A and GEF-H1 activation during the latter stages

of mitosis facilitates RhoA activation at the cleavage furrow

and during abscission [72].

Control of Aurora A activation and degradation

in mitosis

Activation of Aurora A

Activation of Aurora A as cells enter mitosis involves

spatially and temporally constrained interactions with

multiple partner proteins. Proteins regulating this process

are indicated in Table 1 and Fig. 2. Littlepage et al. [73]

first defined mitotic phosphorylation of Aurora A incubated

with metaphase-arrested frog oocytes, with phosphoryla-

tion observed on residues S53, T295, and S349 (equivalent

to S51, T288, and S342 of human Aurora A). Activating

interactions that induce Aurora A autophosphorylation at

T288 (in human Aurora A; T295 in Xenopus Aurora A) in

the kinase activation loop have been most studied. Rele-

vant partner proteins for this phosphorylation include

TPX2, Ajuba/JUB, NEDD9 (also known as HEF1 and

CasL), and BORA. In addition, PAK1 (p21-activating

kinase 1) has been reported to activate Aurora A via

transphosphorylation of T288 [74].

The structural basis of the TPX2 [75] interaction has

been most intensively studied. Activation of the GTPase

Ran at nuclear envelope breakdown GTP stimulates spin-

dle assembly by releasing the spindle assembly factor

TPX2 from an importin-a/b inhibitory complex. The lib-

erated TPX2 binds to Aurora A kinase, promoting a

conformational change that activates Aurora A autophos-

phorylation, and moves the activation loop to a central

position from which it is protected from dephosphorylation

by the negative regulatory factor PP1, providing access for

Aurora A substrates [76–82]. This autophosphorylation is a

dominant factor in initiating and maintaining Aurora A

activation in mitosis, and is lost when cells are treated with

Aurora A kinase inhibitors [83, 84]. Phosphorylation of

TPX2 by Plx1 increases its ability to activate Aurora A

[85]. The TPX2 interaction also helps target Aurora A to

mitotic spindles, proximal to substrates [51, 79].

Ajuba (JUB) is a scaffolding protein, containing multiple

LIM domains, that was described as an interactor and acti-

vator of Aurora A in 2003 [86]. Both Aurora A and Ajuba are

phosphorylated by Aurora A during their interaction; this

interaction was shown to be important for activation of the

cyclin-B/CDK1 complex and for committment of cells to

mitosis [86]. No studies of this activating interaction have

subsequently been reported in humans. However, one recent

study in Drosophila sheds potential light on the Aurora

A/Ajuba interaction [87]. Drosophila jub (ajuba) mutants

die in the larval–pupal transition. Jub localizes to the cen-

trosomes of neural stem cells; mutation of jub led to

centrosome separation defects and abnormal mitotic spin-

dles. Surprisingly, in jub mutants Aurora A activity is not

perturbed, but Aurora A recruitment and maintenance at the

centrosome is defective. The authors of this study proposed

that a major function of Jub in Drosophila is to restrict active

Aurora A to the centrosome during mitosis, but not to acti-

vate Aurora A. This failure of Jub to regulate Aurora A might

also reflect a difference in the way Aurora A is regulated

between vertebrates and invertebrates [87]: more investiga-

tion is required.

Aurora A directly interacts with another scaffolding pro-

tein, NEDD9, also known as CAS-L and HEF1 [88–90].

Identification of NEDD9 as an Aurora A activator was initially

surprising, given a predominant role for this protein at focal

adhesions in the regulation of cell migration and invasion [91–
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94]. However, NEDD9 was subsequently found to accumulate

at the centrosome as cells move into the G2 and M phases [21,

95]. Depletion of NEDD9 does not affect Aurora A accumu-

lation at the centrosome, but blocks the T288 phosphorylation

and activation of Aurora A at mitotic entry and leads to

accumulation of cells with monopolar spindles and cleavage

furrow regression. Overexpression of NEDD9 induces Aurora

A hyperactivation and produces cells with both multipolar

spindles and supernumerary centrosomes and failure of

cytokinesis [21, 96]. Interestingly, a protein closely related to

NEDD9, p130Cas/BCAR1, has been shown to bind directly to

Ajuba [97]: potentially, NEDD9 and Ajuba similarly interact

during Aurora A activation.

The serine/threonine kinase Pak1 has well-known

functions in proliferation and cell migration signaling, but

moonlights with additional roles in the cell cycle, including

the control of centrosome number and mitotic progression.

Zhao et al. defined interactions between Pak1 and a

centrosomal adaptor protein, PIX/GIT, that lead to cen-

trosomal activation of Pak1: PAK1, or two related PAK

kinases, PAK2 and PAK3, each bind Aurora A and can

phosphorylate Aurora A on the T288 activation loop site or

an alternative site, S342, in vitro [74]. Like Pak1, LIM

kinase 1 (LIMK1) is better known as a regulator of the

actin cytoskeleton through phosphorylation of substrates

such as cofilin. However, a pool of LIMK1 colocalizes

with c-tubulin and Aurora A at the centrosome between

early prophase through anaphase and phosphorylates Aur-

ora A. The target of LIMK1 is not the well-defined T288

motif, but has otherwise not been determined [56].

Mutations in the Drosophila borealis (bora) gene phe-

nocopy Aurora A mutations. One study has shown that

Cdc2-dependent nuclear exclusion of Bora releases the

protein to the cytoplasm, where it binds and activates

Aurora A [20]. Part of the function of Bora in promoting

Aurora A activity may involve binding to substrates as a

Fig. 2 Aurora A interaction with partners regulating activation and

destruction. Proteins interacting with Aurora to promote activation

(green line, star), promote destruction (blue line, arrow), or protect

from destruction (orange line, shield) are indicated in context of

phases of cell cycle in which they associate with Aurora A. When

interaction involves specific phosphorylations on Aurora A, these are

indicated in a circle at the left of drawing
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cofactor with Aurora A, increasing phosphorylation site

availability [30]. However, in contrast, two independent

studies have suggested that Plk1 phosphorylation of Bora

leads to b-TrCP-dependent degradation of Bora, with one

study indicating that human Bora competed with TPX2 for

Aurora A binding, limiting Aurora A activation [32, 98].

The kinase Plk1 is known to be required for Aurora A

association with centrosomes, important during centrosome

maturation [42, 61]. Overexpressed cytoplasmic hBora,

found during Plk1 inhibition, was conjectured to titrate

away Aurora A from relevant substrates necessary for

spindle assembly, providing a separate means of control-

ling activity and linking the function of Aurora A with a

second important mitotic kinase. Clearly the function of

Bora will require more work to elucidate.

Arpc1b is another upstream activator of Aurora A

kinase, better known as a component of the Arp2/3 actin

regulatory complex. Overexpression of Arpc1b leads to

abnormal centrosomal amplification, whereas depletion of

Arpc1b drastically reduces the ability of cells to enter the

cell cycle; this is accompanied by failure to accumulate

active Aurora A at the centrosome at the G2/M transition.

Coupled in vitro experiments have demonstrated that

Arpc1b interaction with the N-terminal domain of Aurora

A activate Aurora A, suggesting the interaction sterically

influences the Aurora A active site [99].

The centrosomal protein CEP192 is also important for

bipolar spindle assembly. Direct interactions between

CEP192 and Aurora A were shown to help concentrate

Aurora A at the centrosome, allowing the protein to form

homodimers and homo-oligomers. This interaction sup-

ports Aurora A activation and microtubule assembly via a

different mechanism from that described for TPX2 and the

other activators [19].

As early as 1994, the activity of protein type 1 phos-

phatase was shown to oppose that of IPL1 kinase in mitosis

[100], and IPL1 mutations were found to be suppressed by

overexpression of Glc8, an ortholog of phosphatase inhib-

itor 2 (I-2, Inh-2) [101]. In humans, protein phosphatase 1

(PP1) dephosphorylation of T288 limits Aurora A activity

[102], whereas I-2/Inh-2 opposes PP1 in this function, thus

enhancing Aurora A activity [101]. The opposition involves

direct binding of I-2/Inh-2 to Aurora A, is not additive with

TPX2 activation, and interestingly, does not involve

increased Aurora A activation–loop phosphorylation [101].

A subsequent evolutionary analysis of I-2/Inh-2 proteins

demonstrated that vertebrate (human and Xenopus), but not

Drosophila, C. elegans, or yeast orthologs of the group,

possessed this activation activity [60]. More recently, the

protein phosphatase 6 (PP6) holoenzyme has been descri-

bed as the major negative regulator of Aurora A activation–

loop phosphorylation, inhibiting the stability of the Aurora

A/TPX2 complex [103].

Aurora A also interacts with nucleophosmin/B23

(NPM). Although NPM is best known as a nucleolar pro-

tein, it also accumulates with Aurora A at the centrosome

in G2 cells, and co-immunoprecipitates with the protein.

Interestingly, although NPM strongly induces Aurora A

activity in in vitro kinase assays with canonical substrates,

it neither induces T288 phosphorylation on Aurora A nor

protects T288-phosphorylated Aurora A from dephospho-

rylation by PP1 [104]. Instead, this activation was

associated with and depends on S89 phosphorylation of

Aurora A. These data suggest a third, independent means

of activating Aurora A, together with the mechanisms

associated with TPX2 and Cep192 (also see [105], and the

discussion of Ca2?/calmodulin (CaM), below, for a fourth

mechanism that has been described in interphase cells); we

note that recent work by Dodson and Bayliss [81] also

supports the idea of Aurora A activation without obligate

T288 phosphorylation.

Littlepage et al. found that S349A-mutated Xenopus

Aurora A had modestly reduced kinase activity, but that an

S349D phosphomimic completely blocked kinase activation

[73]. Sarkissian et al. [106] extended this work, finding that

glycogen synthase kinase 3 (GSK3) phosphorylation of

Aurora A on S290/S291 subsequently induces Aurora A

autophosphorylation on S349, which is inhibitory. S290 and

291 are just prior to T295 of the activation loop in Xenopus

Aurora A, whereas S349 is on the aG helix of the C-terminal

domain (see below). The equivalent residues in human

Aurora A are S283, S284, T288, and S342. They also found

that mutation of these sites to non-phosphorylatable alanines

(S349A, S290A/S291A) results in a constitutively active

form of the kinase. Interestingly, this group inspected

immature versus mature Xenopus oocytes and found that

activity of Aurora A correlated with loss of S349 phos-

phorylation rather than changes in the level of T295

phosphorylation (equivalent to T288 in humans) [106].

Another Aurora A binding protein, PUM2, has been

identified as promoting in vitro activation of Aurora A; to

date, the mechanism of action involved is unknown [107].

Similarly, the Aurora A partner and substrate RASSF1A

activates Aurora A through an undefined mechanism [108].

It is likely that there are additional regulators of Aurora A

activity that have not yet been defined. For example,

recently Aurora A was identified as a proximal target of a

mitotic checkpoint associated with Golgi fragmentation,

which inhibited both Aurora A recruitment to centrosomes

and Aurora A activation [109]. The molecular basis of this

checkpoint requires further study.

Aurora A degradation in late mitosis

Destruction of Aurora A is also regulated via interactions

with partner proteins (Table 1; Fig. 2). Aurora A is
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degraded by the proteasome at the end of mitosis [110–

112], with inhibition of the proteasome in cycling cells

leading to the accumulation of ubiquitinated forms of

Aurora A [110–112]. Aurora A is targeted for proteasomal

degradation via interaction with the anaphase-promoting

complex/cyclosome (APC/C [113]) and particularly with

phosphorylation- and protein partner-controlled association

with the APC/C co-activator subunits, Cdc20 and Cdh1

[114]. Aurora A kinase contains two different sequences,

an A-box and a D-box, that must both be present for Cdh1-

dependent protein destruction. The N-terminal A-box

(residues 47–59, in Xenopus) encompasses a short

sequence, Q47RILGPSNVPQRV, which is highly con-

served in vertebrate forms of Aurora A. The A-box is

contained in the N-terminal disordered region of Xenopus

Aurora A (residues 1–128). The E3 ubiquitin ligase Chfr

(checkpoint protein with forkhead and ring domain)

directly targets Aurora A for ubiquitination and degrada-

tion, interacting with an N-terminal region (res 1–61)

containing the A-box [115]. This region also includes the

Xenopus S53 (human S51), phosphorylated during mitosis.

Although S53A mutation does not block destruction, an

S53D phosphomimic mutation completely blocks Cdh1-

induced destruction, results interpreted as suggesting that

S53 phosphorylation might negatively regulate Aurora A

destruction until the last stages of mitotic exit [116]. In

support of this idea, protein phosphatase 2A (PP2A)

associates with Aurora A at the spindle poles in mitosis,

and dephosphorylates S51; inhibition of PP2A reduces the

destruction of Aurora A at the end of mitosis [78, 117].

The C-terminus of Aurora A contains a functional

destruction box (D-box, residues 378–381) [114]. The

translational regulator PUM2 binds to the D-box of Aurora

A, preventing its ubiquitination and enhancing protein

stability [107]. Aurora A also contains a KEN box (resi-

dues 6–9), which is required for the degradation of other

mitotic proteins (Nek2 and B99); however, this is not

crucial for Aurora A degradation [116, 118]. The USP2a

(ubiquitin-specific cysteine protease 2a) stabilizes mitotic

Aurora A through the direct protein interaction of

deubiquitination; it appears that multiple interaction motifs

mediate the association of the two proteins [119].

Other studies have indicated an additional, ubiquitin-

independent pathway of Aurora A degradation. Aurora A

kinase interacting protein 1 (AURKAIP1 or AIP) promotes

degradation of Aurora A in a proteasome-dependent but

ubiquitin-independent manner [120]. AURKAIP1 acts

upstream of antizyme 1 (Az1), a well-studied mediator of

ubiquitin-independent protein degradation, and has been

proposed to enhance the binding affinity of Az1 to Aurora

A to promote proteasomal targeting [121, 122]. AUR-

KAIP1, Aurora A, and GSK-3b colocalize at the spindle

poles in the metaphase. Further, depletion of AURKAIP1

stabilizes and activates Aurora A in the early mitotic phase,

causing mitotic cell arrest. AURKAIP1 phosphorylation by

GSK-3b decreases its ability to downregulate Aurora A,

suggesting that GSK-3b positively regulates Aurora A

expression in early mitosis [123]. This opposes the effect of

GSK-3b phosphorylation on Aurora A discussed above, in

which phosphorylation on S290/291 negatively regulates

kinase activity [106], suggesting either a delicate and

potentially dynamic balance between Aurora A, AUR-

KAIP1, and GSK-3b at different phases of mitosis (or

alternatively, differences between assay systems). GSK-3b
also regulates the F-box protein FBXW7 to induce degra-

dation of Aurora A; this process is impaired in cancer, after

loss of the tumor suppressor PTEN causes inhibition of

AKT and GSK-3b [124].

Non-mitotic activation and signaling of Aurora A

While the main focus on Aurora A has been its actions in

mitosis or cancer, it is increasingly apparent that the pro-

tein has important functions in non-transformed, non-

mitotic cells. Better-defined examples include influence on

microtubule dynamics, cell migration, and polarity, par-

ticularly in the context of neurite extension [22, 26, 27,

125–129], induction of disassembly of cilia [130], and

regulation of intracellular calcium signaling [131]. Given

the elaborate spatial and temporal assembly of the Aurora

A activation machinery described above to support the high

level and sustained activation of Aurora A in mitosis, an

important question linked to these observed non-mitotic

activities relates to activity control in the absence of the

machinery. Although this field is much less mature, the

emerging answers appear to indicate the existence of

alternative means of Aurora A activation [104, 105], and

also to indicate that some Aurora A activities may not

depend on protein activity, as opposed to scaffolding

function provided by inactive Aurora A [132]. We note that

there is very clear evidence for multiple additional activi-

ties of Aurora A during the interphase in cancer cell lines,

generally in cases in which the protein is overexpressed. As

it is not yet clear whether these activities occur in

untransformed cells, albeit at lower levels, or are specific to

the transformed environment, they are discussed in the

following section on Aurora A in cancer.

Aurora A in microtubule dynamics and cell polarity

control: emphasis on neurite extension

In interphase human cells, the majority of Aurora A is

localized to the centrosome, although a smaller pool of the

protein is also found in the cytoplasm and nucleus [127].

The centrosome nucleates microtubular networks
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throughout all phases of the cell cycle, helping organize

cell structure, polarity, and migration [95]. Chemical

inhibition of Aurora A in interphase mammalian cells

significantly disrupts interphase microtubule dynamics,

suggesting that at least some of the protein is in an active

form and in a non-centrosomal compartment [125]. It is

also possible that the accumulating pool of inactive Aurora

A serves some functional role in regulating interphase

microtubular dynamics; a kinase-independent stabilizing

role for Aurora A in stabilizing spindle microtubules was

very recently reported for Aurora A in C. elegans [132],

but a possible similar function has not been investigated in

interphase cells.

As noted above, studies of mitotic functions of Aurora A

demonstrated that Aurora A bound and phosphorylated

NDEL1 and TACC3 as part of the completion of centro-

somal maturation, and that expression of an NDEL1

phosphorylation-mimetic can compensate for loss of Aur-

ora A activity in allowing mitotic entry [26]. In a

fascinating extension of their initial work, Mori and co-

workers pursued the observation that NDEL1 is an

important binding partner of LIS1, the first gene identified

as a target of mutation in the severe neuronal develop-

mental disorder lissencephaly investigating whether Aurora

A might contribute to NDEL1 function in this second

context [129]. This study found that Aurora A was abun-

dantly expressed in post-mitotic neurons and was

colocalized with and phosphorylated by atypical PKC

(aPKC) on T287 of the activation loop, with this activating

phosphorylation essential for the microtubule-dependent

process of neurite extension (Fig. 3a). Although the TPX2–

Aurora A interaction leading to T288 phosphorylation was

observed in these cells, and this interaction supported the

aPKC-Aurora A–NDEL1 pathway, the latter was

particularly important for the microtubule reorganization

that supported neurite elongation [129].

aPKC interacts with two partner proteins, Par-3 and Par-

6, in an evolutionarily conserved complex that governs

asymmetric cell division at mitosis and regulates cell

polarity [126, 133]. Interestingly, Aurora A had previously

been defined as promoting aPKC activation in mitosis, with

Aurora A phosphorylation of Par-6 derepressing aPKC

activity [6]. Activity of the PP2A protein phosphatase

opposes this activation of aPKC in neuroblasts [133].

Studies of Aurora A in mitotic cells demonstrated that

PP2A dephosphorylation of Aurora A residue S51 pro-

motes Aurora A degradation [117]. To date, the extent to

which Aurora A mitotic interactions with PP2A, Par-3, and

Par-6 are maintained in post-mitotic functions such as

neurite extension remains relatively unexplored. However,

given recent identification of roles for Par-3 at the cen-

trosome in the polarization of other post-mitotic

populations, such as intestinal epithelial cells [134], it

seems likely that this is a fertile area for investigation.

Aurora A in ciliary disassembly, calcium regulation,

and PKD

One of the more surprising activities to emerge recently for

Aurora A was based on genetic studies of a very distant

Aurora A ortholog, the CALK protein of the green algae

Chlamydomonas reinhardtii [135, 136]. Chlamydomonas

utilize organelles termed flagella for environmental sens-

ing, mating responses, and movement, but resorb or shed

flagella during mating response to pheromone and transient

ionic shock. CALK is activated during and required for

flagellar loss [136]. In mammals, most cells have a single,

non-motile cilium—a structure paralogous to a flagellum—

Fig. 3 Active Aurora A in non-cycling cells. a aPKC activates

Aurora A, which interacts with NDEL1 to induce microtubule-based

extension of post-mitotic neurons. b NEDD9 and PIFO activate

Aurora A at the basal body of cilia in quiescent cells, leading to

Aurora-A-dependent activation of HDAC6, and ciliary resorption
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protruding as an antenna from the cell surface, acting as a

receiver for mechanical and chemical cues from fluid flow

or the extracellular matrix (Fig. 3b). The cilia extend from

a perimembrane basal body: this basal body differentiates

from the centrosome in quiescent cells but redifferentiates

to a centrosome as cells return to cycle, paralleled by a cell-

cycle-related protrusion and resorption cycle for cilia

[137]. Defects in cilia are associated with numerous clin-

ically important syndromes, with ‘‘ciliopathies’’ including

polycystic kidney disease (PKD), nephronopthisis (NPHP),

Joubert syndrome (JS), Bardet–Biedl syndrome (BBS), and

others [29]. Signaling systems dependent on or influenced

by intact cilia include Hedgehog, Notch, Wnt, Par3-aPKC,

and PDGFa. Predictably, links are increasing between cil-

iary signaling defects and both developmental disorders

and cancer.

In 2007, in studies modeled on those in Chlamydomonas,

it was demonstrated that serum growth factors induce

Aurora A activation at the basal body of the cell cilium in

non-cycling G0/G1 mammalian cells, with this activation

necessary and sufficient for ciliary resorption [130]. Acti-

vation of Aurora A in ciliary resorption was preceded by

and dependent on upregulation of its mitotic activating

partner NEDD9. Both cilia and flagella are organized

around a cytoskeletal core (the axoneme) composed of nine

microtubule doublets arranged in a ring; acetylation of the

tubulin subunits stabilizes the axonemal structure [29].

During ciliary disassembly, Aurora A specifically phos-

phorylated the tubulin deacetylase HDAC6, increasing

HDAC6 deacetylase activity. Inhibition of HDAC6 activity

by the small molecule inhibitor tubacin or depletion of

HDAC6 by siRNA in each case resulted in cilium stabil-

ization. Interestingly, HDAC6 has been reported to

associate with PP1 [138], which binds microtubules and

dephosphorylates and inactivates Aurora A in pre-mitotic

cells [102]. Similar feedback may limit Aurora A activation

in cilia. An additional factor, Pitchfork (PIFO), also local-

izes to the base of the cilia and was recently described as

required for Aurora A activation during the disassembly

process; as yet, the mechanism is not known [139].

Further work in Chlamydomonas has suggested

increasing intraflagellar Ca2? concentrations during the

mating response [140], shortly before the activation of the

CALK kinase, whereas a separate study indicated rapid

spatiotemporal patterning of Ca2? distribution as a critical

signal for flagellar excision [141]. An indirect association

between Aurora A and Ca2? in vertebrates was provided by

an analysis of oocyte maturation in Xenopus, which indi-

cated that inhibition of Ca2? signaling led to eventual

failure to accumulate and activate Aurora A [142]. In a

direct investigation of a Ca2?–Aurora A interaction, Plot-

nikova et al. demonstrated that numerous stimuli that

transiently increase cytoplasmic Ca2? [including arginine

vasopressin (AVP), histamine, and thapsigargin] induce

Aurora A activation with extremely rapid kinetics. Ca2?-

induced Aurora A activity peaks within 1 min of stimula-

tion, returns to baseline within 2–5 min, and depends on a

direct interaction between the N-terminal unstructured

domain of Aurora A with Ca2?/CaM [105]. In vitro,

incubation of Ca2?/CaM with Aurora A results in robust

autophosphorylation of Aurora A on S51 or S53, as well as

additional phosphorylations on S66 or S67, and S98. The

S51/S53 phosphorylation suggested that this method of

Aurora A activation may also be relevant to mitotic acti-

vation of the kinase [105]. A very recent study has

provided the first evidence that Ca2?/CaM governs acti-

vation of Aurora A in ciliary resorption and in mitosis, and

involves potentiation of the Aurora A/NEDD9 interaction

[143]. It is possible that these activators also regulate

Aurora A in post-mitotic neurons, but this has not yet been

investigated. This group of studies had been performed in

renal cells because of the previously defined critical

interaction between cilia, Aurora A, and the function of the

heterodimeric complex between polycystins 1 and 2,

encoded by the PKD1 and PKD2 genes, which serves as a

cilia-localized transmembrane Ca2? channel: mutations in

these genes are responsible for the most clinically prevalent

of the ciliopathies, PKD [144]. Plotnikova et al. [105]

determined that Aurora A is abundant and active in a subset

of normal, quiescent renal cells and is overexpressed and

hyperactivated in human PKD specimens. Moreover, in

reciprocal action, Aurora A binds and phosphorylates the

polycystin 2/PKD2 protein, limiting PKD2 activity during

rapid Ca2? signaling responses [131]. These findings sug-

gest that Aurora A activity changes may be relevant to the

pathology of PKD.

Aurora A protein structure

Human Aurora A is a protein of 403 amino acids, with a

canonical kinase domain comprising residues 133–383.

The first experimental structure of Aurora A was deter-

mined in 2002 (PDB entry 1MQ4) [145] and remains the

highest-resolution crystal structure of the human kinase.

There are now 57 crystal structures of human Aurora A in

complex with ATP, ADP, ANP (an analog of ATP), and

various inhibitors. Three of these structures are in complex

with the Aurora A binding activator protein TPX2 [146–

148]. In addition, there are eight structures of mouse

Aurora A and five structures of Xenopus laevis Aurora B.

The majority of human Aurora A structures contain coor-

dinates only for residues 127–388, regardless of whether

the proteins crystallized were longer on either or both ends.

The first 123 amino acids of Aurora A are predicted to be

intrinsically disordered, as are the C-terminal 16 amino
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acids [149]. The experimental structures confirm the dis-

order predictions, because even in those structures of

protein constructs consisting of residues 100–403, the first

ordered residue in any structure is S123 and the last

ordered residue is Q394.

The Aurora A kinase domain shares the common

structural features of other protein kinases. The N-terminal

part of this domain consists of a five-stranded b-sheet and

an a-helix termed the ‘‘C-helix’’; Aurora A also has a short

a-helix called the ‘‘B-helix’’, seen in some kinases, that is

just prior and perpendicular to the C-helix. The C-terminal

part of the kinase domain consists of seven a-helices and a

two-stranded b-sheet, and contains the catalytic aspartic

acid of the HRD motif (sequence His-Arg-Asp at positions

254–256) and the mobile activation loop, the position and

conformation of which determine whether the kinase is

active or inactive. The Aurora A activation loop spans

residues 274–299, beginning with a DFG sequence motif

and ending with an APE motif (sequence PPE in Aurora

A). Active forms of Aurora A include species that are

autophosphorylated on T288, following interaction of

Aurora A with partners such as TPX2 (discussed elsewhere

[81]), phosphorylated on T287 and T288 by PAK [74] and

PKA [112], and phosphorylated on T287 by atypical pro-

tein kinase C [129].

A given kinase may have many different conformations

depending on the binding of activators or inhibitors and

phosphorylation of various sites. These conformations vary

primarily in the position of the activation loop as well as

the position of the C-helix or the entire N-terminal domain

relative to the C-terminal domain. Kornev and Taylor [150]

recently provided an analysis of protein kinases in terms of

two ‘‘spines’’ of interacting residues that span the two

domains. These spine residues are not contiguous in

sequence but form stacks of contacts in active kinases that

are disrupted in inactive or inhibited kinases. We have

identified the spine residues in Aurora A structures using

sequence and structure alignments of Aurora A to PKA,

based on a detailed analysis of PKA by Kornev and Taylor

[150]. The so-called regulatory spine consists of Q185,

L196, H254 (of the HRD motif), and F275 (of the DFG

motif). These residues correspond to PKA residues L95,

L95, Y164, and F185. The catalytic spine consists of V147,

A160, V218, L262, L263, L264, L318, and F322 (corre-

sponding to PKA residues V57, A70, M128, L172, L173,

L174, L227, and M231, respectively).

The integrity of the regulatory spine is dependent on the

position of the DFG motif, such that in an active kinase, the

F275 residue of DFG points into the kinase domain and sits

under the C-helix. Twenty-nine Aurora A structures con-

tain this motif in this so-called DFGin position. As

discussed below, Aurora A is activated by phosphorylation

and by binding of the mitotic spindle protein TPX2 [79].

There are three structures of Aurora A with TPX2 bound

(PDB entries 1OL5, 3E5A, and 3HA6), and only one of

these has ADP bound (1OL5) [146], whereas the other two

contain small molecule inhibitors. An image of active

Aurora A kinase with ADP and TPX2 is shown in Fig. 4a.

A close-up of the active site residues is shown in Fig. 4b.

This structure is phosphorylated on T287 and T288.

Binding of TPX2 alters the conformation of the Aurora A

activation loop [146], bringing phosphorylated T288 into a

position where it forms a salt bridge with R255 of the HRD

motif, forming an active kinase. In the absence of TPX2,

pT288 faces out and the activation loop is more extended

than it is in the TPX2-bound state. In addition, in the active

conformation with TPX2 bound, the side chain of T292

forms a hydrogen bond with the active site D254 of the

HRD motif. In other DFGin structures without TPX2,

neither of these interactions is formed. As discussed above,

the regulatory spine of Aurora A kinase consists of H252,

F275, Q185, and L196. In an active kinase, these residues

form a column with each residue in the spine in contact

with its neighbors. The van der Waals surfaces of these

residues are shown in Fig. 4b.

Many protein kinases exhibit an inactive conformation

referred to as ‘‘DFGout.’’ Looking at the active site as

shown in Fig. 4a, b, the Phe of DFG in DFGout structures

sits underneath the ADP rather than under the C-helix. This

conformation is present in one Aurora A kinase structure

(PDB entry 2C6E) [151]. Besides the DFGin conforma-

tions, many Aurora A crystal structures contain an unusual

conformation of the DFG loop, referred to by Dodson et al.

as ‘‘DFGup’’ [145]. In the DFGup conformation, the F275

points upwards into the N-terminal domain and is wedged

between the C-helix and the N-terminal domain b-sheet. A

superposition of several DFGup structures of Aurora A

kinase is shown in Fig. 4c. This position disrupts a salt

bridge between K162 of the b-sheet and E181 of the C-helix

that is formed in active Aurora A, as are the equivalent

residues in other kinases. Aurora A kinase with the Aurora-

specific inhibitor MLN8054 bound and a DFGup confor-

mation of the activation loop is shown in Fig. 4d.

Bibby et al. [152] observed three somatic mutations of

Aurora A associated with cancer. One of these, S155R,

occurs in the interface between Aurora A and TPX2 and

disrupts Aurora A–TPX2 interaction. S155 is the fourth

residue in a type I b turn (residues 152–155, sequence

EKQS) between strands 2 and 3 of the N-terminal kinase

domain. S155 forms a hydrogen bond across the b turn to

the side chain of E142. The likely rotamers of R155 all

clash with residues in TPX2 and cannot easily form a

hydrogen bond with E152 without significant rearrange-

ment of the b turn. This residue is shown in Fig. 4a. This

mutation results in a form of Aurora A with greatly reduced

cellular activity [152]; this is a noteworthy physiological
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demonstration that abnormally low, as well as abnormally

high, Aurora A activity is potentially transforming based

on ability to induce aneuploidy. A second somatic mutation

is V174M occurs at the junction of the B-helix and the

C-helix in the N-terminal domain. This mutation leads to

constitutive activation of Aurora A, probably by altering

the interaction of the N- and C-terminal domains. This

residue is also shown in Fig. 4b. The third somatic muta-

tion, S361Stop, deletes the last 30 or so residues of the

C-terminal domain of the kinase, likely leading to insta-

bility of the folded protein as well as deletion of the

C-terminal disordered residues.

As noted above, PAK1 phosphorylated S342 of human

Aurora A, whereas mutation of the equivalent residue,

S349, in Xenopus Aurora A to Ala and Asp leads to less

active and inactive kinase, respectively. The serine residue

S342 is shown in Fig. 4a in an active kinase structure. In

this conformation, S342 forms a hydrogen bond to E302,

which is in a segment just after the activation loop of

Aurora A (residues 274–299). Phosphorylation of S342 or

mutation of S342 to Asp would be expected to break this

interaction, potentially altering the conformation or

dynamics of the activation loop. Phosphorylation may

destabilize the conformation of the activation loop such

that it may extend away from the kinase domain in a

manner suitable for trans-autophosphorylation, thus lead-

ing to activation. Subsequent dephosphorylation of S342

may be required for an active monomeric kinase. Mutation

to D242 would lead to permanent inactivation due to the

repulsive interaction with E302. One recent report has

identified a SUMOylation event on residue K249 of mouse

Aurora A (K258 in human Aurora A). Mutation of this

Fig. 4 a Ribbon diagram of the

ADP-bound structure of human

Aurora A from PDB entry

1OL5. The chain is colored

from blue (N-terminus) to red
(C-terminus). The activation

loop is shown in magenta and

the activator TPX2 is colored

beige. Aurora A in this structure

is phosphorylated on T287 and

T288, and the DFG motif at the

beginning of the activation loop

is in the ‘‘DFG-in’’ position,

such that the F275 of the DFG

motif (magenta sticks) is located

under the C-helix (cyan).

b Close-up of the active site of

Aurora A from PDB entry

1OL5. Hydrogen bonds are

shown in dotted black lines
between pT288 and R255 of the

HRD motif, T292 of the

activation loop and D256 of the

HRD motif and K258. The

yellow spheres are active site

magnesium ions. The regulatory

spine of Aurora A is shown in

dots (H254, F275, Q195, and

L196). c Several structures in

the ‘‘DFGup’’ conformation are

shown. F275 points upwards

between the C-helix and the

N-terminal domain b sheet.

d Compound MLN8054 bound

to human Aurora A from PDB

entry 2WTV. F275 of the DFG

motif is in a ‘‘DFGup’’ position,

disrupting the salt-bridge

interaction between E181 and

K162. The activation loop is in

an inactive position, in contrast

to the active position in a and b
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residue to a non-SUMOylatable Arg results in defective

and multipolar spindles, abnormal localization to the

mitotic spindle, but normal kinase activity [70]. This resi-

due (K258), shown in Fig. 4b, is located two residues

C-terminal of D256 of the HRD motif and forms hydrogen

bonds with the side chains of D256 and T292 of the acti-

vation loop.

Aurora A and cancer

Phenotype and mechanism

In 1998, two independent studies for the first time identi-

fied significant upregulation of Aurora A as a common

feature of multiple classes of common solid cancers,

including colorectal, breast, ovarian, prostate, neuroblas-

toma, and cervical, in both primary tumor tissue and cell

lines [153, 154]. Aurora A is situated on chromosome

20q13.2, a locus that is frequently amplified in solid

tumors, accounting for some of the elevated expression.

However, in some cases Aurora A protein was increased in

the absence of DNA rearrangements, based on changes of

gene expression or protein stabilization. Aurora A tran-

scription is regulated by the ERK-responsive Ets pathway,

by STAT5a, by estrogen/GATA3 [155, 156], by HIF1

[157], and by additional pathways that are frequently ele-

vated in cancer (also see review [158]). A number of

Aurora A interacting and/or activating proteins are them-

selves elevated in cancer, and through their enhanced

interactions stabilize Aurora A from protein degradation.

Examples of these include NEDD9/HEF1 [21, 90], IQ-

GAP1 [159], and TPX2 [77, 160]; as with Aurora A,

overexpression of each of these interactors is oncogenic.

Conversely, some proteins known to participate in degra-

dation of Aurora A during the cell cycle, such as Chfr, are

commonly downregulated via promoter hypermethylation

or other means in cancer [161].

The pathological function of Aurora A has been fre-

quently reviewed, and the protein has attracted much

interest as a therapeutic target [10, 162–167]. There are a

number of phenotypes consistently associated with Aurora

A overexpression. These include the presence of supernu-

merary centrosomes associated with multipolar spindles,

aneuploidy, increased resistance to apoptosis, and deficient

cell cycle checkpoint functions (Fig. 5). A number of these

phenotypes arise from the failure of cytokinesis in cells

with overexpressed Aurora A, resulting in initial accumu-

lation of centrosomes [11, 154]. How Aurora A mediates

these effects involves altered interaction with numerous

partners and substrates, although surprisingly, even over-

expression of a kinase-dead form of Aurora A can induce

centrosomal amplification [11], indicating both that non-

catalytic activities of the protein may be particularly

important, and also that cancer treatment strategies based

on inhibiting Aurora A kinase activity may be problematic.

Upon overexpression, Aurora A is readily detected in cells

in all stages of the cell cycle and in both cytoplasmic and

nuclear compartments. Hence, a major and open question

has been whether the predominant oncogenic activities of

Aurora A arise from newly acquired interactions with

partners with which it does not normally associate, or from

constitutive, enforced interactions replacing normally

transient or cyclical functions.

One early focus of attention has been the dialog between

Aurora A and loss of p53 in tumorigenesis. The aneuploidy

associated with overexpression of Aurora A (or of Aurora-

A-stabilizing proteins such as NEDD9/HEF1) results in

triggering of mitotic checkpoints and rapid clearance of a

large part of the cell population due to subsequent apoptosis

[11, 21, 95]. Loss of p53 eliminates these checkpoints,

alleviating the clearance associated with Aurora A over-

expression [11]. In a model for mouse mammary tumors,

Aurora A was unable to induce tumorigenesis except in a

p53-deficient background, because of the induction of cel-

lular senescence and p16 expression [168]. Suggestively,

genomic instability and supernumerary centrosomes also

characterize the phenotype of cells or primary tumors that

lack p53 [169, 170]. Subsequent work demonstrated that

Aurora A and p53 are involved in a tightly regulated neg-

ative feedback loop that is lost in cancer. Aurora A

phosphorylation of S315 on p53 increases MDM2-depen-

dent degradation of p53 [171]. Reciprocally, interaction of

the p53 with the Aurora A A-box inhibits Aurora A kinase

activity and potential for transformation [172]. This

homeostatic relationship is deregulated in cancer. p53?/-

mice develop tumors with elevated Aurora A levels, but

tumors derived from p53-/- mice often have Aurora A

elevation in normal tissue, but gene deletion in lymphomas

[173]. A genome-wide expression array screen of human

breast tumors similarly indicated correlation of loss of p53

expression and Aurora A mRNA levels [173]. As one

explanation for this functional interaction, loss of p53 in

tumors is also associated with loss of heterozygosity (LOH)

or mutation of the FBXW7/Cdc4 gene, encoding a ubiquitin

ligase that degrades Aurora A [173, 174]. Latent infection

with Kaposi’s sarcoma herpesvirus (KSHV) is predisposing

for cancer. KSHV encodes a latency-associated nuclear

antigen (LANA) that induces Aurora A transcription; the

elevated Aurora A causes phosphorylation of p53 on S315

and a second residue, S215, creating a binding site for a

cellular ubitiquitin ligase complex that degrades p53 [175,

176]. Elevated Aurora A in tumors also targets the inacti-

vation of the p53-related protein p73, contributing to the

loss of mitotic checkpoint by disrupting the CDC20–MAD2

complex and promoting apoptosis resistance [177].
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Overexpressed Aurora A also influences the activity of

numerous transcription factors relevant for cancer pro-

gression, binding and promoting degradation of the AP-2a
tumor suppressor [178], and phosphorylating S32 and S36

of IjBa, leading to degradation of this protein [179, 180].

Loss of IjBa activates its partner, the transcription factor

NF-jB, which has wide action in promoting tumor growth

and survival. Aurora A phosphorylation also activates the

prosurvival kinase AKT [181] and potentiates the signaling

of oncogenic Ras by activating its interphase effector

RALA [182, 183]. Figure 6 is a current summary of pro-

teins known to interact with Aurora A either directly

(physically) or functionally; there are almost certainly

more that have not yet been determined. In addition, two

recent extensive peptide scanning and phosphoproteomics

studies have both refined our understanding of previously

defined Aurora A targets and identified still more candi-

dates for Aurora A regulation [89, 94]. For each, increased

Aurora A action in cancer has the potential to alter

functionality.

Interactions between Aurora A and Myc family members

(c-Myc and N-Myc) frequently contribute to carcinogenesis.

c-Myc overexpression has been reported to be accompanied

by overexpression and/or amplification of Aurora A in mul-

tiple types of cancer [184–186]. High expression of Aurora A

coupled with amplified MYCN (N-Myc) was observed in

human neuroblastoma cell lines and neuroendocrine prostate

cancer [187, 188]. In human ovarian and breast epithelial cell

lines, Aurora A overexpression stimulated human telomerase

reverse transcriptase (hTERT) and telomerase activity in part

by inducing c-Myc, which binds the telomerase promoter and

induces c-Myc transcription [189].

Several studies have demonstrated that overexpression of

Aurora A results in elevated levels of C-myc, whereas

inhibition of c-Myc with RNA interference attenuates Aur-

ora-A-induced oncogenic effects [189, 190]. In a study of

gastric cancer, Aurora A induction of c-Myc was shown to

depend on Aurora A induction of the GSK-3b and b-catenin/

TCF transcriptional complex, which positively regulates

transcription of c-MYC and additional cancer-relevant

Fig. 5 Aurora A activities in cancer. Aurora A expression is elevated

based on changes in DNA copy number, transcription, and/or changes

in protein stability. Overexpressed Aurora A induces multiple

categories of growth defect that promote cancer, outlined here

schematically; see text for details
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genes, including cyclin D1, VEGF, FGF18, and others [191].

Otto and colleagues found that Aurora A overexpression

results in enhanced stability of N-Myc protein, thus con-

tributing to proliferation of neuroblastoma cells regardless of

the presence of growth factors. This action is due to direct

interaction between Aurora A, N-Myc, and the SCFFbxw7

ubiquitin ligase complex and does not depend on the kinase

activity of Aurora A [187].

Reciprocally, c-Myc can upregulate the expression of

the Aurora A kinase, in part through inducing its

transcription [192]. However, although c-Myc binds to

some of the E-boxes present in the promoter region of

the mouse AurkA gene, it binds none of these in human

AURKA gene, implying that c-Myc can regulate Aurora A

expression in both a direct and indirect manner [192]. A

very recent study on Ba/F3 cells expressing JAK2 V617F

mutant also demonstrated c-Myc-dependent induction of

Aurora A expression [193]. These findings suggest a

positive feedback loop in which Aurora A and c-Myc

induce each other. Interestingly, a recent study employing a

Fig. 6 Extended Aurora A interaction network. Schematic indicates

proteins that known or highly likely to interact physically and/or

functionally (indirect interaction) with Aurora A/AURKA. All

proteins are indicated by official gene symbol. Interaction data were

collected using online databases String [251] (using medium confi-

dence score 0.4 and excluding text-mining-only results) and Ingenuity

[http://www.ingenuity.com/] (extracting only experimental and high

confidence predicted interactions). Data were imported, merged, and

visualized in Cytoscape [252]. Blue rim around protein indicates

direct protein–protein interaction; lack of rim indicates indirect

interaction. Green circles represent highly validated interactions

generally reported in publications. Blue circles represent high confi-

dence hits from larger screens, but are less well studied. Green lines
indicate interactions with Aurora A/AURKA; blue lines indicate

interactions among proteins described as interacting with Aurora

A/AURKA
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mouse model with induced expression of an oncogenic

gain-of-function mutation in p53, p53R172H, showed that

resulting squamous cell tumors were characterized by

elevated genomic instability, preferential Myc amplifica-

tion, and elevated Aurora A expression [194]. These

intriguing results suggest close coordination of p53, Myc,

and Aurora A activities in the development of solid tumors.

A discussion of all known or likely cancer-relevant

Aurora A targets would exceed the length limits of this

review. Many of the targets of Aurora A listed in Table 1

have both cell cycle and cancer-relevant roles. Clearly, the

potential for Aurora-A-dependent altered function of some,

such as RalA, Brca1, and Src, is immediately relevant to

cancer, and some studies have begun to address the con-

sequences of these interactions for tumor prognosis [42, 54,

183, 195–197]. For others, much work remains to be done.

Predictive value of Aurora A amplification

and overexpression

For effective clinical management of cancer, one goal has

been to better understand how the presence of Aurora A

amplification and/or overexpression impacts the likely

course of disease: in particular, whether it predicts greater

or lesser aggression or response to specific classes of drugs.

At present, the scientific literature tends to associate ele-

vated Aurora A expression with a poorer outcome in

tumors, although some studies contradict the trend. Par-

ticularly in cases in which Aurora A levels are increased

based on genomic amplification, it is difficult to conclu-

sively assign outcomes to contributions of Aurora A, in

part because the Aurora A amplicon on chromosome 20

frequently causes the enhanced expression of multiple

additional genes. We here summarize a number of studies

regarding Aurora A and prognosis in several common

cancers.

Increased copy number of the Aurora A gene, including

aneuploidy involving the region of chromosome 20

encompassing Aurora A, is common in ovarian cancer

[198–200]. However, among six published clinical studies

of Aurora A and disease prognosis, various conclusions

were reached [186, 201–205]. For instance, Lassmann et al.

[186] showed that high Aurora A expression is associated

with improved overall survival in patients with stage III

ovarian cancer receiving taxol/carboplatin therapy, but

significantly worse survival in patients who received the

carboplatin-based treatment without taxol. A second group

found increased overall and progression-free survival

(PFS) in patients with Aurora A positive tumors in com-

parison with the patients whose tumors did not express

Aurora A [205]. In contrast, Kulkarni et al. found that

expression of Aurora A strongly predicted shorter disease-

free survival in early-stage ovarian carcinomas, but not in

advanced-stage tumors [201]; three other groups also cor-

related high expression with aggressive disease and poor

outcome [202–204]. Interestingly, some recent work has

identified a negative correlation between expression of

BRCA2 and Aurora A that more strongly predicts prog-

nosis in patients with ovarian cancer. In these studies, the

nuclear accumulation of BRCA2 was significantly associ-

ated with good overall survival and disease-free survival in

patients with high-grade ovarian carcinoma, whereas

strong expression of Aurora A was significantly associated

with poor outcome [206, 207].

Increased copy number of Aurora A is often associated

with progression from a colonic polyp to an invasive

malignancy in colon cancer [208] and is one of the most

common copy number alterations in cancer. A number of

genes involved in cell cycle regulation are part of an

Aurora A amplicon, including TPX2 [209]: overexpression

of the TPX2 and Aurora A proteins in tumors has been

correlated by immunohistochemical analysis. In a multi-

variate analysis, Aurora A protein overexpression was

associated with chromosomal instability (identified as loss

of heterozygosity in 2p, 5q, 17q, and 18q) but did not

correlate with clinical outcomes [210]. In a second study,

higher Aurora A expression was associated with recurrence

in stage II and III in a large, homogenous cohort of colon

cancer patients [211]. In a third study, Aurora A was most

commonly detected in well or moderately differentiated,

versus poorly differentiated tumors [212]. In another study,

elevated Aurora A copy number correlated with increased

PFS and overall survival, but only in the context of a wild-

type Ras allele [213]. An Aurora A F31I polymorphism is

associated with increased aneuploidy in colon tumors and

has been described as a low penetrance cancer suscepti-

bility allele affecting multiple cancer types [214, 215]. A

rare S155R somatic mutation associated with colon cancer

has been suggested to promote aneuploidy by reducing the

interactions between Aurora A and TPX2 [152].

High expression of Aurora A overexpression is very

strongly linked to decreased survival in primary breast

tumors and is associated with high expression of HER2 and

progesterone receptor [216]. Correlated expression of

Aurora A, progesterone receptor (PR), and estrogen

receptor (ER) was found in an independent study [203]. In

investigations of the codon 31 polymorphism, the F/I and

I/I genotypes were associated with increased risk of breast

cancer, particularly in overweight women; in analysis of a

second polymorphism, V57I, the 57V allele was associated

with an increased risk of invasive breast cancer [217–219].

Overexpression of Aurora A localized to the perimembrane

compartment was associated with decreased 5-year sur-

vival in non-small cell lung cancer (NSCLC) and was also

associated with poor survival prognosis [220]. Aurora A

mRNA and protein are overexpressed in poorly or
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moderately differentiated lung cancer [221]. In lung can-

cer, a large case control study of Aurora A codon 31

polymorphisms found that the I/I genotype reduced odds

for lung cancer, but only in men [222]. A novel protein,

SLAN (suppressed in lung cancer), was recently identified

as binding and inactivating Aurora A [223]. Although

SLAN is frequently downregulated in lung cancer tissues

overexpressing Aurora A, the prognostic value of SLAN

expression is not yet known [223]. Patients with head and

neck carcinoma and elevated Aurora A mRNA had a

shorter disease-free and overall survival [224].

Aurora A inhibitors in the clinic

On the basis of the information summarized above, Aurora

A has been of high interest as a drug target, with drug

development and assessment effort much reviewed (e.g.,

[163, 225]). Numerous candidate drugs have undergone

preclinical testing in vitro and in animal models. As of

2012, compounds that had made it through preclinical

testing into phase I or II trials include MK-0457 and MK-

5108 (Merck), AZD1152 (Astra Zeneca), AT9283 (Astex

Therapeutics), PF-03814735 (Pfizer), AS703569 (EMD

Serono), PHA-739358 (Nerviano), and MLN8054 and

MLN8237 (Millennium). Many of these compounds have

activity against multiple structurally related kinases

including ABL, SRC, JAK2, VEGFR2, FLT3, and FGFR1,

which has influenced the clinical development of these

drugs towards certain tumor types with relevance to their

off-target activity. For example, one such application has

been in chronic myeloid leukemia (CML) where inhibitors

of Aurora kinase have been active against ABL kinase with

a T315I resistance mutation [226]. Those compounds still

in clinical assessment as of June 2012 are summarized in

Table 2.

Overall, Aurora kinase inhibitors have been assessed in

a broad range of hematological and solid tumors, with

efficacy primarily in disease stabilization in a minority of

patients. For example, a selective orally administered

inhibitor of Aurora A kinase, MLN8054, has completed

three phase I studies which identified useful clinical bio-

markers coupled with promising early indications of

antitumor activity measured by durable partial or minor

responses [227–229]. However, a striking somnolence

associated with use of MLN8054 was unexpected and

remains unexplained. One possibility is that benzodiaze-

pine-like central nervous system effects may be involved,

as MLN8054 is structurally related to this compound and is

active against the GABAA a1 receptor [228]. It is also

interesting to speculate that the recently detected interphase

activities of Aurora A in regulation of Ca2? signaling, cilia,

and in the function of post-mitotic neurons may be

relevant. At present, trials involving MLN8054 have been

stopped (Clinicaltrials.gov).

A number of phase II trials are ongoing using a second-

generation related compound, MLN8237/alisertib (Clini-

calTrials.gov identifiers NCT00830518, NCT00500903,

NCT01091428, and others). Toxicities consisted mainly of

reversible neutropenia along with mucositis and somno-

lence, with neutropenia as the dose-limiting toxicity. The

predominant toxicities of MLN8237 reflect the mechanism

of action in highly proliferating tissues (bone marrow, GI

epithelium, and hair follicles). Several applications of

MLN8237 are showing considerable promise. Preclinical

studies combining MLN8237 with other drugs showed

efficacy of this agent in combination with cytarabine (ara-

C) in cell lines, primary cells, and mouse models for acute

myeloid leukemia (AML), suggesting that this may be a

productive clinical application of this compound [230]. A

recent open-label, multicenter phase II trial assessed

MLN8237 in adults with advanced AML or intermediate-2/

high-risk myelodysplastic syndrome (MDS) in 57 patients.

Fourteen patients withdrew from the study because of

adverse events, which included neutropenia, thrombocy-

topenia, anemia, fatigue, and somnolence. Six (13 %)

patients achieved complete or partial responses; the pre-

dominant result was stable disease, which was observed in

17 (49 %) AML patients and in 2 (20 %) MDS patients

(NCT00830518 [231]). Another phase II trial has been

performed in patients with aggressive lymphomas [232].

Here, the overall response rate was 32 % (95 % CI

0.181–0.481) and response by histology varied from 20 to

23 % in aggressive B cell lymphomas to 57 % in T cell

non-Hodgkin lymphomas. Interestingly, the activity of this

Aurora A inhibitor did not correlate with Aurora A protein

expression level on tissue sections, in contrast to some

other target-directed therapies such as EGFR [233]. A

phase III trial was recently initiated (NCT01482962) in

patients with relapsed or treatment-refractory peripheral T

cell lymphoma (PTCL, a rare, aggressive form of non-

Hodgkin lymphoma) [234]. A discussion of the use of

MLN8237 in combination with paclitaxel in a phase I trial

for recurrent epithelial ovarian, fallopian, or primary per-

itoneal cancer or breast cancer indicated that the drug

combination is well tolerated and that antitumor activity is

observed in ovarian and breast cancer: dose escalation is in

progress [230].

In the case of the solid tumors, the reasons for the

overall modest clinical effect are also unclear and contrast

sharply with the results obtained in cell lines and xeno-

grafts discussed above. One possibility for such

discrepancy might be the existence of redundant signaling

pathways in tumor cells allowing for bypass signaling (i.e.,

drug-selected activation of Aurora A partners or effectors)

to drive cellular proliferation despite the blockade of
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Aurora A kinase. In a large-scale screen in breast cancer

cell lines, high Aurora A copy number conferred resistance

to GSK1070916, an inhibitor of Aurora B/C [235], thus

suggesting a bypass mechanism between functionally

related Aurora A paralogs. Practical considerations in

regard to allowable dose and schedule of drug adminis-

tration may also play a role in limiting efficacy; significant

neutropenia is the main dose-limiting toxicity of Aurora

inhibition, thus preventing prolonged Aurora A signaling

inhibition. Dose-escalation studies [236] demonstrated a

trend toward higher antitumor activity when neutropenia

was prevented by administration of growth factors.

In spite of all the biological properties discussed above,

it remains unresolved if Aurora kinase A is a true onco-

genic driver in human cancers. As noted above, the Aurora

A locus at 20q13 is frequently amplified as part of large

chromosomal amplicons, or even the entire arm or chro-

mosome copy number is increased. The relationship of the

Aurora copy number and its kinase activity to the sensi-

tivity to its specific inhibitors is presently unknown. The

Aurora gene copy number may have differential interaction

with the treatment drugs. Suggestively, in some studies, a

higher level of AURKA expression was noted in low-

grade, less aggressive tumors [212, 226]. Alternatively,

increased AURKA gene copy number may be an oncogenic

driver, but simultaneously render cells more susceptible to

chemotherapy owing to enhancement of a ‘‘mutator phe-

notype’’ [237] associated with abnormal cell divisions and

genomic instability in cells with hyperactive Aurora A

kinase.

Abundant preclinical data provide support for combin-

ing Aurora A inhibitors with a wide variety of existing

agents targeting the Aurora A partners and effectors dis-

cussed above, or with less specific antimitotic agents such

as microtubular poisons or ionizing radiation [238]. For the

last possibility, one rationale is based on the known activity

of Aurora A in enhancing tumor radioresistance [239]

through p53 phosphorylation and increased Akt activity

[171, 181]. In practice, inhibition of Aurora A sensitizes

cancer cells to radiation therapy (RT), even in tumors such

as head and neck carcinomas that contain p53-inactivating

mutations [163]. Moving further afield, we have previously

Table 2

Aurora kinase

inhibitor

Activity Aurora A IC50

(in vitro) (nM)

Aurora B IC50

(in vitro)

Aurora C IC50

(in vitro)

Clinical trial

status

Clinical trial

registry number

AMG900 Pan-Aurora kinase 5 4 nM 1 nM Active NCT01380756

NCT00858377

AT9283 Pan-Aurora kinase 5 3 nM – Active NCT01431664

NCT01145989

NCT00985868

MLN8237 Aurora A 61 200-fold higher – Active NCT01045421

NCT01091428

NCT00962091

NCT00697346

NCT01397825

NCT01034553

NCT01316692

NCT01471964

NCT01094288

NCT01540682

NCT01601535

NCT00739427

NCT01512758

NCT01567709

NCT01154816

NCT01482962

NCT01466881

AZD1152 Aurora A and Aurora B 1,368 0.37 nM – Active NCT00952588

NCT01354392

ENMD2076 Aurora A and Aurora B 13 350 nM – Active NCT00658671

NCT01104675
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identified synergy in combining inhibitors targeting Aurora

A and members of core proliferation and survival pathways

such as EGFR [240] and SRC [196]; EGFR and SRC

inhibition each independently enhance RT. Future strate-

gies may combine Aurora A inhibition with EGFR

inhibitors such as cetuximab or SRC inhibitors such as

dasatinib to improve clinical efficacy. If there is one con-

sistent lesson emerging from the field of systems biology, it

is that inhibition of a single target, no matter how prom-

ising, is likely to be insufficient for cancer therapy except

in the most unusual cases.
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