Skip to main content
. Author manuscript; available in PMC: 2013 Mar 26.
Published in final edited form as: Stat Med. 2010 Jul 30;29(17):1839–1856. doi: 10.1002/sim.3956

Table III.

Average mean square error value of parameters for each method.

True value Case 6 EMGTS EMMCEM
π2 0.3333 est. 0.321 0.334
mse 0.002 0.002
t50 100 est. 100.294 99.270
mse 4.371 4.391
σt50 60 est. 67.842 68.433
mse 128.657 137.873
β 2 est. 1.804 1.736
mse 0.130 0.164
σβ 1 est. 0.826 0.814
mse 0.059 0.0580
γ 1.5 est. 1.731 1.761
mse 0.168 0.135
σγ 1 est. 0.972 0.959
mse 0.111 0.109
η 0.5 est. 0.711 0.720
mse 0.273 0.275
ση 0.15 est. 0.211 0.232
mse 0.037 0.036
σε 0.1 est. 0.099 0.098
mse 0.00006 0.00005
cov(t50, β) ρ est. 0.075 0.072
mse 1.041 1.030
cov(t50, γ) ρ est. −0.045 −0.047
mse 0.040 0.0398
cov(t50, η) 0.15ρ est. −0.010 −0.011
mse 0.009 0.009
cov(β, γ) ρ est. 0.315 0.141
mse 0.566 0.578
cov(β, η) 0.15ρ est. 0.151 0.153
mse 0.025 0.023
cov(γ, η) 0.15ρ est. 0.121 0.130
mse 0.026 0.032

In this simulation, the individuals θj = (t50j, βj, γj, ηj) were generated from the multivariate normal distributions with mean (100, 2, 1.5, 0.5)T and covariance matrix Σ; Case 6: π1=1421,π2=721, σt50 = 60, σε = 0.1, and a compound symmetric covariance matrix Σ with ρ = 0.1. EMGTS is a method based on the mixture of EM and GTS; EMMCEM is a method based on the mixture of EM and MCEM.