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Imputation of high-density genotypes from low- or medium-density platforms is a promising way to enhance the efficiency
of whole-genome selection programs at low cost. In this study, we compared the efficiency of three widely used imputation
algorithms (fastPHASE, BEAGLE and findhap) using Chinese Holstein cattle with Illumina BovineSNP50 genotypes. A total
of 2108 cattle were randomly divided into a reference population and a test population to evaluate the influence of the reference
population size. Three bovine chromosomes, BTA1, 16 and 28, were used to represent large, medium and small chromosome size,
respectively. We simulated different scenarios by randomly masking 20%, 40%, 80% and 95% single-nucleotide polymorphisms
(SNPs) on each chromosome in the test population to mimic different SNP density panels. Illumina Bovine3K and Illumina
BovineLD (6909 SNPs) information was also used. We found that the three methods showed comparable accuracy when the
proportion of masked SNPs was low. However, the difference became larger when more SNPs were masked. BEAGLE performed
the best and was most robust with imputation accuracies .90% in almost all situations. fastPHASE was affected by the
proportion of masked SNPs, especially when the masked SNP rate was high. findhap ran the fastest, whereas its accuracies
were lower than those of BEAGLE but higher than those of fastPHASE. In addition, enlarging the reference population
improved the imputation accuracy for BEAGLE and findhap, but did not affect fastPHASE. Considering imputation accuracy and
computational requirements, BEAGLE has been found to be more reliable for imputing genotypes from low- to high-density
genotyping platforms.
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Implication

In this study, we compared the efficiency of three widely
used imputation algorithms, fastPHASE, BEAGLE and find-
hap, using Chinese Holstein cattle genotyped with the Illu-
mina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA,
USA). We found that the three methods showed comparable
accuracy when the proportion of masked single-nucleotide
polymorphisms (SNPs) was low. However, the difference
became larger when more SNPs were masked. BEAGLE
performed the best and was most robust with imputation
accuracies .90% in almost all situations. Our research is
helpful for imputing genotypes from low- to high-density
genotyping platforms.

Introduction

The recent development of high-throughput systems for
genotyping single-nucleotide polymorphisms (SNPs) has led
to an extraordinary amount of research activities. With
the availability of low- (Illumina Bovine 3K or BovineLD,
San Diego, CA, USA), medium- (Illumina BovineSNP50, San
Diego, CA, USA) and high-density (Illumina BovineHD, San
Diego, CA, USA) SNP platforms in dairy cattle, imputation of
high-density genotypes from low- or medium-density plat-
forms is a promising way to promote genomic selection
based on different SNP platforms in dairy cattle (Weigel
et al., 2010; Zhang and Druet, 2010).

Several imputation methods based on various statistical
models, such as the haplotype clustering algorithm (Scheet and
Stephens, 2006), the hidden Markov model (HMM; Browning- E-mail: xding@cau.edu.cn

729



and Browning, 2007), the Expectation Maximization (EM)
algorithm (Qin et al., 2002; Scheet and Stephens, 2006) and the
Markov Chain model (Li et al., 2010), have been proposed.
The accuracy of imputing missing genotypes using different
haplotype reconstruction methods has been mostly compared
using real data in humans (Marchini et al., 2007; Pei et al.,
2008; Nothnagel et al., 2009; Shriner et al., 2010; Weigel et al.,
2010). In dairy cattle, studies have been conducted to investi-
gate the accuracy of imputation from low- to high-density using
real SNP data sets from cattle populations (Weigel et al., 2010;
Zhang and Druet, 2010; Berry and Kearney, 2011); however,
comparisons between prevailing methods commonly used in
human populations have not been carried out in these studies.

The objective of this study was to investigate the imputa-
tion accuracy and computational requirements of three widely
used imputation algorithms in animals, fastPHASE (Scheet
and Stephens, 2006), BEAGLE (Browning and Browning,
2007) and findhap (VanRaden et al., 2011). We simulated
scenarios with different masking SNP rates using Illumina
BovineSNP50 genotypes of Chinese Holstein cattle to mimic
different density SNP panels in order to evaluate their
performance of imputing genotypes from low to high density.
Factors affecting imputation accuracy were also studied. The
results of this study are expected to be helpful in guiding the
application of imputation methods in genomic selection and
genome-wide association studies in Chinese dairy cattle,
especially when using low- or medium-density platforms to
select parents of the subsequent generation.

Material and methods

Data
A total of 2180 Chinese Holstein cattle (87 bulls and 2093
cows) were genotyped using the Illumina BovineSNP50
BeadChip (Illumina Inc.). The SNP data were edited using the
following procedures: (1) SNP genotypes with Mendelian
inheritance errors were treated as missing; (2) SNPs with call
rates ,0.90 or minor allele frequency (MAF) ,0.01 were
removed; and (3) cattle with call rates ,0.90 were deleted.
After selection, 2108 cattle (87 bulls and 2021 cows) and
45 727 SNPs remained on all chromosomes; the proportion
of missing SNPs was low, 0.58% on average after quality
control. Pedigree errors of 241 sire–daughter pairs were
detected on the basis of the 45 727 remaining SNPs using
program Cervus (Marshall et al., 1998). After pedigree cor-
rection, 13 of the 87 bulls were sires of all 2093 genotyped
cows (each bull had 83 to 358 daughters with an average
of 150), and the other 74 bulls did not have any genotyped
progeny; there were no sibship or parent/grandparent
relationships among 87 bulls.

The 2108 cattle were divided into a reference population
and a test population to evaluate the performance of different
imputation methods. The reference population consisted of
all bulls and half of the cows (randomly selected), whereas
the test population consisted of the remaining half of the
cows. The individuals in the reference population kept their
original genotype data, whereas in the test population various

proportions of SNP genotypes were masked. The masked
SNPs were then imputed from the genotype information
provided by the reference population. Three chromosomes,
BTA1, 16 and 28, were used to represent large, medium and
small chromosome size, respectively.

To make a comprehensive comparison of different impu-
tation methods, different proportions (20%, 40%, 80% and
95%) of masked SNPs in the test population were simulated
by randomly masking the existing genotypes on the three
chromosomes. For the masking proportion of 95% on BTA16,
three additional structures/sizes of the reference population
were considered: (1) 87 bulls only; (2) 87 bulls and 101 cows;
and (3) 87 bulls and 401 cows. The corresponding remaining
cows for each reference population would be the test
population. For each scenario, 10 replicates were simulated,
and, in each replication, SNPs were randomly masked at the
assigned proportion.

At the moment, Illumina has marketed two low-density
Bovine SNP chips. The original 3k (Bovine3K) has been
replaced by the BovineLD with 6909 (7k) SNPs (Boichard et al.,
2012). We used the real SNP information on 3k and 7k chips, in
which ,5% and 13% SNPs on a 50k chip (BovineSNP50) are
drawn equally from each chromosome, respectively. Therefore,
the results from BTA1, 16 and 28 are still representative for the
comparison of different imputation methods.

Imputation methods
Three widely used imputation methods were evaluated in
our study:

(1) fastPHASE: fastPHASE uses a localized haplotype clus-
tering algorithm (Scheet and Stephens, 2006). It assumes that
haplotypes of individuals in the population tend to cluster into
groups of closely related or similar haplotypes within a short
region of a chromosome. This method allows memberships
of clusters to vary along the chromosome based on an
HMM. Missing genotypes are sampled on the basis of allele
frequencies estimated from reference haplotypes, and then an
EM algorithm is used to estimate parameter values to infer
missing genotypes. The computing time of the fastPHASE
algorithm increases linearly with the number of ungenotyped
individuals and the number of haplotype clusters (Weigel
et al., 2010). The clusters represent groups of closely related
haplotypes. Its value is defined by parameter K in fastPHASE
v1.4. In our study, two values of K, 20 and 30, were applied.

(2) BEAGLE: BEAGLE is also a localized haplotype clus-
tering-based algorithm (Browning and Browning, 2007).
First, it gathers haplotype clusters at each marker and
defines an HMM to find the most likely haplotype pairs
based on the known genotypes of each individual. At that
time, the most likely genotype at the missing genotype loci
could be deduced from final haplotype pairs. Both BEAGLE
and fastPHASE use an HMM approach to cluster haplotypes.
However, some slight differences exist between them. First,
fastPHASE estimates parameters for cluster configuration
using an EM algorithm, whereas BEAGLE uses empirical
frequencies. Second, unlike fastPHASE, which relies on a
fixed number of haplotype clusters to form underlying
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hidden states in the Markov Chain, BEAGLE allows the
cluster number to dynamically change to better fit localized
linkage disequilibrium (LD) patterns (Pei et al., 2008).
According to the recommendation by Browning and
Browning (2007), the default 10 iterations are enough to
obtain a high accuracy for BEAGLE. In this study, the program
BEAGLE 3.3 was used and the number of iterations of the
phasing algorithm was set to 20.

(3) findhap: Different from fastPHASE and BEAGLE,
which mainly deal with a sample of unrelated individuals,
a pedigree-based algorithm is implemented in findhap v2.0
(VanRaden et al., 2011). The program is designed to integrate
the population with pedigree haplotyping. The process starts
with dividing each chromosome into segments and creating a
list of haplotypes from genotypes in the first round. In con-
tinued iterations, earlier created genotypes are matched again
using haplotypes that occurred later. The first two iterations
mainly focus on population haplotyping: only the highest
density genotypes are used in the first iteration, and then all
genotypes are used in the second iteration. After population
haplotyping, haplotypes are matched by using both pedigree
and population in the following two iterations. In this study,
the program was run with 20 iterations to capture a higher
accuracy. As reported by VanRaden et al. (2011), the length of
haplotype segments could affect the imputation accuracy and
computing time. Here the maximum and minimum lengths of
haplotype segments were defined as 100 and 50 for the
scenarios with 20%, 40% and 80% missing SNPs and as 600
and 75 for the scenario with 95% missing SNPs, respectively.

Accuracy of imputation
In each replicate, imputation accuracy was measured as
the percentage of correctly imputed genotypes in the test
population. A correctly imputed genotype was defined as
complete concordance between the original and the imputed
genotype of a masked SNP locus. We calculated average
imputation accuracy rate and standard error across all
masked loci on each chromosome for 10 replicates.

Computing time of the three programs was measured in
hours for fastPHASE and BEAGLE and in seconds for findhap
on a Linux cluster (2.0 GHZ Intel Xeon processor and Redhat
Enterprise 4.1) with three computation nodes.

Results

The detailed information of SNPs on BTA1, BTA16 and BTA28
is listed in Table 1. Generally, the three chromosomes have

almost the same average interval between SNPs (about
56 kb apart), equal average SNP call rate (0.98) and similar
average LD level (r2) between adjacent SNPs (0.21 to 0.28).
After randomly masking 20% to 95% of SNPs on each
chromosome in the test population, the number of available
SNPs ranged from 2301 to 143 for BTA1, from 1093 to 68 for
BTA16 and from 658 to 41 for BTA28.

Comparison of imputation accuracy
The results of comparison of BEAGLE, fastPHASE and findhap
are shown in Table 2. In general, for all three methods, the
imputation accuracy decreased along with the increase in
the proportion of missing SNPs. BEAGLE performed best and
yielded accuracies .90% in all cases. When the proportion of
masked SNPs was low, for example, 20% or 40%, fastPHASE
performed slightly better compared with findhap. However,
when more SNPs were masked, fastPHASE performed worse
than findhap. In particular, when the proportion of masked
SNPs increases to 95%, the accuracy from fastPHASE is 20%
and 14% lower than that of BEAGLE and findhap on average,
respectively.

In fastPHASE, haplotype clusters represent groups of
closely related haplotypes. In this study, we set 20 and
30 haplotype clusters to determine their influence on the
imputation accuracy of fastPHASE. As shown in Table 2, the
imputation accuracy of fastPHASE could be improved by
increasing the number of haplotype clusters, although the
improvement was very slight in all situations; in addition,
the computing time was doubled as shown in Table 3.

For each scenario, we made 10 replicates, and it is
demonstrated that all imputation methods yield very small
standard error in most situations, showing that these
methods perform robustly in genotype imputation. More-
over, for each method, the imputation accuracies for the
three chromosomes were almost identical in the case with
the same proportion of masked SNPs. For instance, the
accuracies for BTA1, BTA16 and BTA28 from BEAGLE were
0.986, 0.984 and 0.981, respectively, when 20% SNPs were
masked. Similarly, fastPHASE and findhap showed similar
robustness as well. This is expected as the average SNP
interval, SNP call rate and LD level on the three chromosomes
are almost equal (see Table 1).

Table 4 shows the performance of the three methods
in imputing genotypes from Illumina Bovine3K (3k) and
BovineLD (7k) to BovineSNP50 (50k). For all three approaches,
accuracy of imputing genotypes from 3k to 50k was higher
than for the scenario of randomly masking 95% SNPs.
This could be because high MAF and higher concentrations
at the ends of the chromosomes were criteria for SNP
selection for the Illumina chips. When imputing genotypes
from 7k to 50k, the accuracy of BEAGLE was .0.96 across
three chromosomes, more accurate than that from 3k to 50k.
This is similar to reports from Boichard et al. (2012). They
reported that the accuracy of imputing genotypes from 7k to
50k was about 0.97 for Australian Holstein without a sire
in the reference population (Boichard et al., 2012). The per-
formance of fastPHASE and findhap showed a similarity

Table 1 Genomic information of three bovine chromosomes in Chinese
Holstein

Chromosome No. SNP
Length
(Mb)

Call
rate

Average
interval (kb) LD (r2)

1 2877 161.06 0.98 55.98 0.27
16 1367 77.82 0.98 56.92 0.28
28 823 46.00 0.98 55.89 0.21

SNP 5 single-nucleotide polymorphism; LD 5 linkage disequilibrium.
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tendency, although their accuracies were still lower than
that of BEAGLE. In all situations, BEAGLE yielded high and
stable accuracy.

Computing time
All three programs were run on a Linux cluster (CPU 2.0 MHZ)
with three computation nodes. BEAGLE and fastPHASE can use
only one processor, whereas findhap can utilize a maximum
of seven processors simultaneously by implementing a parallel

computing algorithm. The mean computing time and standard
errors of different imputation algorithms for BTA1, 16 and 28
are listed in Table 3. fastPHASE required much more computing
time than the other two methods, and its computing time
increased markedly when the number of haplotype clusters
increased from 20 to 30. findhap was the fastest and could
accomplish imputation within 1 min in all cases.

The number of SNP markers also probably influences
computing time. For example, BTA1 had 2054 more SNPs

Table 3 Computing time of BEAGLE, fastPHASE and findhap at different masked SNPs rate based on 10 replicates

Chromosome
Proportion of masked SNP

genotypes in test population
BEAGLE 3.3 (20
iterations) (h)

fastPHASE 1.4 (20
haplotype clusters) (h)

fastPHASE 1.4 (30
haplotype clusters) (h)

findhap 2.0 (20
iterations) (s)

BTA1 0.20 0.893 6 0.049 55.892 6 0.364 115.196 6 0.808 23.333 6 2.739
0.40 1.244 6 0.055 39.123 6 0.620 81.920 6 0.745 23.111 6 2.088
0.80 4.681 6 0.242 37.140 6 0.204 78.893 6 0.550 23.222 6 1.787
0.95 18.531 6 0.635 37.583 6 0.306 79.090 6 0.538 73.889 6 3.586

BTA16 0.20 0.434 6 0.012 26.327 6 0.721 54.788 6 0.472 34.000 6 0.707
0.40 0.662 6 0.012 19.832 6 0.267 41.899 6 0.752 34.444 6 0.527
0.80 2.990 6 0.067 18.001 6 0.818 37.449 6 0.356 34.333 6 0.866
0.95 10.024 6 0.489 17.908 6 0.176 37.738 6 0.281 45.778 6 1.716

BTA28 0.20 0.207 6 0.013 15.686 6 0.148 33.420 6 0.173 25.889 6 2.369
0.40 0.333 6 0.013 12.702 6 0.300 26.570 6 0.312 25.444 6 1.130
0.80 1.632 6 0.125 10.474 6 0.035 22.640 6 0.109 25.444 6 0.726
0.95 5.830 6 0.303 10.939 6 0.224 22.550 6 0.097 33.778 6 1.093

SNP 5 single-nucleotide polymorphism.

Table 4 Imputation accuracy from BEAGLE, fastPHASE and findhap at Illumina 3k (Bovine3K) and 7k (BovineLD) chip

SNP chip Chromosome BEAGLE 3.3 (20 iterations) fastPHASE 1.4 (20 haplotype clusters) findhap 2.0 (20 iterations)

3k BTA1 0.943 0.775 0.910
BTA16 0.930 0.745 0.883
BTA28 0.914 0.731 0.876

7k BTA1 0.968 0.906 0.946
BTA16 0.967 0.891 0.938
BTA28 0.961 0.879 0.932

SNP 5 single-nucleotide polymorphism.

Table 2 Average imputation accuracy from BEAGLE, fastPHASE and findhap at different masked SNPs rate based on 10 replicates

Chromosome
Proportion of masked SNP

genotypes in the test population
BEAGLE 3.3

(20 iterations)
fastPHASE 1.4

(20 haplotype clusters)
fastPHASE 1.4

(30 haplotype clusters)
findhap 2.0

(20 iterations)

BTA1 0.20 0.986 6 0.001 0.970 6 0.001 0.981 6 0.001 0.951 6 0.001
0.40 0.984 6 0.001 0.967 6 0.002 0.979 6 0.001 0.955 6 0.001
0.80 0.972 6 0.001 0.913 6 0.003 0.931 6 0.003 0.952 6 0.002
0.95 0.918 6 0.004 0.724 6 0.005 0.721 6 0.004 0.869 6 0.004

BTA16 0.20 0.984 6 0.001 0.967 6 0.002 0.979 6 0.002 0.942 6 0.003
0.40 0.983 6 0.001 0.963 6 0.001 0.975 6 0.002 0.949 6 0.002
0.80 0.968 6 0.001 0.898 6 0.005 0.919 6 0.005 0.940 6 0.006
0.95 0.901 6 0.007 0.709 6 0.008 0.715 6 0.007 0.842 6 0.009

BTA28 0.20 0.981 6 0.001 0.957 6 0.002 0.971 6 0.002 0.943 6 0.003
0.40 0.978 6 0.001 0.952 6 0.002 0.966 6 0.003 0.950 6 0.003
0.80 0.960 6 0.001 0.889 6 0.005 0.915 6 0.005 0.933 6 0.008
0.95 0.913 6 0.009 0.699 6 0.006 0.700 6 0.010 0.889 6 0.029

SNP 5 single-nucleotide polymorphism.
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compared with BTA28, and hence the average computing
time for BTA1 was greater than that for BTA28. Another
factor affecting computing time is the proportion of masked
SNPs in the test population. With 20% masked SNPs,
fastPHASE needed much more computing time than with
95% masked SNPs. However, an opposite tendency was
observed in BEAGLE, in which the time increased with the
increase in masked SNP proportion. For findhap, the influ-
ence of masked SNP proportion was negligible when it was
20% to 80%. However, with 95% masked SNPs, findhap
needed slightly more time than did other missing levels.

Scale of reference population
Reference population size was taken into account to evaluate
the efficiency of imputation methods. As shown in Table 5, the
imputation accuracy from BEAGLE and findhap was improved
with increased reference population size. Particularly for
BEAGLE, its accuracy increased from 0.68 to 0.90 when the
reference population was increased from 87 bulls to 87 bulls
and 1011 cows, whereas a smaller improvement by 6% was
obtained for findhap. Compared with BEAGLE and findhap,
performance of fastPHASE was very stable with the lowest
accuracy in most situations; almost no differences were
observed when the size of the reference population was
increased. It is notable that the accuracy from findhap was 8%
and 10% higher than those from fastPHASE and BEAGLE
when the reference population was composed of 87 bulls
only. One possible reason is that the 2021 cows in the
test population are daughters of 13 bulls in the reference
population, and findhap can utilize the pedigree information.

Discussion

Imputation accuracy
There are already several reports on the performance of
BEAGLE and fastPHASE (Pei et al., 2008; Li et al., 2009;
Marchini and Howie, 2010) that show that fastPHASE per-
forms slightly better than BEAGLE in human populations.
However, the population structure in cattle is different, and
the data reported by Li et al. (2009) involved only 5%
masked SNPs. In our study, we compared mainly BEAGLE,
fastPHASE and findhap in scenarios with a high proportion of
masked SNPs in order to evaluate their performance when
imputing genotypes from low- to high-density genotyping
platforms. Our results indicated that BEAGLE performed
best and was most robust almost in all situations. fastPHASE

was severely affected by the proportion of masked SNPs,
especially when the masked SNP proportion was high. The
observation that BEAGLE outperformed fastPHASE is consistent
with the results in humans seen in the study by Browning
and Browning (2007). The comparison of three methods
when imputing genotypes from Illumina Bovine3K (3k) and
BovineLD (7k) to BovineSNP50 (50k) further indicated that
BEAGLE yielded higher and more stable accuracy. Our study
also found that 7k chip is an ideal low-density genotyping
platform for imputing.

Our results are very similar to those of Berry and Kearney
(2011), who imputed genotypes from the 3k panel to the 50k
panel in Holstein–Friesian cattle using Beagle. The con-
cordance between the actual and imputed genotypes in the
test group of animals did not vary across chromosomes and
was on average 95%. As they used a larger reference
population with 4732 animals and 764 animals as the test
group, the accuracy they obtained was slightly higher than
ours. Similar to BEAGLE, fastPHASE also uses an HMM
approach but with several differences that have implications
for speed and accuracy. fastPHASE fixes the number of
haplotype clusters in the model, whereas BEAGLE is more
flexible and dynamically varies the number of clusters at
each region. findhap was originally designed for genotype
imputation in livestock and takes pedigree information into
account. However, it seems that for dairy cattle these could
not make it better than BEAGLE. The possible reason for
BEAGLE’s outperformance is that the HMM is to some extent
superior to other algorithms (Li et al., 2009), and the
improvement in accuracy from pedigree information is tiny
when LD is high enough.

Marker density
Some investigators observed that imputation accuracy
increased with higher marker density (Pei et al., 2008;
Druet and Georges, 2010). With denser genotyped markers
around missing SNPs, more information could be used to
construct haplotypes and deduce the missing SNPs, and
therefore better imputation efficiency is expected. As the
slope of imputation accuracy decreased markedly with
increasing marker density, the benefit of increasing marker
density is more obvious for low-density regions (Druet
et al., 2010).

The effect of marker density is essentially transformed into
that of LD by the fact that denser markers usually cause
stronger patterns of local LD, which will help improve

Table 5 Average imputation accuracy of BEAGLE, fastPHASE and findhap with different reference population size in scenario of randomly masking
95% genotypes on chromosome 16

Composition of the reference
population

Composition of the test
population

BEAGLE 3.3 (20
iterations)

fastPHASE 1.4 (20 haplotype
clusters)

findhap 2.0 (20
iterations)

87 bulls 2021 cows 0.687 6 0.006 0.702 6 0.005 0.775 6 0.004
87 bulls and 101 cows 1920 cows 0.831 6 0.005 0.704 6 0.010 0.812 6 0.008
87 bulls and 404 cows 1617 cows 0.878 6 0.007 0.720 6 0.033 0.829 6 0.007
87 bulls and 1011 cows 1010 cows 0.901 6 0.007 0.709 6 0.008 0.842 6 0.009
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imputation accuracy (Yu and Schaid, 2007). The result of
imputation is population dependent, as different test popu-
lations have different LD levels. For example, the LD level (r2)
in Jersey is 0.38 (Weigel et al., 2010), whereas it is about
0.25 in our test population. Using almost the same imputa-
tion approach (fastPHASE with 30 haplotype clusters),
when masked SNP proportions were 20%, 80%, and 95%,
the imputation accuracies reported by Weigel et al. (2010)
were 0.017, 0.034, and 0.065 higher than those obtained
by us, respectively.

Compared with the SNPs distributed in the middle of a
chromosome, imputation errors appeared more often in
SNPs located at the beginning or end of the chromosome.
This is because the marker imputation relies on surrounding
markers, whereas the imputation for SNPs at both ends can
use information only from one side. Druet et al. (2010)
observed 2% higher error rates at both ends than in the
middle of a chromosome in Dutch Holstein, especially
for markers in the first or last 10 SNPs of a chromosome.
In our study, we also found that the mean imputation error
rate for markers at the first or last 5% SNPs of a chromosome
was 0.04% to 0.4% higher than that for markers in the
middle of the chromosome. Boichard et al. (2012) found
that increased concentrations of SNPs at the ends of the
chromosomes were helpful to improve imputation accuracy;
it was an additional reason for BovineLD imputation to be
more accurate than Bovine3K imputation, in addition to the
increased overall density of the BovineLD chip compared
with Bovine3K.

Computing time
The vital advantage of findhap is that it saves an enormous
amount of computing time. VanRaden et al. (2011) reported
that findhap took 2 h for 33 414 Holsteins with 43 385 actual
markers, and for the same population the time increased
only by 2.5 h even with 500 000 simulated markers. Com-
pared with findhap, fastPHASE and BEAGLE run much
slower, as they are both localized haplotype clustering-based
HMM approaches, and a large amount of time is required for
Monte Carlo Markov Chains (MCMC) iterations. Between
fastPHASE and BEAGLE, fastPHASE requires substantially
more intensive computation, as it takes into account all
observed genotypes when imputing each missing genotype,
whereas BEAGLE usually focuses on genotypes for a small
number of nearby markers when imputing each missing
genotype, which makes BEAGLE computationally more
efficient (Li et al., 2009). This is further supported by our
results. Moreover, the number of haplotype clusters also
influences the computing time of fastPHASE severely. Our
results showed that when the haplotype clusters were
increased from 20 to 30 the computing time was doubled,
although the improvement in accuracy was slight. Therefore,
the balance between computing time and imputing efficiency
for fastPHASE should be considered.

Generally speaking, the magnitude of the computing time
in fastPHASE is due to its EM algorithm, which is used to
estimate genetic parameters and haplotype frequencies,

whereas BEAGLE just adapts empirical frequencies to save
computing time. However, with less SNP genotypes, the step
of EM to find final likelihoods and parameters accelerated in
fastPHASE. Because BEAGLE produces posterior genotype
probabilities for imputed genotypes, when the number of
ungenotyped SNPs is increased, the amount of calculation,
including sampling haplotypes and producing posterior
genotype probabilities, is correspondingly increased. As shown
in our results, although fastPHASE runs slowest in all situa-
tions, the computing time was shortened with the increase
in the masked SNP proportion, whereas the computing time
for BEAGLE and findhap was increased. One alternative
solution to decreasing the computing time for BEAGLE
and fastPHASE is parallel processing of the chromosome, as
findhap implements a parallel computing algorithm.

Reference population size
For the situation with 95% missing SNPs, we changed the
reference population size to investigate its influence on
imputation accuracy. The size of the test population was
correspondingly decreased when the reference population
size was increased. The results showed that enlarging the
reference population improved the imputation accuracy for
BEAGLE but did not affect fastPHASE. Similar results were
found by Zhang and Druet (2010); in their study, the impu-
tation accuracy of DAGPHASE (Druet and Georges, 2010)
increased when the number of reference individuals was
increased,whereas with CHROMIBD (Druet and Farnir, 2011)
almost no differences were observed. Druet et al. (2010)
observed only small gains in imputation accuracy when the
reference population was enlarged with .1000 genotyped
individuals. In addition to the reference population size,
the relatedness among animals in the reference and test
population also affects the imputation accuracy; although
we did not consider it in this research, it can be done in
future studies.

In summary, BEAGLE performed the best and was robust
in genotype imputation compared with fastPHASE and
findhap. In the scenario of low-masked SNP proportion,
fastPHASE, findhap and BEAGLE were comparable, and
findhap was more efficient because of its fast computing
algorithms. Although fastPHASE and findhap performed
worse with the increase in proportion of missing SNPs,
BEAGLE continued to maintain higher accuracy in such
situations; it is more reliable for imputing genotypes from
low- to high-density genotyping platforms.
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