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Abstract
Ovarian cancer is often called the ‘silent killer’ since it is difficult to have early detection and
prognosis. Understanding the biological mechanism related to ovarian cancer becomes extremely
important for the purpose of treatment. We propose an integrative framework to identify pathway
related networks based on large-scale TCGA copy number data and gene expression profiles. The
integrative approach first detects highly conserved copy number altered genes and regards them as
seed genes, and then applies a network-based method to identify subnetworks that can
differentiate gene expression patterns between different phenotypes of ovarian cancer patients.
The identified subnetworks are further validated on an independent gene expression data set using
a network-based classification method. The experimental results show that our approach can not
only achieve good prediction performance across different data sets, but also identify biological
meaningful subnetworks involved in many signaling pathways related to ovarian cancer.

1. Introduction
Ovarian cancer is the fifth leading cause of cancer-related deaths among women in the
United States [1]. It has been estimated that 21,990 women will be newly diagnosed and
15,460 women will die of ovarian cancer in 2011 [1]. Most ovarian cancers are serous
ovarian carcinomas and only less than 20% of them can be early detected. Prognosis for
high grade serous carcinoma patients remains unsatisfactory because most patients develop
resistance to chemotherapy after surgery and eventually die [2]. Therefore, chemoresistance
has been a critical clinical problem and it is important to understand the biological
mechanism of ovarian cancer to overcome the resistance to chemotherapy. Many research
topics, such as gene mutation analysis [3], biomarker identification [4], etc., have been
carried out to study the chemotherapy resistance. Among them, identification of pathway
networks in ovarian cancer becomes an important topic in study.

New technologies have generated large amounts of high-throughput genomic and proteomic
data related to ovarian cancer, which make it possible to conduct a comprehensive study
from the computational point of view to better examine the cancer genome. The Cancer
Genome Atlas (TCGA) project is the one of the studies that collects various biological data
for ovarian cancer using genome analysis techniques. It provides opportunities and
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challenges to develop computational methods to study cancers based on multiple biological
data, which can reveal different aspects and levels of biological system function. Traditional
computational or statistical approaches, mainly focusing on one type of data source, cannot
provide a system view of complex biological system. Current and future needs require
sophisticated integration of diverse sets of data, aiming to better understand the main
features (e.g., components and their interactions) of biological processes or systems [5, 6].
Many integrative approaches have been proposed to study glioblastoma based on TCGA
data portal [7–9]. A recent study explored mRNA expression, microRNA expression,
promoter methylation and DNA copy number data on TCGA ovarian cancer samples and
provided biologically meaningful results successfully [10]. However, the paper [10] has not
conducted a sophisticated integrative analysis across different data sources. Here, we
propose a new integrative framework for pathway network identification in ovarian cancer.

Our integrative approach is based on the hypothesis that the cancer phenotype can be
reflected by gene expression profiles, which are driven by genomic changes at the copy
number level. It is also based on the hypothesis that the highly conserved copy number
altered genes might not be differentially expressed at the gene expression level. Therefore,
our approach first detects the consensus regions in the DNA copy number data in high-grade
ovarian cancer patients and regards the genes with conserved copy number altered as the
seed genes. Then a network identification method, based on gene expression profiles and
protein-protein interaction network [11], is used to identify significant subnetworks from
seed genes that could differentiate two different phenotypes among patients according to the
overall survival time. Finally, the identified subnetworks are cross validated on a public
gene expression data set using a network-based prediction model. Our results show that the
proposed integrative approach can achieve good prediction performance with a high
reproducibility across different data sets. Moreover, it also identifies several important
pathway related networks, such as ErbB signaling pathway and Notch signaling pathway,
which are likely associated with the development of ovarian cancer.

2. Materials and method
2.1. Integrative framework

Fig. 1 illustrates an integrative framework for copy number analysis, subnetwork
identification and prediction by integrating DNA copy number data, mRNA gene expression
profiles, protein-protein interaction network and clinical information. From DNA copy
number data, we detect significant consensus amplified and deleted regions using Genomic
Identification of Significant Targets in Cancer (GISTIC) algorithm [12] and then extract the
genes located in these regions. We consider these genes are highly related to the ovarian
cancer mechanism and may function as ‘drivers’ to form different phenotypes. We also
curate ovarian cancer related genes from literature [2] and combine them with the consensus
genes from copy number data as seed genes for subnetwork identification. Then we identify
subnetworks based on the seed genes using bootstrapping Markov random field-based
method (BMRF), which integrates protein-protein interaction networks and the gene
expression profiles. For the purpose of evaluation, we adopt a public gene expression data
set in the study. We train a classifier on the TCGA gene expression data set on the identified
significant subnetworks and then test on the public data set using network-constrained
support vector machines (netSVM). Finally we measure the prediction performance and
conduct survival analysis on these two gene expression profiles.

2.2. Data description
DNA copy number data and mRNA gene expression data for ovarian serous
cystadenocarcinoma cases are obtained from TCGA data portal. 157 patients have DNA
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copy number expression, mRNA gene expression, as well as the clinical survival
information. Among them, 58 patients have overall survival time less than 2 years and 45
patients have overall survival time larger than 4 years. We categorize these two groups as
‘high risk’ and ‘low risk’, respectively. An independent public mRNA gene expression data
set (GSE3149) for ovarian cancer cases is obtained from Bild et al. [13]. Accordingly, 45
patients are grouped in ‘high risk’ and 49 patients are grouped in ‘low risk’. The copy
number data are arrayed by Agilent Human Genome CGH microarray 244A chips and both
mRNA gene expression profiles are arrayed by Affymetrix HG U133A chips. The copy
number data are normalized using dChip software [14] and mRNA gene expression data are
normalized by Plier and quantile normalization methods [15]. Subnetworks are identified
from protein-protein interaction (PPI) network obtained from the HPRD database [16],
which contains about 9,000 genes and 35,000 interactions. We convert probe set IDs used in
gene expression data to Entrez gene IDs. The probe set ID with the largest variance across
patients’ samples is used where multiple probe set IDs are linked to one Entrez gene ID. By
mapping the PPI network and two data sets we obtain 7,249 genes in 27,885 interactions to
be investigated.

2.3. DNA copy number consensus region detection
The segmentations on the DNA copy number data are detected by Circular Binary
Segmentation (CBS) method [17]. The CBS is a modified binary segmentation method that
splits the chromosome into regions of equal copy number to reduce noises and estimates
parameters through permutation distribution. The significantly amplified or deleted genomic
regions across the ovarian cancer samples are detected by GISTIC algorithm [12] on the
segmented DNA copy number data. The GISTIC algorithm takes segmented copy number
data and identifies regions of the genome that are significantly amplified or deleted across a
set of samples. A G-score is assigned to each aberration that considers the amplitude of the
aberration as well as the frequency of its occurrence across all samples. False Discovery
Rate q-values are then calculated for the aberrant regions, and regions with q-values below a
user-defined threshold are considered significant. Here we set both amplification threshold
and deletion threshold as 1 (4 copies for amplification and 1 copy for deletion), and the false
discovery rate q-value threshold as 0.01.

2.4. Network identification by bootstrapping MRF (BMRF)
We apply a bootstrapping Markov random file (BMRF) method to the TCGA gene
expression data by integrating protein-protein interaction network to identify significant
subnetworks that could distinguish the expression patterns between ‘high risk’ and ‘low
risk’. BMRF method follows a maximum a posteriori (MAP) principle to form a novel
network score that explicitly considers pairwise gene interactions in PPI networks.

Let’s first define a random variable vector f = {f1, · · ·, fm}to represent a set of
discriminative scores of m genes (or proteins) between two phenotypes. In the context of a
PPI network, Let S represent a gene set of m genes in a network and Ni represent connected
neighbors of gene i. We define a pairwise clique C2 on Ni and S as C2 = {{i,i′}| i′ ∈ Ni, i ∈
S}.

The random variable vector f is said to form a Markov random field on S with respect to Ni
and subject to the following conditions:

(1)
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The second criterion in Equation (1) is the Markov property of a random field, which states
that the probability of a certain configuration at gene i is statistically independent of the
configurations of all other genes (j ∈ S) given configuration Ni.

The possible configuration f of a set of random variable vector F obeys a Gibbs distribution
if the joint distribution takes the following form:

(2)

where Z is a normalizing constant given by  and U is given by .

U is an energy function that is determined by a sum of clique potentials Vc(f) over all
cliques. Clique potentials allow the modeling of knowledge (a priori) about the contextual
interactions between genes at neighboring sites. For simplicity, we usually assign 0 potential
to all cliques of size greater than 2. The energy U(f) corresponds to the probability of that
configuration. From Equation (2), we can see that lower energies correspond to more likely
configurations. The parameter T is often referred to as ‘temperature’ that controls the
sharpness of the distribution. Z is a normalization constant and does not need to be
calculated.

Denote the observed discriminative scores of genes between two phenotypes as z = {z1, · · ·,
zm}. Here, we define zi as the z-score of its corresponding p-value pi using zi = Φ−1(1 − pi),
where Φ−1 is the inverse normal cumulative density function (CDF) [18]. We assume that
the observed discriminative score is a result of the addition of independent zero mean
Gaussian noise to the underlying discriminative score; z = f + e, e ~ N (0,1). One possible
estimate of the underlying discriminative score f is the MAP estimate f̂ that maximizes the
likelihood of posterior probability ( log P(f | z) ); with the help of Bayes’ rules and Gibbs
distribution, it is equivalent to state that the MAP estimate f̂ minimizes the following

posterior potential function: . The first term in the posterior potential
function is the prior potential given by:

(3)

where di is the degree of gene i in the PPI network, k is the number of interactions (or
edges), and λ is a trade-off parameter. The first term in Equation (3) is the average
discriminative score in a subnetwork; the second term in Equation (3) imposes the
smoothness across the subnetwork, while putting more weights on the genes with large
degrees. Note that the posterior potential function is normalized by the number of genes and
the number of edges in the subnetwork, hence, independent of the subnetwork size.

The second term in the posterior potential function is the likelihood potential given by:

(4)

where γ is a trade-off parameter. The likelihood potential gives the average square of
difference between observed and underlying discriminative scores, given the assumption of
a Gaussian distribution of the noise signal with 0 mean and 1 standard deviation.
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Thus, we can define the subnetwork score as the negative posterior potential function that
takes into account the dependency among the genes of a subnetwork, which, in the form of
estimated discriminative scores, can be defined as follows:

(5)

Once we define the MRF-based network score, a modified simulated annealing search
algorithm is then developed to efficiently find optimal or suboptimal subnetworks with
maximal network scores. Finally, to improve their reproducibility across data sets, a
bootstrapping scheme is implemented to statistically select confident subnetworks. BMRF
method has the advantage in identifying hub genes that usually express little changes among
different phenotypes and are hard to detect, therefore improves the mechanism study of
ovarian cancer. In this experiment, we determine the significant subnetworks according to
network size and network score. A network is considered as significant if its size is greater
than 5 and the network score is larger than 1.65 (p ≤ 0.05; normal distribution).

2.5. Network constrained support vector machines (NetSVM)
Given a training sample set (x1, y1), …, (xl, yl) with p features and l samples, where xi ∈ Rp

and yi ∈ {−1, +1}, the SVM learning algorithm aims to find a linear function of the form f
(x) = β · x + b, with β ∈ Rp and b ∈ R such that a data point x is assigned to a label +1 if f(x)
> 0, and a label −1 otherwise. Consider a gene network that is represented by a graph G =
(V, E, W), where V is a set of vertices that correspond to p genes, E = {u ~ v} is a set of
edges indicating that gene u and v are linked on the network and W is the weights of the

edges. The degree of a vertex v is defined as , where w(u, v) indicates the
weight of edge u~v. For this application, the weights could represent the probabilities of
having edges between two vertices. Following Chung et al. [19], we define the Laplacian
matrix L of G with the uvth element to be:

(6)

This matrix is symmetric and non-negative definite and its corresponding eigenvalues or
spectra reflect many properties of the graph as detailed in [19].

We define the network-constrained SVM given non-negative parameter η as follows:

(7)

Note that L can be written as L = SST, where S is the matrix whose rows are indexed by the
vertices and whose columns are indexed by the edges of G such that each column

(corresponding to an edge e = {u, v}) has an entry  in the row corresponding to

u, an entry  in the row corresponding to v, and zero entries elsewhere.
Therefore we can see that βTLβ can be re-written as
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(8)

From this representation we can understand that the added regularization term ηβTLβ
imposes the smoothness of parameters (coefficients) β over the network via penalizing the
weighted sum of squares of the scaled difference of coefficients between neighboring
vertices in the network.

The solution of Equation (7) could be obtained by reducing it to a conventional SVM
optimization problem based on the property of L that is symmetric and semi-positive
definite. We set equal weight 1 for all connections in PPI database in our experiment.

2.6. Classification performance merits and survival analysis
For the identified subnetworks, we conduct three-fold cross validation on TCGA data set
and independent test on the public data set. During the cross validation iteration, each time
we leave one fold as validation set and the others as training set. Note that the folds are
stratified so that they contain the approximately same proportions of labels as the original
data. The three-fold cross validation procedure is repeated 100 times in order to get more
reliable performance estimation by different randomizations. The average validation
performance is reported.

We evaluate the prediction performance through several statistical analyses. Given the true
labels of samples and prediction results, we use the Receiver Operating Characteristic
(ROC) curve [20] and the area under the curve (AUC) to measure the prediction accuracy of
the classifier. ROC curve is a graphical plot of true positive rate (TPR) vs. false positive rate
(FPR). AUC is an important performance measure that provides an overall measure of
accuracy for the prediction. Furthermore, accuracy, sensitivity and specificity are calculated
as well.

Also, given the sample survival time information, we conduct the Kaplan-Meier survival
analysis [21] for the prediction results to generate plots for overall survival time. To
compare the difference of two survival curves, p-value and hazard ratio are reported. P-value
is calculated by using the log-rank test and hazard is calculated using the Cox proportional
model.

3. Results and discussion
Fig. 2 shows the heatmap of the TCGA copy number data and detected consensus regions
for both amplification and deletion. There are 869 amplification regions and 979 deletion
regions that are significantly consensus across all the high grade ovarian cancer tumor
samples. 751 and 816 genes are located in the amplification regions and deletion regions,
respectively. Some of these genes are functionally related to kinase, transcription factor,
oncogenes, etc. For example, CCNE1 and MYC are located in the focal amplification
regions and they are oncogenes. SMAD4 is located in the focal deletion region and it is a
tumor suppressor gene. These findings are biologically interesting; however, many of them
do not have clear functional annotation because of the limited knowledge. Most of genes are
isolated in the context of PPI network; and it is difficult to understand the underlying
biological mechanism even though they are important to sever as the potential ‘drivers’ in
ovarian cancer. Therefore we treat these genes as the seed genes in the subnetwork
identification methods.
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We also collect 74 genes associated with ovarian cancer pathways from literatures [2],
which are functionally related to tumor suppressor, oncogenes, signaling and tumor biology.
Finally we obtain 511 genes as the seed genes from DNA copy number data after mapping
the genes to PPI network.

We identified subnetworks from TCGA gene expression data and the PPI network, using
BMRF method for all seed genes. Based on the network score and network size, 36
subnetworks are significantly (p < 0.05) showing different expression patterns between
‘high risk’ and ‘low risk’ groups on the TCGA data set. We trained a classifier using
netSVM based on these subnetworks with cross validation. The accuracy (standard
deviation) of three-fold cross validation is 79.53% (0.0313) with 76.02% (0.0584) sensitivity
and 82.26% (0.0312) specificity. The classifier is further validated on an independent gene
expression data set [13] and achieves 74.47% accuracy with 62.22% sensitivity and 85.71%
specificity. The ROC curves for cross validation and independent test are shown in Fig. 3.
Kaplan-Meier analysis of independent test in Fig. 4 also shows significant different (p =
0.0003) in overall survival between two groups predicted as ‘high risk’ and ‘low risk’. We
have also performed prediction using traditional gene selection method T-test (220 genes
with p < 0.01) and conventional SVM and achieved 86.92% accuracy for cross validation
and 69.15% accuracy for independent test. As a comparison, our proposed method achieves
better reproducibility across different data sets. Moreover the identified genes by the
proposed method are more biologically meaningful than the ones selected by T-test in terms
of GO functional annotation, where many signaling pathway related genes are identified by
the proposed method (see below), while no significant pathway is enriched in the genes
selected by T-test.

There are in total 224 genes in the identified subnetworks, grown from 36 seed genes.
Among these seed genes, 29 genes are from copy number altered genes and 11 genes are
from literature collection (four genes: CCNE1, JAK2, SMAD4 and MYC are overlapped).
In terms of gene family of identified seed genes, seven are oncogenes (EGFR, JAK2, JUN,
LPP, MYC, NOTCH2 and RAF1); two are tumor suppressors: BRCA1 and SMAD4; and
other genes are belonging to transcription factors, cell differentiation markers, protein
kinases, etc. Note that CCN1, MYC, BRCA1 are also reported in the study of [10], which
indicates that our proposed method could identify biological meaningful genes.

We then conducted functional annotation and pathway analysis using MsigDB database [22]
for the identified subnetworks. The functions of ‘Cell cycle’, ‘Apoptosis’, ‘Nucleus’ and
‘DNA repair’ are significantly enriched in some of the subnetworks, shown in Fig. 5. These
findings are consistent with our understanding of the cancer development.

Interestingly, many signaling pathways are also significantly enriched in several
subnetworks, for example, ErbB signaling pathway (Fig. 5(a), Fig. 6(a)), Notch signaling
pathway (Fig. 5(b), Fig. 6(b)), NFκB signaling pathway (Fig. 7(a)), and TGF beta signaling
pathway (Fig. 7(b)). Signaling pathway is more complicated and diverse. Epidermal growth
factor receptor (EGFR) and ERBB2/HER-2 are members of the ErbB family of tyrosine
kinase receptors. The studies have shown that the aberrant activity of EGFR and ERBB2 are
important in tumor growth and development. Moreover, the overexpression of EGFR and
ERBB2 and their downstream targets is associated with resistance to ovarian cancer
chemotherapy [23]. Notch signaling pathway has been studied in many papers showing that
it is active in ovarian cancer [24–27]. It is suggested that the inhibition of Notch signaling
may be a therapeutic strategy for ovarian cancer [27]. NFκB transcription factors are key
regulators of cell proliferation and apoptosis [28]. It is believed that changes in the upstream
pathways will deregulate NFκB activation in cancer. Notice that many studies have focused
on gene RSF-1 in NFκB network (Fig. 7(a)) and shown that it is involved in paclitaxel
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resistance in ovarian cancer [29, 30]. Transforming growth factor-beta (TGF-beta) is a
tumor suppressor, which is involved in many types of human cancer, including ovarian
cancer [31]. Recent study also shows that the activated TGF-b signaling pathway in omental
metastases of ovarian cancer is a potential therapeutic target [32].

4. Conclusion
We have proposed an integrative framework to analyze TCGA ovarian cancer data by
integrating DNA copy number data, microarray data, protein-protein interaction data and
patient clinical information. After detecting highly conserved copy number altered genes, we
have applied network-based methods to identify pathway networks that can differentiate
different expression patterns between different phenotypes. The experimental results have
shown that our identified subnetworks could achieve good prediction performance and
generalizability on independent data set using a network-constrained classifier. The results
also show that our integrative approach can identify biological meaningful subnetworks that
related to the development of ovarian cancer and drug resistance.

For the future work, the proposed method will be further enhanced through optimal
parameter selection, statistical assessment and multiple hypothesis testing. Moreover, more
ovarian cancer samples from TCGA portal and public data sets will be investigated.

Acknowledgments
This research was supported in part by NIH Grants (CA139246, CA149653, CA149147, and NS29525-18A1) and a
DoD/CDMRP grant (BC030280).

References
1. Jemal A, Bray F, et al. CA Cancer J Clin. 2011; 61(2):69–90. [PubMed: 21296855]

2. Bast RC Jr, Hennessy B, Mills GB. Nat Rev Cancer. 2009; 9(6):415–28. [PubMed: 19461667]

3. Norquist B, Wurz KA, et al. J Clin Oncol. 2011

4. Tcherkassova J, Abramovich C, et al. Tumour Biol. 2011

5. Hanash S. Nat Rev Cancer. 2004; 4(8):638–44. [PubMed: 15286743]

6. Taylor IW, Linding R, et al. Nat Biotechnol. 2009; 27(2):199–204. [PubMed: 19182785]

7. Cooper LA, Kong J, et al. IEEE Trans Biomed Eng. 2010; 57(10):2617–21. [PubMed: 20656651]

8. Ovaska K, Laakso M, et al. Genome Med. 2010; 2(9):65. [PubMed: 20822536]

9. Gundem G, Perez-Llamas C, et al. Nat Methods. 2010; 7(2):92–3. [PubMed: 20111033]

10. TCGA. Nature. 2011; 474(7353):609–615. [PubMed: 21720365]

11. Clarke R, Brunner N, et al. Proc Natl Acad Sci. 1989; 86:3649–3653. [PubMed: 2726742]

12. Beroukhim R, Getz G, et al. Proc Natl Acad Sci U S A. 2007; 104(50):20007–12. [PubMed:
18077431]

13. Bild AH, Yao G, et al. Nature. 2006; 439(7074):353–7. [PubMed: 16273092]

14. Zhao X, Li C, et al. Cancer Res. 2004; 64(9):3060–71. [PubMed: 15126342]

15. Affymetrix. Affymetrix I; Santa Clara, CA: 2005.

16. Mishra GR, Suresh M, et al. Nucleic Acids Res. 2006; 34(Database issue):D411–4. [PubMed:
16381900]

17. Olshen AB, Venkatraman ES, et al. Biostatistics. 2004; 5(4):557–72. [PubMed: 15475419]

18. Ideker T, Ozier O, et al. Bioinformatics. 2002; 18(Suppl 1):S233–40. [PubMed: 12169552]

19. Chung, F. CBMS Reginal Conferences Series. Vol. 92. American Mathematical Society;
Providence: 1997. Spectral Graph Theory.

20. Witten, I.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann; 2000.

CHEN et al. Page 8

Pac Symp Biocomput. Author manuscript; available in PMC 2013 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



21. Kaplan E, Maier P. J AM Stat Assoc. 1958; 53:457–481.

22. Subramanian A, Tamayo P, et al. Proc Natl Acad Sci U S A. 2005; 102(43):15545–50. [PubMed:
16199517]

23. de Graeff P, Crijns AP, et al. Br J Cancer. 2008; 99(2):341–9. [PubMed: 18628764]

24. Rose SL. Int J Gynecol Cancer. 2009; 19(4):564–6. [PubMed: 19509550]

25. Choi JH, Park JT, et al. Cancer Res. 2008; 68(14):5716–23. [PubMed: 18632624]

26. Park JT, Chen X, et al. Am J Pathol. 2010; 177(3):1087–94. [PubMed: 20671266]

27. Shih IM, Wang TL. Cancer Res. 2007; 67(5):1879–82. [PubMed: 17332312]

28. Rayet B, Gelinas C. Oncogene. 1999; 18(49):6938–47. [PubMed: 10602468]

29. Sheu JJ, Guan B, et al. J Biol Chem. 2010; 285(49):38260–9. [PubMed: 20923775]

30. Choi JH, Sheu JJ, et al. Cancer Res. 2009; 69(4):1407–15. [PubMed: 19190325]

31. Zhang YY, Li X, et al. Yi Chuan Xue Bao. 2004; 31(8):759–65. [PubMed: 15481528]

32. Yamamura S, Matsumura N, et al. Int J Cancer. 2011

CHEN et al. Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2013 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Illustration of an integrative framework for TCGA ovarian cancer data analysis.
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Fig. 2.
(a) Heatmap of TCGA copy number data and (b) detected significant consensus regions.
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Fig. 3.
ROC curves of three-fold cross validation on the TCGA data set and independent test on the
public data set.
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Fig. 4.
Kaplan-Meier overall survival analysis of three-fold cross validation on the (a) TCGA data
set and (b) independent test on the public data set.
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Fig. 5.
Subnetworks identified from TCGA ovarian cancer gene expression data set. Subnetworks
are merged if more than 2 genes are common. Node shape indicates the seed gene (hexagon)
or non-seed gene (ellipse). Node color indicates the fold change between ‘high risk’ and
‘low risk’ groups. Red represents over-expressed in ‘high risk’ group and green reflects
over-expressed in ‘low risk’ group. Enriched pathways and GO functional annotations are:
(a) ErbB signaling pathway: p=2.43e-10; Cell cycle: p=1.47e-07. (b) Notch signaling
pathway p=1.11e-16; Apoptosis p=3.76e-04. (c) Genes involved in Homologous
Recombination Repair p=8.56e-08; Nucleus p=6.61e-04.
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Fig. 6.
Enriched pathways and GO functional annotations are: (a) ErbB signaling pathway:
p=9.10e-13; Signal transduction p=2.33e-07. (b) Notch signaling pathway p=2.86e-15.
Figure legends are same as the ones in Fig. 5.
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Fig. 7.
Enriched pathways and GO functional annotations are: (a) NFκB signaling pathway
p=7.03e-05. (b) TGF beta signaling pathway p=1.88e-06. Figure legends are same as the
ones in Fig. 5.
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