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SUMMARY
In order to link neural activity with cognitive function, information is needed about both the
temporal dynamics and the content of neural codes. Traditionally, recording single neurons in
animals has been the primary means of obtaining high temporal resolution as well as precise
information about neural tuning properties such as selectivity for different sensory features.
Recent fMRI studies in humans have been able to measure feature selectivity within specific sub-
regions of sensory cortex (e.g., orientation selectivity in primary visual cortex, or V1) [1, 2].
However, investigating the neural mechanisms that support cognitive processing – which often
occur rapidly on a sub-second scale – using a temporally insensitive method such as fMRI
severely limits the types of inferences that can be drawn. Here, we describe a new method for
tracking the rapid temporal evolution of feature-selective information processing with scalp
recordings of EEG. We generate orientation-selective response profiles based on the spatially
distributed pattern of steady-state visual evoked potential (SSVEP) responses to flickering visual
stimuli. Using this approach, we report a multiplicative attentional modulation of these feature-
selective response profiles with a temporal resolution of 24ms–120 ms, which is far faster than
that achieved using fMRI. Finally, we show that behavioral performance on a discrimination task
can be predicted based on the amplitude of these temporally precise feature-selective response
profiles. This method thus provides a high temporal resolution metric that can be used to track the
influence of cognitive manipulations on feature-selective information processing in human cortex.
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RESULTS AND DISCUSSION
Sensory systems operate via the joint activity of millions of neurons that are tuned to
different stimulus attributes, and the tuning of these neurons becomes increasingly complex
as information is relayed through successive stages of processing [3, 4]. For example, many
neurons in the retina respond most strongly to small spots of light, many neurons in early
areas of visual cortex (e.g., primary visual cortex) respond most strongly to oriented lines,
and neurons at later stages of visual cortex respond most strongly to complex objects such as
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faces [5, 6]. As a result of this neural selectivity, and the fact that decisions based on sensory
inputs can often be made in hundreds of milliseconds, understanding the computational
principles that underlie neural information processing requires both sensitivity to the
stimulus attributes being processed (feature selectivity) and high temporal resolution. Over
the last several decades, electroencephalography (EEG) and magnetoencephalography
(MEG) have primarily been used to achieve a high temporal resolution [e.g, 7, 8, 9],
whereas fMRI has primarily been used to achieve a high degree of feature selectivity [e.g.,
10, 11, 12]. However, few studies have attempted to make inferences at both levels of
analysis, thus placing severe constraints on our understanding of information processing in
human cortex.

Recently, many studies have exploited changes in multivariate patterns of activation across
fMRI images to recover feature-selective responses in human visual cortex (multivariate
pattern analysis, or MVPA, methods) [1, 11–14]. For instance, fluctuations in activation
patterns within early visual areas can be used to predict the specific orientation of a stimulus
being viewed by a subject [1, 15]. The systematic orientation-dependent modulation of
voxel responses within these early visual areas is thought to be driven by small modulations
in neural activity at the columnar level (~300–500μm) [1, 16] and by modulations across
larger-scale maps of orientation that are arrayed across early areas of the visual system such
as V1 [17].

These relatively new multivariate approaches to fMRI image analysis fall into two broad
categories. Decoding analyses use machine learning algorithms to estimate which specific
stimulus – selected from a larger set of possible stimuli – was most likely to have been
viewed based on an observed pattern of activation. To the extent that these algorithms can
correctly guess the stimulus label, one can infer that some stimulus-specific information is
being encoded in the cortical region of interest [11–13, 18]. However, while decoding
analyses are very sensitive to changes in the information content of a cortical area, they do
not directly reveal how changes in patterns of neural activity give rise to separable activation
patterns at the macroscopic level afforded by fMRI. Thus, to complement decoding models,
recent studies have employed encoding models that use a priori assumptions about different
feature spaces – such as the well known orientation selectivity of neurons in primary visual
cortex [19, 20] – to make inferences about how experimental manipulations change
population-level neural response profiles. These forward encoding models have been used to
reconstruct novel visual stimuli [21], to investigate color- and orientation-selective
responses in early visual cortex [2, 22, 23], and to examine the effects of feature-based
attention on the shape of orientation selective response profiles in primary visual cortex
[24].

Despite these advances, BOLD neuroimaging has inherently poor temporal resolution on the
order of several seconds, and can subsequently reveal little about the dynamics of neural
information processing. Here, we combine decoding and encoding models with EEG to
determine if more precise temporal information can be recovered about feature-selective
modulations in human cortex, and to determine if any observed feature-selective
modulations are sensitive to task demands. To this end, we designed a behavioral task to
examine orientation-selective responses under conditions of focused or withdrawn attention.
Subjects viewed a visual display containing a square-wave orientated grating rendered in a
large circular annulus and a rapid serial visual presentation (RSVP) stream of letters that
was presented within the annulus at fixation (Figures 1A,B). On half of the trials, subjects
attended the peripheral grating and pressed a button when they detected a clockwise (CW)
or a counter clockwise (CCW) shift in the orientation of the grating. On the other half of the
trials, subjects ignored the peripheral grating and pressed a button whenever they detected a
pre-specified target letter in the central RSVP stream. To delineate neural responses
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separately for each stimulus (grating versus RSVP stream), stimuli were tagged with
different flicker frequencies: the contrast of the peripheral grating was reversed at 21.25 Hz,
and the RSVP stream of letters was updated at a rate of 12.1 Hz. Steady state visual evoked
potentials (SSVEPs) were estimated using a Fourier analysis to separately assess the
response to each stimulus. We focused our analyses on the magnitude of the second
harmonic of the flickering grating (42.5 Hz) and the magnitude of first harmonic of the
flickering RSVP stream, consistent with known differences in contrast-reversed and
luminance-defined SSVEPs (see Figure 3A for full spectra and stimulus related activity
across time) [25]. The dominant response at twice the reversal frequency (42.5 Hz) of the
orientation grating elicited a focal response with a peak over the parietal-occipital region.
Peak average responses span from electrodes corresponding to POz to Pz (posterior to
anterior) and P1 to PO4 (left to right), with largest amplitude centered at Pz (In descending
SNR: Pz, PO4, POz, P2, P1). The 12.1 Hz response to the RSVP stream, however, had a
bilateral spatial distribution with peaks in parietal cortex (Figure 1C).

We first used a linear classifier to determine if stimulus orientation could be decoded based
on the spatial distribution of the signal-to-noise ratio (SNR) and the phase of the SSVEP
response at 42.5Hz across selected electrodes [see Supplemental Experimental Procedures,
SSVEP Responses]. Classification accuracy for orientation was significantly above chance
even when subjects were attending to the central RSVP stream (blue bars in Figure 2A; p <
0.05, note that this and all other p-values computed via a bootstrapping procedure, see
Supplemental Experimental Procedures and Supplemental Figure 4). Moreover,
classification accuracy increased significantly when subjects attended to the oriented
grating, demonstrating that the orientation selective patterns of SSVEP were sensitive to task
demands (p < 0.05, Figure 2A). In contrast, the power and phase of the SSVEP responses
evoked by the RSVP stream (12.1 Hz) could not be used to decode the orientation of the
stimulus (red bars in Figure 2A; p > 0.05). The EEG electrodes that contained the highest
SNR were also the most diagnostic for this analysis (Figure 2B).

Having established that the spatial distribution of SSVEP power and phase can be used to
successfully decode the angle of the orientated grating, we next considered whether the
power and phase could also be used to reconstruct a population-level representation of the
orientation-selective neural activity (i.e. a population-level orientation tuning function, or
TF). We used a linear forward encoding model that has been previously used to estimate
feature-selective tuning functions using fMRI [2, 22, 26, 27]. In short, we estimated the
magnitude of the response in each electrode as a linearly weighted sum of the idealized
orientation tuning functions shown in Figure 2C. Using these weights, we then estimated the
relative magnitude of the SSVEP response within different sub-populations of neurons (or
‘channels’) that are tuned to different orientations (see Experimental Procedures).

We first established the effectiveness of this technique when applied to the power and phase
of the SSVEP response at 42.5 Hz based on a Fourier analysis of the data from the entire
interval before the onset of the target. Only data collected prior to target onset were used to
avoid contamination by responses to the rotation of the grating either clockwise or counter-
clockwise (CW/CCW). The enhanced response to neural populations tuned to the orientation
of the stimulus being viewed, accompanied by the characteristic Gaussian drop off in the
signal associated with neural populations tuned successively farther away, demonstrates that
SSVEP power and phase can be used to estimate the shape of feature-selective population
response profiles in human cortex (Figure 2D). Moreover, projecting the data from electrode
space into orientation channel space does not significantly degrade the amount of
orientation-selective information, as linear classification performed on single trial tuning
functions is well above chance (21.8% collapsed across all conditions).
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We next examined the extent to which each electrode contributed to these feature-selective
population TFs. Perhaps not surprisingly based on the SNR plots in Figure 1C, power
fluctuations in a relatively focal set of occipital-parietal electrodes carried most of the
orientation-selective information (Figure 2E). The orientation-selective modulation of phase,
on the other hand, was most evident in electrodes over frontal cortex; however, phase
contributed far less information to the orientation-selective TFs shown in Figure 2E(see also
Supplemental Figure 1A).

As a control analysis, we also attempted to generate orientation-selective TFs based on the
power and phase of the SSVEPs associated with the RSVP stream (12.1 Hz). We were not
able to compute feature-selective TFs based on the response associated with the RSVP
stream, irrespective of whether the subject was attending the RSVP stream or the peripheral
grating. Thus, the feature-selective population response profiles shown in Figure 2 are
specific to the neural response associated with the flickering grating. Finally, we also
inspected individual electrode tuning functions (Supplemental Figure 1B) and noted
fluctuations in each electrode as a function of stimulus orientation with no substantial
changes in overall mean response amplitude. This implies that feature selectivity is driven
by aggregating weak orientation selective signals across electrodes.

As the data presented thus far relied on the power and phase of the SSVEPs across a large
time window (the entire pre-target window), we next evaluated the temporal precision with
which we could measure orientation-selective response profiles. We used a wavelet that was
progressively shifted across time in 1ms intervals to compute the power and phase of the
SSVEP response at 42.5 Hz (Figure 3A). Note that even though we sampled at 1000 Hz, the
smallest meaningful unit of time in this study is one stimulus cycle, or 24 ms, which
provides the upper limit on our temporal resolution. Moreover, the Gaussian window of the
wavelet effectively averages over a slightly larger temporal window spanning five cycles of
the flickering grating (or 120 ms). Thus, the temporal resolution is between 24 ms and 120
ms, and will vary as a function of the temporal bandwidth of the Gaussian envelope and the
flicker frequency of the stimulus.

This analysis revealed dynamic TFs (DTFs) that were sensitive to both behavioral
performance and task demands (Figure 3). For example, these DTFs reveal a sustained
multiplicative increase in amplitude when subjects were attending to the peripheral grating
compared to when they were attending to the central RSVP stream (Figure 3B, 3C).
Moreover, during trials in which the peripheral grating was attended, the DTFs were
significantly higher in the pre-target interval on correct compared to incorrect trials (Figure
3D, 3E, 4C). This increase in the gain of the DTFs on correct trials is apparent across the
entire 500ms interval before target onset. We confirmed these effects were not driven by the
fact that an error was made on only ~20% of all trials by observing the same effect when we
randomly sampled subsets of the correct trials (Supplemental Figure 2).

A closer inspection of the DTFs derived from correct trials also reveals rapid changes in the
magnitude of the response profiles immediately before and after the target onset (Figure 4).
To characterize the differences between the conditions, we inspected DTFs across a 200 ms
window before the onset of the target (Figure 4B). When subjects were attending to the
oriented grating, the pre-target interval shows a significantly larger response at −20°, 0°, and
20° channel offsets on attended compared to unattended trials. In Figure 4C, we compare
correct and incorrect trials (of only attend-grating trials). The difference between correct and
incorrect trials is most reliable at −20° and 20° channel offsets (also visible at 0° ) within the
pre-target interval. Furthermore, the orientation shift of the grating (the appearance of the
target) is visible in the channel responses across time. Figure 4D displays the normalized
response in the −20° and 20° channels to both clockwise or counter-c lockwise targets. The
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divergence in responses occurs approximately 60 ms before the target onset and extends to
200 ms after the termination of the target. Presumably, the onset of this separation before the
onset of the target is related to the 120ms temporal envelope of the wavelet filter that was
used to derive the SSVEP response. However, note that the responses are significantly
different only 165–255ms after the target onset (p < .05), highlighting the high temporal
precision of this technique.

Previous electrophysiological studies have examined the time-course of evoked signals
when subjects are instructed to attend to specific visual features [e.g, 7, 8, 28–30]. While
these studies show that feature-based attention can mediate evoked responses as early as
90ms post-stimulus [8], none of these studies examined how attention shapes feature-
selective population response profiles across time. In addition, EEG/MEG activity patterns
have been used to infer, or decode, which stimulus feature a subject is viewing [31, 32].
However, they did not examine the influence of cognitive manipulations on the information
content of activity patterns, and decoding methods cannot be easily used to infer how the
shape of feature-selective response profiles changes with task demands. This is a key
advantage of the current approach, as understanding the influence of cognitive demands on
information processing in human cortex requires examining how the response profile across
feature-selective neurons changes over time [33]. In turn, the lack of real-time information
about the effects of attention on feature-selective responses in human cortex has contributed
to a longstanding debate about the nature of attentional modulation and how it might differ
in monkey and man. For instance, previous single-unit recording studies have reported that
attention primarily operates via a multiplicative scaling of neural TFs [e.g., 34, 35]. In
contrast, fMRI studies have shown that attention primarily induces an additive shift, and that
multiplicative gain is relatively weak in comparison [24, 36–38]. The dominance of additive
effects in fMRI may reflect the fact that the BOLD response pools responses across a large
number of neurons that probably exhibit different degrees of feature-selectivity and
attentional modulation. Thus, the aggregate response might look additive as opposed to
multiplicative. However, the fact that we see a modulation pattern that more closely
resembles the multiplicative scaling observed using single unit recording (Figure 4B),
despite the fact that EEG also pools across the responses of large numbers of neurons,
suggests instead that BOLD fMRI might be indexing a fundamentally different source of
modulation. In addition, the tight correspondence between single-unit recordings and the
present DTFs is also encouraging as human subjects can learn complex new experimental
paradigms very quickly compared to non-human primates, who often require months of
training to successfully perform relatively simple tasks. Thus, the present technique might
be used to evaluate information processing in a wide variety of experimental settings, and in
a manner that is not influenced by long-term learning effects that might alter the nature of
neural activity across the course of months of training.

As EEG has relatively coarse spatial resolution, it is difficult to make a precise statement
about the exact cortical area that is driving these feature-selective DTFs (e.g., V1, V2, etc).
Our EEG signals reflect synaptic activity synchronized to an external signal (stimulus
flicker) but space-averaged on the centimeter scale. In order to focus on early visual areas
(rather than parietal or even frontal activity), we specifically entrained EEG signals related
to the oriented grating at a high-frequency based on the logic of coupled oscillators [e.g.,
39]. This framework asserts that only small local networks can operate at high frequencies
whereas larger networks operate at lower frequencies due to transmission delays along
axonal fiber systems. Indeed, in another study, the use of lower frequency flicker engages
parietal and frontal networks, whose properties are expected to be less closely related to the
physical stimulus features, and more closely related to attentional goals [40]. In addition, we
observe a tight phase coupling at 42.5Hz across all of the high SNR electrodes, which is
consistent with a single cortical source driving the SSVEP response to the flickering grating
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(whereas multiple sources should give rise to a phase shift between electrodes, see
Supplemental Figure 5). However, even if we are reasonably confident that our SSVEP
signals originate from a single source in occipital cortex, the spatial scale of the orientation
signals is still not clear. Indeed, the origin of orientation-selective signals measured with
other methods such as fMRI is still a matter of active debate. Some researchers propose that
orientation-selective response biases are linked to subtle imbalances in the distribution of
orientation selective columns within each voxel [1, 41]. In contrast, others have reported a
spatial correspondence between large-scale orientation maps and polar angle maps that were
identified using standard retinotopic mapping methods [17]. While it is likely that both
sources of information contribute to orientation-selective fMRI responses, the existence of
large-scale orientation information that spans primary visual cortex should give rise to
signals that are capable of driving robust changes in the spatial distribution of SSVEPs.
However, this conclusion should be qualified because we cannot rule out contributions from
other sources given the limited spatial resolution of the present method. In either case, the
present experiment establishes that orientation-selective responses detected with SSVEP
provide a useful index to link neural and cognitive levels of information processing.

In sum, the temporal resolution provided by SSVEPs provides a unique method for
measuring brain function, and has been previously used to study several distinct cognitive
phenomena [9, 42, 43]. Here we exploit the continuous nature of the oscillatory activity
elicited by a flickering stimulus and demonstrate that relatively simple models can be used
to reconstruct temporally precise orientation-selective response profiles from the distributed
pattern of the power and phase of evoked electrical activity across the scalp. This ability is
primarily supported by small orientation-selective changes in power across a relatively focal
set of occipital-parietal electrodes, with a smaller additional contribution from the phase
angle across electrodes in frontal cortex. Importantly, these feature selective response
profiles provide high-temporal and high-featural resolution, and are modulated by both task
demands (attention) and behavioral performance. These latter demonstrations establish that
the tuning functions reflect active cognitive processing and also extend previous single-unit
physiology work by linking feature-based attentional modulations with behavior. Compared
to fMRI, the spatial resolution of EEG is quite coarse; however, the high temporal resolution
and the feature selectivity that we report here represents a significant advance over previous
applications of EEG, and provides a near real-time index of neural information processing
from human cortex.

EXPERIMENTAL PROCEDURES
Sixteen individuals (8 female) participated in the experiment, and all data was collected at
the Perception and Cognition Lab at the University of California, San Diego. All participants
provided written informed consent in accordance with the human subjects Institutional
Review Board at UCSD. EEG measurements were collected with a dense array NetAmps
300 system made by EGI (Electrical Geodesics, Inc., Eugene, OR) equipped with a 128
channel Hydrocel Geodesic Sensor Net and a photocell system to give accurate and fast
sampling of each cycle of the stimulus. The EEG was recorded with a 1000 Hz sampling
rate. Stimuli consisted of a square-wave grating that was rendered in a circular annulus (37°
diameter vi sual angle) with a central fixation dot (0.4° visual angle) on which subjects were
required to maintain gaze (Figure 1). A rapid serial visual presentation (RSVP) stream of
letters (8° visual angle) was simultaneously presented at the center of the screen. To
delineate neural responses separately for each stimulus (grating versus RSVP stream),
stimuli were tagged with different flicker frequencies: the annulus was contrast reversed at
21.25 Hz, and the RSVP stream of letters was updated at rate of 12.1 Hz (50% duty cycle).
Stimuli were presented on a uniform gray background (43.2 cd/m2) with a monitor refresh
rate of 85 Hz. For ‘attend grating’ blocks of trials, subjects maintained fixation and attended
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to the oriented grating (grating rendered in 1 of 9 possible orientations across trials, 0°–160°
in steps of 20°). At some point during each 3000 ms trial, the orientation of the grating
would rotate either clockwise or counterclockwise for 235 ms (20 frames), and subjects
would report the direction of angular shift with a button press after the end of each trial.
Using the method of constant stimuli, performance at 6 orientation deviations was obtained.
For the ‘attend RSVP’ blocks of trials, subjects maintained fixation while attending to the
central letter stream. Subjects were instructed to respond to a target letter (X or Y) with a
button press after the end of each trial. We adjusted the angular offset of the grating target
and the contrast of the letters in a pre-experiment training session to ensure that accuracy on
both tasks was ~80% (see Supplemental Methods). To maximize stimulus related activity in
the EEG and to ensure that the subjects attended the stimulus for an extended period of time,
80% of the targets were presented 2000 ms or more after the onset of the stimulus.

Each block lasted for approximately 7 minutes and contained 90 trials (10 trials for each of
the 9 orientations). Four blocks were run for each of the attention conditions, which took
about one hour and yielded 360 trials for each condition (720 total). After standard artifact
editing procedures (eye-blink correction, trial rejection, etc., see Supplemental Experimental
Procedures) each individual trial was cropped to an integer number of cycles to maximize a
narrow band stimulus response. Trials were then Fourier transformed using conventional
FFT methods via Matlab and normalized based on a pre-stimulus period of 100 ms.

Decoding analyses were conducted via a linear discriminant analysis to determine whether
the orientation of the stimulus could be predicted from the SSVEP response. The number of
electrodes included in the classification procedure varied across subjects (see Supplemental
Experimental Procedures section entitled Classification Analysis and Supplemental Figure
4). The forward encoding model used to generate orientation tuning functions used a method
that was similar to previous fMRI studies developed by Brouwer and Heeger [2, 22, 24, 26].
Briefly, let m be the number of EEG elements for an individual subject’s dataset and n1 be
the number of trials in the training set (719 trials) and n2 be the number of observations in
the testing set (1 trial). Finally, let k be the number of hypothetical orientation channels (C1,
k x n1), composed of half-sinusoidal functions raised to the sixth power as the basis set. Let
B1 (k x n1) be the training set and B2 (k x n2) be the test set. The training data in B1 were
then mapped onto the matrix of channel outputs (C1) by the weight matrix (W, m x k) that
was estimated using a GLM of the form:

(1)

where the ordinary least-squares estimate of W is computed as:

(2)

The channel responses C2 (k x n2) were then estimated based on the test data (B2) using the
weights estimated in (2):

(3)

This process was then repeated by holding each trial out in turn until all trials had served as
a test set. Then, the channel response function on each trial was circularly shifted to a
common stimulus-centered reference frame, and these re-centered response functions were
averaged across conditions of interest (e.g., attend grating, attend RSVP stream). Thus, by
convention the 0° point along the x-axis i n all plots refers to the orientation of the stimulus
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that evoked the response profile. The number of EEG elements used for each subject varied
slightly across subjects depending just on the number of artifact-free channels (average of
238 elements, 119 SNR and 119 phase angle estimates).

For the creation of DTFs, a separate training/test procedure was run on the power and phase
of the SSVEP response at each time point as estimated using a continuous wavelet
transform. After this procedure, the channel responses were locked to the target onset
(Figures 3, 4). The significance of all of the effects was assessed using a bootstrap procedure
and an alpha level of 0.05. Methods are described in more detail in Supplemental
Experimental Procedures.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Evaluating the temporal dynamics of neural processing is crucial for
understanding cognitive processes.

• SSVEP measurements may be used to reconstruct orientation selective response
profiles at a sub-second scale.

• This approach provides a metric that can rapidly track information processing in
human cortex.
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Figure 1.
(A) Stimulus display: In the central location, a stream of letters was simultaneously
presented with an oriented peripheral annulus on a uniform gray background. During the
3000 ms trial, a target would appear as a shift in the orientation of the grating or an X,Y in
the RSVP stream of letters. Subjects responded with a button press to the direction of the
shift (clockwise/counter-clockwise) or to the target letter (X,Y). (B) Stimulus protocol:
stimuli were tagged with different flicker frequencies. The annulus was contrast reversed at
21.25 Hz, and the RSVP stream of letters was updated at rate of 12.1 Hz (50% duty cycle).
(C) Mean of the SNR across subjects of the SSVEP responses to the flickering stimuli,
calculated by dividing the power at the stimulus frequency (or the second harmonic of the
stimulus frequency for the peripheral grating, see Experimental Methods) by the standard
deviation of the surrounding frequencies, 6.7 Hz on each side of the stimulus frequency).
Spatial distributions reflect a parietal-occipital response for the grating stimulus and a
bilateral parietal response for the RSVP stimulus.
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Figure 2.
(A) Linear discriminant classification results. For each subject, the SNR and phase of a
subset of electrodes elements was used for the classification procedure, and the peak of the
classification function was used as that subject’s classification performance (see
Supplemental Figure 4 and Supplemental Methods). The orientation of the grating could be
decoded above chance (p<0.05) based on the SSVEP response at 42.5Hz (Figure 2A, blue
bars), and decoding accuracy was higher when the grating was attended compared to when it
was not attended. In contrast, the orientation of the peripheral grating could not be decoded
based on the SSVEP response at 12.1Hz (red bars). The dotted line represents chance
performance in this 9-way classification, and error bars represent standard error of the mean
across subjects. Asterisks indicate significant differences via a bootstrap procedure (see
Supplemental Experimental Procedures). (B) Diagnostic electrodes in the linear discriminant
analysis across subjects: the colormap of the topographic plot shows the probability that an
electrode was used in the decoding analysis. The electrodes that contained the highest SNR
(Figure 1C) were also the most diagnostic. (C) Basis set used in the forward encoding
model, derived from half-sinusoidal functions raised to the sixth power (9 basis functions
spanning 0°–160° in 20° steps). (D) Dynamic tuning functions derived using the forward
encoding model based on SNR and phase angle of the SSVEP response before the target
onset. The 12.1 Hz SSVEP response to the RSVP flicker does not produce tuned responses
whereas the 42.5Hz SSVEP response produces a tuned response that peaks at the angle of
stimulus being viewed (which is 0° in this plot by convention). Error bars represent standard
error of the mean across subjects. (E) Average weight of the maximum channel response
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showing that the SNR of the parietal-occipital electrodes and, to a lesser extent the phase
angle of the frontal electrodes, carries most of the orientation-selective information.
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Figure 3.
Dynamic Tuning Functions. (A) A wavelet decomposition of frequencies 5–50Hz averaged
across subjects and conditions. Lower plot shows a line plot of stimulus related responses
(RSVP stream: 12.1Hz, Oriented Grating: 42.5Hz). (B–E) Forward encoding model results
derived from a wavelet decomposition of the SSVEP response. Using SNR and phase angle
of the SSVEP response, locked to the target onset (500ms before to 500ms after), orientation
response profiles were reconstructed as a function of time. Segregating trial types reveals
differences between responses to attended stimuli (B) and unattended stimuli (C) as well as
between correct trials (D) and incorrect trials (E). Gray planes mark time points of interest
(200ms before target onset, target onset, and target termination, see Figure 4).
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Figure 4.
(A) Rotated view of Figure 3D (correct attended trials). Each inset line plot shows the tuning
functions derived from the time window 200ms before target onset (B, C). These line plots
display the effect of attention (B) and the effect of accuracy (C). Significant differences
between channel responses indicated by black bars on the x-axis. (D) Normalized response
in channels tuned 20° and −20°) separated by clockwise or counterclockwise target shifts.
These responses show a shift in the response beginning 60ms before target onset extending
400 ms after target onset. Significant divergence occurs between 165 and 255 ms after target
onset (black bar on x-axis).
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