
MOLECULAR AND CELLULAR BIOLOGY, JUlY 1990, p. 3852-3856 Vol. 10, No. 7
0270-7306/90/073852-05$02.00/0
Copyright © 1990, American Society for Microbiology
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P-Polymerase is a vertebrate cellular DNA polymerase involved in gap-filling synthesis during some types of
genomic DNA repair. We report that a cloned human 0-polymerase promoter in a transient expression assay
is activated by p21v-r H expression in NIH 3T3 cells. A decanucleotide palindromic element, GTGACGTCAC,
at positions -49 to -40 in the promoter is required for this ras-mediated stimulation.

DNA P-polymerase (,-pol) is a "housekeeping" enzyme
with extensive primary structure conservation among verte-
brate homologs. The enzyme has been implicated in short-
patch DNA repair after some types of DNA damage and is
generally regarded as one of the DNA repair polymerases of
vertebrate cells. The enzyme is specified by a single-copy
gene on chromosome 8 in humans (21) and mice (S. H.
Wilson, in P. Strauss and S. Wilson, ed., The Eukaryotic
Nucleus, in press), and levels of ,3-pol mRNA and enzymatic
activity remain essentially constant as a function of the cell
cycle and of the growth phase in cultured human cells (35).
However, some human cell lines, such as the teratocarci-
noma cell line NTera2D, contain higher levels of P-pol
mRNA than do other cell lines (35, 36; Wilson, in press), and
some rodent tissues, such as testis and brain tissues, contain
much higher levels of P-pol mRNA than do other tissues
(Wilson, in press). In addition to this tissue- and cell-specific
expression, P-pol mRNA levels increase shortly after treat-
ment of CHO cells with certain DNA-damaging agents,
including N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)
(10). To gain insight into mechanisms of P-pol gene expres-
sion, several groups of investigators have cloned segments
of mammalian P-pol genes and mapped functional promoter
sequences 5' of the major transcription start site (29, 34;
Wilson, in press). Widen et al. (29), for example, found that
the 114-base-pair sequence 5' of the major transcription start
site in the human P-pol gene can serve as a promoter in
directing transient expression of the bacterial chloramphen-
icol acetyltransferase (CAT) gene in HeLa cells. In addition,
this fusion gene is transcriptionally activated by cotransfec-
tion with an expression plasmid for the adenovirus ElA and
E1B proteins (29) and also is transcriptionally activated by
MNNG treatment of cells (P. Kedar and S. H. Wilson,
submitted for publication). The mechanism of this promoter
activation in each case is not clear, but the promoter could
be activated through alterations in the state of phosphoryla-
tion of proteins that regulate transcription (1, 23, 27, 28).
From their peripheral location in the cell, ras proteins are

believed to help mediate transmission of growth signals from
the membrane to the nucleus via activation of downstream
messengers, leading to alterations in gene expression (2, 25).
Recent studies have shown that ras-induced activation of
protein kinase C (pKC) is one important distal messenger
pathway for ras transformation (13-19, 28), among other
pathways. While pKC activity may represent a critical
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component of ras transformation, activation of pKC does
not completely mimic the transforming activity of ras. This
observation suggests that pKC-independent pathways may
participate in ras transformation. Consistent with this hy-
pothesis, it has recently been shown that ras could alter myc
expression, even in cells depleted of pKC (19). Another
potentially informative approach for detecting other down-
stream signals is to determine if promoters that are pKC
independent are responsive to ras. The P-pol promoter
appears to be an example, as it is not responsive in transient
expression assays to pKC induction by phorbol ester treat-
ment of cells and protein binding to elements in the 3-pol
promoter is not inhibited by an oligonucleotide containing an
AP-1-binding site, i.e., a pKC-responsive element (8).
We found that normal NIH 3T3 cells transfected (12) with

pPP8 express CAT activity, but at relatively low levels. By
contrast, pPP8 transfection of ras-transformed NIH 3T3
cells (13-3-B4) results in a much higher level of CAT expres-
sion. As expected, expression in both cell lines was depen-
dent on the amount of p,P8 used (Fig. 1). These and the
other transfections to be described were conducted along
with a small amount of internal plasmid control (29), so that
any differences in transfection efficiency were eliminated by
normalizing CAT activities to the P-galactosidase activity of
the control plasmid. In the experiment whose results are
shown in Fig. la, relative P-galactosidase expression levels
per dish were 0.04 and 0.19 for NIH 3T3 and 13-3-B4 cells,
respectively; therefore, the absolute activity of the P-pol
fusion gene per dish was higher than the values shown in Fig.
la. For comparison, additional mouse NIH 3T3 cell lines
representing examples of other transformation phenotypes
were tested. These lines were (i) SRD, which expresses the
v-src oncogene product; (ii) SPONT, a spontaneous trans-
formant of NIH 3T3 cells; and (iii) EJ, a line expressing an
independently derived version of the rasH gene. The results
are shown in Fig. lb. EJ cells, which express the highly
transforming c-ras'-`12 gene, showed results similar to
those obtained with the v-rasH gene-expressing cells, 13-
3-B4. On the other hand, transfection of SRD or SPONT
cells resulted in the same level of 1-pol promoter activity as
was found with normal NIH 3T3 cells. These results indicate
that activation of the promoter fusion gene is seen with both
ras-transformed lines but that it is not a general phenomenon
of transformed cells.
To further explore the possibility that a highly transform-

ing ras gene product is able to activate transcription of the
P-pol promoter fusion gene, we conducted cotransfection
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FIG. 1. CAT activity after transfection of 13-pol fusion gene pPP8 into two cell lines. (a) p3P8, in the indicated quantities, was transfected
into NIH 3T3 and 13-3-B4 cells (4), and equal amounts of cell extract protein eventually were used for measurement of CAT activity (29);
results are expressed relative to 3-galactosidase activity of the same extract. (b) Autoradiogram illustrating results of transient expression of
CAT activity with 15 ,ug of pPP8 and different cell lines, as indicated. The upper two rows of spots are '4C-labeled acetylated derivatives of
chloramphenicol resolved by thin-layer chromatography on a silica gel plate. The cell description is shown in parentheses; the cell lines used
were SRD, NIH 3T3 cells transformed by v-src (5), NIH EJ cells transformed by the activated c-rasH of the EJ bladder carcinoma cell line
(7), and spontaneously transformed NIH 3T3 cells (SPONT) (all from A. M. Diamond, University of Chicago).

experiments with normal NIH 3T3 cells and a plasmid
retroviral vector (termed pJCS1) capable of transiently ex-
pressing the v-rasH gene (30) and, as a negative control, with
a plasmid vector alone (pBW1594). pJCS1 induced activity
of the P-pol fusion gene plasmid (pPP8), whereas control
plasmid pBW1594 did not (Fig. 2). To examine the question
of promoter specificity for pJCS1 stimulation, we conducted
similar cotransfection experiments with CAT fusion genes
containing the simian virus 40 promoter pSV2CAT, the
herpes simplex virus thymidine kinase promoter pB2CAT2,
or the chicken ,B-actin promoter ,prom p8CAT (Table 1).
Cotransfection with pJCS1 had little or no effect on the
thymidine kinase fusion gene or the simian virus 40 fusion
gene and inhibited activity of the chicken ,-actin fusion
gene. Thus, activation by expression of the v-ras' gene,
similar to activation seen with the ,-pol promoter, is not a
general property of promoter fusion genes.
A cotransfection experiment was conducted to evaluate

the effects of various modifications in the v-rasH gene and/or
expression construct (Fig. 3). These modifications anHd plas-
mids were: (i) a defective point-mutated p2lvras gene
(encoding Ser-186 in place of the normal Cys-186) otherwise
identical with pJCS1, termed pBW1225; (ii) a Harvey murine
sarcoma virus ras DNA variant termed pCO24-I' that is
more active biologically than wild-type Harvey murine sar-
coma virus as a result of noncoding substitution (166 bp of
the c-ras 5' noncoding sequence substituted for 148 bp of the
usual v-rasH 5' noncoding sequence); (iii) a v-rasH gene
promoted by a Friend murine leukemia virus long terminal
repeat, termed pBW1670; and (iv) a biologically active
v-ras' insertion-deletion mutant termed pBW739. The re-
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FIG. 2. Cotransfection ofNW 3T3 cells with 15 F±g of pPP8 and
different amounts of the p2l'-as -expressing plasmid (pJCS1) or the
vector alone (pBW1594), as indicated. After thin-layer chromatog-
raphy, spots with acetylated derivatives of chloramphenicol were
cut from the plate and counted. The negative control plasmid
pBW1594, which was constructed by Berthe M. Willumsen, lacks
the BamHI fragment containing all v-rasH coding sequences of
pJCS1.

a.

. _

H

a)

cons)
n:

5

0

VOL. 10, 1990



MOL. CELL. BIOL.

TABLE 1. Effect of cotransfection with a p21v-as -producing
plasmid, pJSC1, on the activity of promoter fusion genes

Relative CAT activity in
Promoter and fusion genea NIH 3T3 cells

(reference) Without With
pJCSIb pJCSlc

Human 1-pol; pPP8 2.1 7.0
Herpes simplex virus thymidine 0.4 0.4

kinase; pBLCAT2 (20)
Simian virus 40; pSV2CAT (11) 0.4 0.4
Chicken ,B-actin; ,prom p8CAT (3) 1.4 0.4

a Three micrograms of plasmid DNA was used.
b One microgram of negative control plasmid pBW1594 was used for

cotransfection.
c One microgram of pJCS1 was used as indicated for cotransfection.

sults are shown in Fig. 3. First, as expected, cotransfection
with pJCS1 produced a strong signal, and a lower signal was
seen for cotransfection with the vector pBW1594 alone (Fig.
3). By contrast, pBW1225, which is transformation defec-
tive, displayed an activity level that was no higher than that
of the negative control (relative CAT activity levels of 14 and
15, respectively, for pBW1225 and pBW1594). pCO24-I'
induced even higher CAT activity than pJCS1, correlating
with its greater transforming activity. The other two con-
structs produced results similar to those obtained with
pJCS1. These transfection results, therefore, appear to par-
allel the relative transforming activity levels of the various
plasmids (24, 26, 31).
The decanucleotide palindromic element spanning resi-

dues -49 to -40 of the P-pol promoter is an important region

a.

S

for transient expression activity of the promoter fusion gene
(29), and the precise sequence of the palindrome is required
for full activity in HeLa and 293 cells (29). To examine
whether this is true also for pJCS1-mediated activation, we
conducted experiments with ,-pol promoter fusion gene
plasmids containing modifications in the palindromic se-
quence (Fig. 4). Plasmids termed pPP8* and pPP8*A were
used and contained the palindrome modifications summa-
rized in Fig. 4. We found that each modification in the
palindrome reduced the basal level of expression in NIH 3T3
cells. Cotransfection of the v-rasH expression plasmid,
pJCS1, along with p,BP8*A, did not stimulate activity (rela-
tive CAT activity levels of 2 and 4, respectively, with and
without pJCS1); with the second plasmid, pPP8*, cotrans-
fection produced no change in activity rather than a stimu-
lation. Thus, results with both modified plasmids indicate
that the intact palindrome sequence is required for p21vras
activation of the P-pol promoter fusion gene and may be the
target sequence through which the activation is mediated.
The results presented here indicate that a transfected

,B-pol promoter fusion gene is stimulated by activated p2lras
expression in mouse 3T3 cells, and that this effect is medi-
ated through a palindromic element (GTGACGTCAC) in the
promoter at -49 to -40. The stimulation was observed both
for a stably integrated gene for p2lras expression and for a
cotransfected plasmid gene for p2lras expression. This is of
interest in understanding both general mechanisms of pro-
moter responsiveness to ras and the mechanism of the P-pol
promoter, particularly in view of the fact that the P-pol
promoter-CAT fusion gene used here is strongly up regu-
lated by another viral oncogene transactivator, the adenovi-
rus ElA and E1B proteins (29). It is reasonable to suspect
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FIG. 3. Autoradiograms illustrating results of transient expression of CAT activity after cotransfection of NIH 3T3 cells with the P-poA
promoter fusion gene pPP8 and 1 ,ug of the p2lv-ras protein expression construct, as indicated. pJCS1 is the usual construct for p2lv-ras
expression. The other plasmids are described in the text and by annotation in the figure; Biological Activity refers to transforming activity
of the ras gene or plasmid (9, 24, 26, 30-33). The upper two rows of spots are acetylated derivatives of chloramphenicol and were cut and
counted. Abbreviations: w.t., wild type; Mo-MuLV, Moloney murine leukemia virus; LTR, long terminal repeat; Ha-MuSV, Harvey murine
sarcoma virus; F-MuLV, Friend murine leukemia virus. Symbols: -, no transforming activity observed; +, transforming activity observed
(number of plus signs indicates level of activity).
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