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1. Introduction
Mesenchymal cells’ physiologic healing response to injury entails the formation of scar
tissue. If the injury persists, this wound healing response leads to fibrogenesis and
extracellular matrix accumulation. Although there are organ-specific differences in
fibrogenic pathways, certain core elements characterize the fibrogenic response in almost all
tissues. Damage to the epithelium or endothelium, instigated by infection, autoimmune
processes, toxins, or mechanical disturbance, triggers the release of inflammatory mediators
and initiation of fibrosis response.

Despite significant progress made in elucidating the mechanisms of fibrogenesis, new
components of the fibrotic machinery continue to be unearthed, and effective antifibrotic
therapies remain elusive [1], [2].

Cells respond to changes in the microenvironment through alteration of their anabolic and
catabolic pathways. Autophagy is a catabolic pathway essential for cellular homeostasis that
involves the self-degradation of intracellular components in lysosomes as part of
cytoplasmic turnover. Autophagy has been implicated in the pathophysiology of many
human disorders including fibrotic diseases. Here we review its role in the activation of
mesenchymal cells in the context of fibrosis.

There are three types of autophagy which differ in the mechanism by which they deliver
materials to the lysosomal lumen: microautophagy, chaperone-mediated autophagy and
macroautophagy. Macroautophagy is the most prevalent form and unless otherwise
specified, the term autophagy used in this paper refers to it.

Microautophagy is a poorly understood process in mammalian cells in which the material to
be degraded is engulfed by direct invagination of the lysosomal membrane.

Chaperone-mediated autophagy is a more selective process by which cytosolic proteins
marked by the pentapeptide motif KFERQ bind the lysosomal membrane through the
lysosomal membrane receptor LAMP-2a (lysosomal-assocated membrane protein 2a). Once
translocated to the lumen, proteins are degraded by lysosomal hydrolases.

In macroautophagy, hereafter referred to as ‘autophagy’, the cytoplasmic component is
surrounded by an expanding membrane sac, termed the phagophore, which elongates until
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its two edges fuse, forming a double membrane called autophagosome. The outer membrane
of the autophagosome then fuses with the lysosome generating the autolysosome or
autophagolysosome and the lysosomal enzymes degrade the inner membrane together with
sequestered material [3].

2. Autophagy machinery
Autophagy is a conserved and ubiquitous pathway essential for maintaining cellular energy
homeostasis. Under normal conditions autophagic activity proceeds at a very low level, and
is tightly regulated following induction in many cellular stress conditions. There have been
tremendous advances in our knowledge of the molecular mechanism of autophagy in recent
years, in particular the discovery of the autophagy-related genes (Atg). These 14 genes,
conserved between yeast and humans, are required for autophagosome formation and
regulate the formation of the core autophagic machinery [4]. The autophagy process is
divided into several steps: induction, autophagosome formation, cargo recognition and
selection, vesicle formation, autophagosome formation, fusion and breakdown.

In unstressed conditions, autophagy levels are low and are efficiently inhibited by the serine/
threonine protein kinase mTOR (mammalian target of rapamycin). In mammals, mTOR
inactivates the complex formed by the Unc-51-like kinase 1 (ULK1), 2 (ULK2), the focal
adhesion kinase family-interacting protein of 200kD (FIP200) and Atg13 (ULKs-Atg13-
FIP200 complex). However upon mTOR inhibition, ULK1 and ULK2 are activated and
phosphorylate Atg13-FIP200, leading to a conformational change essential to autophagy
induction[5]

Induction of autophagy provokes formation of the autophagosome. The origin of the
autophagosome membrane is a matter of debate and available data supports three potential
sources: endoplasmic reticulum (ER) [6], mitochondrial membrane [7] and plasma
membrane [8].

The cargo to be degraded has to be recognized by the autophagy machinery. In mammals
this selection process is mediated by the cytosolic adaptor protein P62/sequestosome 1. P62
binds by its ubiquitin-associated domain to the microtubule-associated protein 1 light chain
3 (LC3) and delivers the ubiquitinated cargo for autophagic degradation [9]. The formation
of the autophagosome requires the class III phosphatidylinositol 3-kinase (PI3K)
macromolecular complex, composed of the PI3K vacuolar protein sorting 34 (Vps34),
beclin1, Atg 14 and p150. Beclin 1 can enhance Vps34 activity; however, under homeostatic
conditions it is inactivated through its binding to the anti-apoptotic protein Bcl2 (B-cell
lymphoma/leukemia-2) [10]. The PI3K complex recruits two interconnected ubiquitin-like
(Ubl) conjugation complexes that share a single E1-like activating enzyme, Atg7 [3], These
Ubl complexes are essential for autophagosome formation (Atg12-Atg5-Atg16L1) and
elongation (Atg8-LC3) respectively. Atg7 activates Atg12 and is then transferred to Atg10
and attached covalently to Atg5. The Atg12-Atg5 complex then conjugates with Atg16L1
and attaches to the phagophore (Figure 1).

In the second Ubl conjugation, the LC3 precursor is cleaved by Atg4 and converted to LC3-
I. Atg7 and Atg3 promote the conjugation of LC3-I to phosphatidylethanolamine to form
LC3-II, a process that is facilitated by the Atg12-Atg5-Atg16L1 complex. Although it is
eventually delipidated by Atg4 and recycled, LC3-II is a useful marker of the autophagy
membrane as it remains on the inner and outer membrane of the autophagosome until its
fusion with the lysosomes[11]. After fusion, the acidic lysosomal hydrolases degrade the
sequestered materials. [12] Finally, the resultant small molecules are transported back to the
cytosol for maintenance of cellular homeostasis.
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3. Autophagy regulation
3.1. Signaling pathways regulating autophagy

3.1.1 mTOR dependent regulation—Autophagy is strongly induced under stress
conditions such as amino acid starvation and ATP depletion. This nutrient-sensitive
induction is mediated in part through the mTOR pathway. The mTOR pathway is composed
of the rapamycin-sensitive mTOR complex (mTORC) 1 and 2, although only mTORC1 is a
direct regulator of autophagy [13]. Under nutrient-rich conditions, mTORC1 phosphorylates
and inhibits the ULKs-Atg13-FIP200 complex and autophagy is kept at very low levels. In
situations of metabolic stress, mTORC dissociates from the complex, leading to
dephosphorylation-dependent activation of ULKs and subsequent induction of autophagy[5].
A major signaling pathway regulating mTORC1 is the PI3K complex. Different members
of the PI3K complex have discrete roles in autophagy modulation. The class I PI3K acts
through Akt activation and suppresses autophagy [14]; however the class III PI3K, Vps34,
stimulates autophagy by increasing local concentrations of phosphatidylinositol 3-phosphate
(PI3P) [15]. Besides PI3K, other kinases can modulate autophagy through mTOR, including
Adenosine Monophosphate-Activated Protein Kinase (AMPK) [16], IκB kinase [17] and the
members of the mitogen-activated proteinase kinase (MAPK) pathway (ERK [18], p38 [19],
JNK [20]) (Figure 2).

3.1.2 mTOR independent regulation—Although the mTOR pathway is the most
studied and best-characterized autophagy regulatory pathway, mTOR-independent
regulation has also been described.

Autophagy is negatively regulated by intracellular inositol and inositol 1,4,5-triphosphate
(IP3). IP3 binds to its receptor on the ER and release the stored Ca2+ into the cytoplasm,
which provokes several cellular responses and inhibits autophagy [21, 22]. cAMP and
cytosolic Ca2 downregulates autophagy trough the cAMP-Epac-PLC-ε-IP3 [22] and Ca2+ -
calpain-Gsα[23] pathways, respectively (Figure 3).

3.2 Transcriptional regulation
Although not much is known about the transcriptional regulation of autophagy, some
autophagy genes such as lc3 are rapidly up-regulated. The transcription factor FoxO3
induces transcription of several autophagy genes including lc3, atg12, atg4 and beclin 1[10].
In yeast, atg1 and atg13 have been recognized as targets of the transcriptional factor GCN4
[24].

3.3 Post-translational regulation
Recent studies have shown that post-translational modifications modulate the autophagic
flow[25]. As mentioned before ubiquitylation of the autophagic cargo and ubiquitylation-
like conjugation of the Atg12-Atg5-Atg16L1 and Atg8-LC3 complexes are essential
autophagy triggers. Postranscriptional lipidation of LC3 also induces autophagosome
formation. Phosphorylation also plays an important role in autophagy regulation.
Phosphorylation of either Bcl-2 or Beclin 1 reduces Bcl2-Beclin1 interaction and induces
autophagy [26]. Phosphorylation of ULK1 and dephosphorylation of Atg13 are also
essential for autophagy initiation [25]. Acetylation of Atg proteins by acetyltransferases
also modifies autophagy. Atg7 interaction with p300 maintains the acetylation of Atg5,
Atg7, Atg8 and Atg12 proteins, thereby suppressing autophagy [27]. Upon metabolic stress
conditions, p300 dissociates from Atg7 and the deacetylase Sirt1 removes the acetyl groups
from Atg7, Atg5, Atg8 and Atg12 and triggers autophagy [28] (Figure 4). TIP60 is another
acetyltransferase that has been recently identified as a positive regulator of autophagy
through its interaction with ULK[29].
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3. Autophagy measurement
The accurate measurement of autophagy is a critical and controversial issue, especially
because autophagy is a dynamic process with several steps that can be individually
regulated. The main issue is the differentiation between formation and accumulation of
autophagosomes. Measurement of the autophagic flux constitutes the most accurate
quantification of the complete process, including the delivery of cargo to lysosomes and its
breakdown and recycling [30]. Here we review some of the recommended methods for
monitoring autophagy. However, the absence of an approach with high sensitivity and
specificity necessitates the combination of at least two of the methods discussed here.

Electron microscopy (EM) is one of the most sensitive techniques to detect the presence of
autophagic vacuoles (AV). EM permits the visualization of the entire maturation process
from the formation of the phagophore to the assembly of the autophagolysosome [31].
Quantification of the AV is required; the preferred method is to quantify autophagosome
volume as the percent of cytoplasmic volume. Immuno-EM with gold-labeling using
antibodies to cargo proteins increases specificity and facilitates quantification [32].

LC3 western blotting is another widely used steady state method. Detection of LC3II is a
reliable marker of autophagy, as it is localized in the AV membrane from the very early state
and is eventually degraded via lysosomal enzymes. Remarkably, in mammalian cells, total
levels of LC3 do not necessarily fluctuate with changes in autophagy; therefore, the
conversion of LC3I to LC3II must be monitored[33]. The main limitation of LC3 western
blotting is its interpretation. An increase in LC3 levels can be due either to an increase in
autophagosome synthesis or to reduced turnover. To better interpret the changes, autophagy
flux should be measure after preventing lysosomal degradation with protease inhibitors
(leupeptin), drugs that alter the lysosomal pH (bafilomycin A, chloroquine), or agents that
block the fusion of autophagosomes with lysosomes. In the presence of such inhibitors, an
accumulation of LC3II would indicate a deficient autophagic flux, whereas a failure of LC3
to increase would indicate a defect earlier in the process [34].

LC3 can also detected by direct fluorescence microscope by tagging it to a fluorescence
protein such as GFP (GFP-LC3). Quantification of the number of fluorescence punctae per
cell is an accurate and useful approach[30]. As the mTOR pathway is one of the most
important autophagy regulators, measurement of mTORC1 activity via quantification of the
phosphorylation of its downstream targets (p70S6 and S6 protein) has been proposed as a
potential method to monitor autophagy [35]. Nonetheless, it should be taken into account
that there are mTOR-independent mechanisms that also induce autophagy.

As most of the Atg genes do not show significant changes in mRNA levels upon autophagy
induction [36], protein quantification is a better readout.

The p62 protein binds strongly to LC3 as well as to ubiquitinated substrates and is mainly
degraded through autophagy; therefore, inhibition of autophagy causes its accumulation.
Detection of endogenous p62 by Western blot is useful to monitor autophagy flux. However,
p62 detection is recommended in conjunction with another method as inhibition of the
proteasome also induces its accumulation [37].

The autophagosome maturation process can be also monitored using a tandem RFP-GFP-
tagged LC3 [38]. The RFP signal is resistant to the acidic/proteolytic conditions of the
lysosome lumen, whereas GFP is sensitive. Therefore, the co-localization of both GFP and
RFP indicates the absence of contact with the lysosomal compartment. On the other hand,
expression of RFP without GFP signals the presence of an autolysosome.
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Generation of transgenic GFP-LC3 mice with basal GFP-LC3 expression that can be
further induced under conditions that activate autophagy has led to the capability to monitor
autophagy in vivo[39]. For a more extensive review in the use and interpretation of assays
for monitoring autophagy see reference [28].

4. Autophagy and mesenchymal cells
Recent studies implicate autophagy in the pathogenesis of multiple diseases, including
infection, cancer, and neurodegenerative disease. Autophagy is increasingly recognized as a
mediator of survival and proliferation, although its role in fibrogenesis varies greatly in
different tissues and settings. Little is known about the role of autophagy in the regulation of
mesenchymal cell differentiation into myofibroblast like cells, and there is evidence
suggesting that this role may differ from its role in epithelial cells [40, 41] (Table 1).

Here we review the still scarce knowledge on the role of autophagy in mesenchymal cells:

Autophagy has been shown to play a crucial role in survival of primary human fibroblasts
[42] and high levels of autophagy have been reported in fibrogenic cells in almost every
tissue: stellate cells[40, 43], cardiac fibroblasts[41, 44], mesangial cells[45], dermal
fibroblasts[46], and synovial fibroblasts[47].

In the liver, injury of any kind leads to the transdifferentation of quiescent stellate cells into
myofibroblast-like cells that are key players in the wound-healing response. Activation of
stellate cells leads to the deposition of massive quantities of extracellular matrix (ECM) that
over time culminates in hepatic fibrosis. Our group recently reported that autophagy
provides cellular energy to fuel the catabolic pathways of cellular activation[40]. Indeed,
autophagy inhibition in the liver fibrogenic cells leads to an impairment of activation and
subsequent reduction in ECM deposition[40] We reproduced this effect on the fibrogenic
response by blocking autophagy in fibrogenic cells from kidney and lung, suggesting that
autophagy may comprise a core pathway of fibrogenesis and an attractive targetable
antifibrotic candidate.

Similar data have been reported in skin fibrosis[46, 48]. Scleroderma fibroblasts display
increased autophagy levels that provide the energy required for the acquisition of the
profibrotic phenotype[46].

In rheumatoid arthritis, synovial fibroblasts synthesize excessive amounts of ECM and are
resistant to apoptosis. In this setting, autophagy promotes synovial fibroblasts survival [47,
49] and therefore perpetuation of the injury.

ECM deposition by cancer-associated fibroblasts in the tumor microenvironment drives
tumor recurrence and metastasis. Stromal cells up-regulate autophagy and produce high
energy nutrients that fuel the adjacent cancer cells, thereby promoting tumor growth,
proliferation and metastasis[50, 51]. Autophagy inhibition in the tumor microenvironment
has been proposed as a promising new anticancer therapy[52].

Cardiac fibroblasts regulate the structural, biochemical, mechanical and electrical
properties of the heart by regulating the homeostasis of the ECM [53]. However, up-
regulation of autophagy in cardiac fibroblasts has a beneficial effect on cardiac fibrosis.
Beta-2 adrenergic receptor stimulation in cardiac myofibroblasts is associated with increased
autophagy levels and increased collagen degradation[41]

In renal fibrosis, autophagy induction during renal injury protects mesangial cells (MC), the
fibrogenic cell type in the kidney, and increases their survival[54, 55]. Disruption of the
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essential autophagy gene Atg7 with specific siRNA or treatment with the autophagy
inhibitor 3MA in cultured MC has been associated with decreased levels of collagen type I
(COL 1) [40]. Conversely, Beclin 1-deficient MCs (siBeclin1) exhibit accumulation of COL
1 when compared with autophagy competent MC [56]. Therefore, this data suggest a
potential dual role of autophagy during kidney injury as both inducer of COL 1 synthesis
and degradation.

5. Chemical modulators of autophagy
The recent progress made in elucidating autophagy regulation has led to its implication in a
wide range of human diseases. As a result, pharmacological manipulation of the autophagy
pathway has become an attractive and promising target. Development of specific
compounds is necessary in order to better understand the molecular regulation of the
autophagic pathway and to identify new treatment strategies for human diseases associated
with autophagy deregulation.

Small molecules that enhance or inhibit autophagy may constitute a useful pharmacological
approach depending on the disease context. Here we briefly describe some of them.

Inhibitors of autophagy
Inhibition of the class III PI3K (Vps34) pathway can be achieved with drugs such as 3-MA,
wortmannin, and LY294002 [57, 58] (Table 2).

Impairment of fusion of the AV with the lysosome, or modification of the pH in the
lysosome with drugs such as the antimalarial chloroquine and the macrolide antibiotic
bafilomycin A1 are also effective autophagy inhibitors[59, 60].

Drugs such as thapsigarin and Bay K8644 that increase cytosolic Ca2+ levels have been
described as mTOR independent-inhibitors of autophagy [61]

Trichostain A is a histone deacetylase inhibitor that has been identified as a promising
compound able to reduce excessive levels of autophagy without altering basal levels[62].

Dosomorphin blocks autophagy via inhibition of AMPK[63], however AICAR (5-
aminoimidazole-4-carboxamide ribonucleoside), an activator of AMPK, can also inhibit
autophagy in hepatocytes[64]. This demonstrates the complexity of the autophagy process
and the need to develop more selective targets.

Inducers of autophagy
Manipulation of the mTOR pathway is the most widely used strategy to enhance autophagy.
Although rapamycin is the classic example, perhexilene, niclosamide, amoidarone and
rottlerin inhibit mTORC1 but not mTORC2 [65, 66]. PP242 and Torin1 inhibit both
mTORC1 and mTORC2 complexes in a selective ATP- competitive way[67] (Table 3).

Although PI3K plays an important role in controlling the mTOR pathway, its
pharmacological manipulation has not been extensively explored. PI103 is a potent
autophagy inducer that blocks the class I PI3K and also mTORC1 in an ATP-competitive
manner[68].

Autophagy can also be induced in an mTOR-independent manner. The mood-stabilizing
drugs lithium, carbamazepine and valproic acid enhance autophagy by reducing the
intracellular levels of IP3 [69]. Other drugs (verapamil, loperamide, nimodipine, pimozide,
nitrendipine, clonidine, rilmenidine) [61] regulate the cAMP-Epac-PLC-ε-IP3 and Ca2+-
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calpain-Gsα pathways respectively and have recently been identified as autophagy
inducers[66].

For a more extensive overview of the small molecules regulating autophagy we direct the
reader to the outstanding review[64]

6. Conclusions
Mesenchymal cells are the key drivers of the fibrogenic process and share certain core
properties and regulatory pathways among tissues. Despite recent advances in our
understanding of fibrotic diseases, effective antifibrotic therapies remain elusive. A better
understanding of mesenchymal cell biology and regulatory pathways is needed to promote
the development of new antifibrotic drugs that exploit autophagic pathways.
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Highlights

• Fibrotic diseases account for more than 45% of deaths in the industrialized
world.

• Despite the progress made in elucidating its regulation, there are many gaps in
our understanding of autophagy.

• Autophagy has recently been implicated in the pathophysiology of fibrosis.
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Figure 1.
Autophagosome formation
Autophagosome formation requires the ULK1/2-mAtg13-FIP200 complex as well as the
class III phosphatidylinositol 3-kinase (PI3K) macromolecular complex, which is composed
of the PI3K vacuolar protein sorting 34 (Vps34), beclin1, Atg 14 and p150. This complex
recruits two interconnected ubiquitin-like (Ubl) conjugation complexes that are essential for
autophagosome formation (Atg12-Atg5-Atg16L1) and elongation (Atg8-LC3) respectively.
Although it is eventually delipidated by Atg4 and recycled, LC3-II is a useful marker of the
autophagy membrane because it remains on the inner and outer membrane of the
autophagosome until its fusion with the lysosomes. After fusion, the acidic lysosomal
hydrolases degrade the engulfed materials. The resultant small molecules are finally
transported back to the cytosol for maintenance of cellular homeostasis. The origin of the
autophosome membrane remains unknown, although the plasma membrane, endoplasmic
reticulum, and mitochondrial membrane have all been implicated.
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Figure 2.
mTORC-dependent regulation of autophagy
Autophagy is induced under stress conditions such as nutrient or ATP depletion. The
rapamycin-sensitive serine/threonine protein kinase mTORC1 mediates the nutrient-
sensitive regulation of autophagy. In unstressed conditions, or in the presence of ample
nutrients, autophagy levels are maintained at a low level through activation of mTORC1,
which inactivates the ULK1/2-Atg13-FIP200 complex. Nutrient starvation, on the other
hand, instigates dissociation of mTORC1 and partial dephosphorylation of ULK1/2.
Activated ULK1/2 phosphorylates the Atg13-FIP200 complex, which instigates
conformational changes essential for autophagy. The PI3K pathway mediates upstream
regulation of the mTOR pathway. Growth factor binding to receptor tyrosine kinases
instigates their autophosphorylation and activation, which leads to the activation of the class
I PI3K and the generation of phosphatidyinositol-3-phosphate (PI3P). These changes
provoke the recruitment of Akt, which activates mTORC1 and suppresses autophagy.
However, the class III PI3K (Vps34) stimulates autophagy independently of mTORC1,
through the generation of PI3P. Certain members of the MAPK pathway, including ERK1/2
and JNK, as well as AMPK, also modulate autophagy through mTORC1.
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Figure 3.
mTORC-independent regulation of autophagy
Inositol 1,4,5-triphosphate (IP3) mediates mTORC-independent regulation of autophagy.
IP3 binding to the endoplasmic reticulum (ER) instigates the release of calcium into the
cytoplasm. Binding of agonists to L-type calcium channels also increases the cytoplasmic
levels of calcium. The increase in cytoplasmic calcium induces the activation of a family of
calcium-dependent cysteine proteases called calpains. Activated calpains cleave and activate
Gsα, which induces adenylyl cyclase activity to increase the concentration of cAMP.
Elevated cAMP activates the Epac molecule, which activates phospholipase C (PLC)-ε and
increases IP3, thereby completing this regulatory loop.
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Figure 4.
Post-translational modification of autophagy
Autophagy is subject to post-translational modification. As depicted in Figure 2, activated
mTORC1 suppresses autophagy through phosphorylation of of ULK1/2 and of the Atg13-
FIP200 complex. Acetylation of Atg proteins by acetyltransferases also modifies autophagy.
Atg7 interaction with p300 maintains the acetylation of Atg5, Atg7, Atg8 and Atg12
proteins, thereby suppressing autophagy. Upon metabolic stress conditions, p300 dissociates
from Atg7 and the deacetylase Sirt1 removes the acetyl groups from Atg7, Atg5, Atg8 and
Atg12 and triggers autophagy
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Table 1

The role of autophagy according to mesenchymal cell type.

MESENCHYMAL CELL TYPE ROLE OF AUTOPHAGY

Hepatic stellate cells [40, 43],
Fuels catabolic pathways of cellular activation and thereby promotes acquisition of a fibrogenic
phenotype

Scleroderma fibroblasts [46] Provides energy to fuel acquisition of a fibrotic phenotype

Synovial fibroblasts [47] Pro-survival pathway that perpetuates injury

Cancer-associated fibroblasts [50, 51]
Generates high energy nutrients that feed adjacent cancer cells and promotes tumor growth,
proliferation, and metastasis

Cardiac fibroblasts [41, 44] Ameliorates fibrosis by promoting collagen degradation

Kidney mesangial cells [45] Ameliorates fibrosis by promoting collagen degradation
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Table 2

Inhibitors of autophagy and their current clinical applications.

MECHANISM COMPOUNDS CURRENT CLINICAL USE?

Inhibition of the class III PI3K (Vps34) pathway • 3-methyladenine

• Wortmannin

• LY294002

Impairment of AV fusion/alteration of lysosomal pH • Chloroquine • Antimalarial

• Bafilomycin A1 • Macrolide antibiotic

Increase of cytosolic Ca++ levels • Thapsigargin

• Bay K8644

Inhibition of histone deacetylase • Trichostatin A

Interaction with AMPK • Dorsomorphin

• AICAR (5-aminoimidazole-4-carboxyamide
ribonucleoside)
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Table 3

Chemical inducers of autophagy and their current clinical applications.

MECHANISM COMPOUND CURRENT CLINICAL USE

mTORC-dependent

mTORC1-specific inhibition • Rapamycin • Immunosuppressant

• Perhexilene

• Niclosamide • Antihelminthic

• Amiodarone • Antiarrhythmic

• Rottlerin

Inhibition of both mTORC1 and mTORC2 • PP242

• Torin1

Inhibition of both class I PI3K and mTORC1 • PI103

mTORC-independent

Reduction of intracellular levels of IP3 • Lithium Mood stabilizers

• Carbamazepine

• Valproic acid

Regulation of camp-Epac-PLC-ε-IP3 and Ca2+-calpain-Gsα pathways • Verapamil • Antihypertensive

• Loperamide • Antidiarrheal

• Nimodipine • Antihypertensive

• Pimozide • Antipsychotic

• Nitrendipine • Antihypertensive

• Clonidine • Antihypertensive, pain management, anxiolytic

• Rilmenidine • Antihypertensive
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