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Abstract
Background—Genetic studies have identified numerous genes reproducibly associated with
asthma, yet these studies have focused almost entirely on single nucleotide polymorphisms
(SNPs), and virtually ignored another highly prevalent form of genetic variation: Copy Number
Variants (CNVs).

Objective—To survey the prevalence of CNVs in genes previously associated with asthma, and
to assess whether CNVs represent the functional asthma-susceptibility variants at these loci.

Methods—We genotyped 383 asthmatic trios participating in the Childhood Asthma
Management Program (CAMP) using a competitive genomic hybridization (CGH) array designed
to interrogate 20,092 CNVs. To ensure comprehensive assessment of all potential asthma
candidate genes, we purposely used liberal asthma gene inclusion criteria, resulting in
consideration of 270 candidate genes previously implicated in asthma. We performed statistical
testing using FBAT-CNV.

Results—Copy number variation in asthma candidate genes was prevalent, with 21% of tested
genes residing near or within one of 69 CNVs. In 6 instances, the complete candidate gene
sequence resides within the CNV boundaries. On average, asthmatic probands carried 6 asthma-
candidate CNVs (range 1–29). However, the vast majority of identified CNVs were of rare
frequency (< 5%), and were not statistically associated with asthma. Modest evidence for
association with asthma was observed for 2 CNVs near NOS1 and SERPINA3. Linkage
disequilibrium analysis suggests that CNV effects are unlikely to explain previously detected SNP
associations with asthma.
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Conclusions—Although a substantial proportion of asthma-susceptibility genes harbor
polymorphic CNVs, the majority of these variants do not confer increased asthma risk. The lack of
linkage disequilibrium (LD) between CNVs and asthma-associated SNPs suggests that these
CNVs are unlikely to represent the functional variant responsible for most known asthma
associations.

INTRODUCTION
Genetic mapping of asthma susceptibility single nucleotide polymorphisms (SNPs) has been
very fruitful, with identification of over 200 genes associated with asthma, many of these
replicated in multiple populations.[1, 2] Most recently, GWAS analyses and meta-analyses,
involving more than 10,000 subjects, have identified multiple highly replicated genes,
offering insights into previously unexamined asthma pathways.[3, 4] Despite these
substantial advances, however, SNPs identified thus far explain only a small fraction of the
estimated 36–79% genetic contribution to asthma liability (so-called heritability) estimated
from numerous twin studies.[5] This problem of “missing heritability” is not unique to
asthma, having been noted for most common, complex genetic traits.[6, 7]

One potential explanation for this “missing heritability” is that until recently, GWAS and
most candidate gene studies focused almost entirely on SNPs, and have ignored an entire
class of common genetic polymorphism: copy number variants (CNVs). CNVs are large-
scale duplications and deletions traditionally defined as spanning at least 1000 bases (1kb),
though advances in CNV genotyping lead some to include structural variants as small as
50bp in CNV analyses.[8, 9] Though less frequent in total number than SNPs, CNVs
represent a substantial proportion of genetic variation due to their sheer size (often greater
than 100kb), and frequently disrupt gene function by overlapping vital coding and/or
regulatory gene sequences. Conservative estimates suggest that up to 5% of the human
genome is copy-number variable,[10] and integrative genomic analyses demonstrate that
CNVs serve as important regulators of gene expression.[11] However, due to technical
limitations in high-throughput CNV genotyping, evaluation of CNV in relation to human
traits has been largely limited to candidate variant studies.

There are compelling reasons to study CNVs in asthma. The prevalence of CNVs is enriched
within genomic regions harboring genes related to the immune response,[12] and most of
the established disease-related CNVs identified to date are associated with immune-related
diseases, including Crohn’s disease,[13, 14] systemic lupus erythematosis,[15] and
rheumatoid arthritis.[16] Moreover, one of the best-characterized disease-CNV associations
is that of a common deletion of Glutathione S-Transferase Mu 1 (GSTM1) with asthma and
airflow obstruction. The GSTM1-null variant (homozygous null prevalence of ~50% in
Caucasian populations) has been repeatedly associated with asthma,[17–20] COPD,[21] and
reduced lung function or reduced lung function growth, [20, 22, 23] particularly in the
setting of increased oxidative stress. Finally, given that CNVs frequently occur in gene-rich
regions[24, 25] and the recognition that diallelic CNVs (i.e. deletions or one-copy gains) are
often in strong linkage disequilibrium with common SNPs, [8, 10, 26, 27] it is important to
establish whether previously observed SNP associations with asthma could be directly
explained by common CNVs.

It is in this context that we set out to evaluate the role of structural genetic variation in
asthma using a customized microarray designed specifically for the purpose of genotyping
known CNVs. Herein we describe the results of a survey in a family-based cohort of
childhood asthmatics of all identified CNVs that map to within 50kb of genes for which
prior SNP-association with asthma has been reported. To facilitate comprehensive
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evaluation, we purposely used a liberal inclusion threshold to investigate the effects of CNV
on all potential asthma candidate genes, resulting in consideration of 270 genes.

METHODS
Populations

The Childhood Asthma Management Program (CAMP) is a multi-centered North American
clinical trial (NCT00000575) designed to investigate the long-term effects of inhaled anti-
inflammatory medications in children with mild to moderate asthma.[28, 29] A diagnosis of
asthma was based on methacholine hyperreactivity (PC20 [provocative concentration
causing a 20% fall in FEV1] no greater than 12.5 mg/ml) and one or more of the following
criteria for at least 6 months in the year before recruitment: (1) asthma symptoms at least
two times per week, (2) at least two uses per week of an inhaled bronchodilator, or (3) daily
asthma medication. Protocols for collection of baseline phenotypic data have been described
in detail elsewhere.[28, 29]

Of the 1,041 children enrolled in the original clinical trial, 968 children and 1,518 of their
parents contributed DNA samples. Due to the small number of samples from non-white
ethnic groups and concerns regarding genetic heterogeneity, we restricted genotyping to the
self-described white subjects and their available parents. In total, 1212 subjects were
genotyped, including 420 probands and 383 complete nuclear families.

The Institutional Review Boards of the Brigham and Women’s Hospital and of the other
CAMP study centers approved this study (IRB#2004P000996). Informed assent and consent
were obtained from the study participants and their parents to collect DNA for genetic
studies.

CNV Genotyping
All individuals were genotyped using a custom-designed SurePrint G3 Human CGH
4×180K Microarray (Agilent Technologies, Santa Clara, CA). CNV Regions (CNVRs) were
selected for targeting using multiple datasets detailing CNV location and breakpoints, in a
tiered approach, favoring high-resolution data. We incorporated CNV regions identified by
the Structural Genomic Variation Consortium (based on data from 42 million CGH
probes[26]), data from the June 2009 release of the 1000 genomes project,[30] deep
sequencing of an individual genome,[31] and a list of segmental duplications[32] and novel
insertions.[33] Finally, we incorporated variants identified in the Database of Genomic
Variants that were >500bp and <2 Mb in size and did not overlap any other regions.[30, 34]
In total, each array interrogates 20,092 highly confident and distinct CNV regions in a single
assay, with each CNV region surveyed by 6–9 probes.

DNA samples were labeled using Genomic DNA ULS Labeling Kit (cat. no. 5190-0419,
Agilent, Santa Clara, CA) according to the manufacturer’s protocol. These test samples were
competitively hybridized to the Agilent array against a well-characterized male HapMap
reference sample (NA10851). Purification, hybridization and washing of samples was
performed per manufacturer’s protocol (Agilent Technologies, Santa Clara, CA). Arrays
were scanned at a 5 micron resolution in an Agilent scanner (G2505C) and processed with
Agilent Feature Extraction v10.5.1.1 (Agilent Technologies, Santa Clara, CA). Samples with
derivative Log Ratio spread (DLRS) values <0.3 passed quality control. Data quality was
very high; only 1 sample failed QC post-hybridization.

We employed the following quality controls and CNV calling algorithms to define high-
confidence copy number status. Raw signal intensities of each probe were normalized across
the entire array to limit potential bias due to dye normalization and technical errors. Log2
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ratios of each probe were calculated using the normalized intensities of the cy5 (sample) and
cy3 (reference) channels. We then assessed all probes for variability using the Bioconductor
package CNVTools,[35] and eliminated probes without variability. Composite, regional
intensities were calculated as the mean log2 ratio for all reliable probes mapping to the
previously defined, known CNVRs. From these mean intensities, discrete CNVR copy
numbers were calculated using CNVTools, with the largest bin nearest to the log2 = 0
assumed to be the diploid (i.e. 2 copy) representation. For consideration in the current study,
we limited our evaluation to those CNVs that we considered high-confidence, where the
CNVR had assigned copy-number bins of >.99 posterior-probability in at least 80% of
genotyped individuals (see Figure 1). We finally eliminated those CNVs that were in the
lowest IQR of variability of log2ratio (range <.88). Thus, 1259 common CNVs (with non-2-
copy >5%) and 2535 rare CNVs were analyzed. We tested for r2 with neighboring SNP in
PLINK[36], using data from an Illumina 550Kv3 SNP array available in 1056 of the
subjects; QC methods for the SNP array have been previously published.[37]

Asthma Candidate Selection
We included all previously identified asthma candidate genes, including those compiled in
Ober et al.[2], Rogers et al.[37], and the recent review by Wu et al,[38] and novel asthma
loci identified in the recent GWAS meta-analyses of the Gabriel[3] and EVE consortia.[4]
We excluded candidate genes on the X chromosome, and several immunoglobulin regions
with known high rearrangement rates, including T-cell receptors. We also looked at the
effects of CNV on a subset of genes with the most robust associations (i.e. those replicated
genes identified in GWAS or associated with asthma in >10 populations (N=12 genes, see
Supplemental Table 1).

Statistical Methods
We performed family-based quality control assessment, including screening for parent-
offspring genotype incompatibilities (Mendelian errors), and a family-based normalization
of log2 ratios. Markers with large numbers of Mendelian errors, or those whose subsequent
association test was unstable following family-adjustment were excluded from analysis. The
physical relationships between genes and CNVs were mapped using the Galaxy workbench.
[39, 40] All autosomal CNVs were tested for association with asthma affection status in the
383 complete trios, using discrete copy number calls from CNVTools as a surrogate for
copy number. Analyses were performed using FBAT-CNV, which generates a test statistic
by comparing expected subject genotype based on the mean of the known parental
genotypes (binned CNVRs) to the actual subject genotype.[41] Regions with significant
association with asthma (p<.05) were manually reviewed. Power calculations were
performed using Quanto.[42]

Technical validation
Genotyping error can be a source of both false positive or false negative results. Using
customized quantitative PCR assays (TaqMan assays, Applied Biosystems Inc, Foster City,
CA), we were able to validate 46 of 63 (73%) high confidence CNVs, demonstrating high
concordance rates between qPCR and Agilent microarray CNV calls.

RESULTS
All but one of 1212 individuals were successfully genotyped using the 180K CGH array.
Among 20,092 CNV regions represented on the array, 3,794 were autosomal, binned with
high confidence, and polymorphic in the CAMP cohort, including 1,259 with a minor copy-
number frequency of at least 5%. A total of 69 polymorphic CNVs mapped to within 50kb
of 58 asthma genes (21% of the 270 candidate genes surveyed, Supplemental Table 1). Of
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these, 6 CNVs overlap the complete coding sequence of one or more genes, 3 overlap at
least one exon, 17 are imbedded within an intragenic (intronic) sequence, and 43 are
intergenic (Figure 2). On average, these CNVs are rare (median frequency 3%, range .002–.
52), with only 27 present in at least 5% of individuals. The majority of CNVs consisted of
copy-number losses (40); 23 consisted of a copy-number gain only, while 6 CNVs were
more highly polymorphic, with both gains and losses observed. The 420 asthmatic probands
in our study carried a median of 6 such CNVs (range 1–29).

We evaluated the impact of CNV on asthma candidate genes using several approaches. We
first assessed whether CNVs were more prevalent among asthma candidate genes in our
cohort as compared to the background genome-wide rate. Overall, the prevalence rate
among candidate asthma genes of 21% (58/270) was similar to the background genome-
wide rate of 23% for RefSeq genes (p=.>.1 by Fisher’s Exact test). Slightly higher (33%
prevalence), but not significant (p >.1) enrichment for CNVs was observed upon refining
our analysis to the best-validated, high-confidence asthma candidate genes (N=12).

We next performed individual family-based tests of association for each of the 69 identified
CNVs in 383 self-reported white asthmatic trios. None of these region achieved statistical
significance following adjustment for multiple comparisons. Consistent with our prior
studies,13 we saw no association with asthma at the GSTM1 locus. Two candidate CNVRs
demonstrated nominal association with asthma at p<0.05, one in NOS1, the other near
SERPINA3 (Table 1). These asthma-associated CNVR were both quite rare, with frequency
of less than one percent. The most significant association was with a 1.5Kb intronic
duplication in the NOS1 gene (Figure 3). This gain was observed 7 times in our cohort, and
only in parents, with no transmission to offspring, suggesting that the deletion variant
confers decreased susceptibility to asthma. Similarly, a 1.4kB gain downstream of
SERPINA3 was seen 5 times in the cohort, again only in parents, suggesting a protective
effect.

Given the preponderance of rare CNVs showing some association with asthma in our cohort,
we wanted to assess the possibility that rare CNVs contribute to asthma liability. Because
statistical power in our cohort is low for individual association testing of rare variants, we
performed joint association testing of all 42 CNVs with frequency less than 5%, considering
the transmission distortion rate for all variants simultaneously. The observed rates of rare
CNV transmission did not differ from the null expectation (p = .32), suggesting that rare
CNVs in known asthma candidate genes do not contribute substantially to asthma liability.

The genetic and physical relationships between CNV and asthma-associated SNP
The majority of disease-associated SNPs identified by GWAS studies are themselves not
functional, disease-causing variants, but rather are in LD with untyped causal variants. In is
conceivable that some of these associations are due to indirect tagging of disease-causing
CNV. We tested this in our dataset and found no evidence of this: Among the 1211 subjects
genotyped using this 180K Agilent platform, 1056 also had SNP genotyping from an
Illumina 550Kv3 array available, enabling evaluation of pairwise LD, yet only 3 of the 69
CNVs (near ESR1, TGFBR3, and SOD2) were strongly tagged by a neighboring SNP.
Furthermore, in all three instances, both the CNV and the tagging SNP were physically far
removed from previously identified asthma SNPs (>20kB in all cases), and the CNV-tagging
variants were themselves not in LD with previously associated asthma SNP. Notably, the
two rare CNVs that were nominally associated with asthma above were not reliably tagged
by SNP on GWAS platforms. Thus, in no instance did we find evidence that CNVs were
likely to explain a previously identified asthma association.
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DISCUSSION
Substantial advances have been made in recent years in elucidating the genetic
underpinnings of asthma, particularly with the very exciting results of recently published
GWAS analyses. Yet only a fraction of the over-all heritability of asthma has been explained
to date; furthermore, among bonafide asthma genes that have been identified thus far,
functional loci are largely still unknown. As-yet unexamined CNVs have the potential to
address both of these issues. Using a custom-designed CNV genotyping array, we were able
to assess the effects of CNV in known asthma genes. Though we found substantial evidence
of structural variation near and within these asthma genes, with more than 20% of genes
harboring CNV and asthmatic probands harboring an average of 6 CNV per genome, our
analyses suggest that these variants are themselves not association with asthma, and do not
explain prior asthma-SNP associations. Within the 58 asthma candidate genes that either
contained or were adjacent to a CNV, we identified only 3 cases in which a SNP on a
standard GWAS genotyping array was in high LD with our tested CNV, of which none were
linked to the known associated asthma SNP. In sum, these results suggest that although
CNV is prevalent among asthmatics, the common variants observed in our cohort do not
represent the causal variants underlying previously observed SNP associations.

This study represents, to our knowledge, the first systematic evaluation of CNV in asthma
genes. Unlike SNP-based genome-wide studies, we used CGH technology targeting more
than 20,000 previously identified CNV regions. The fine-scale nature of this technology
allows greater confidence in our CNV genotyping than the CNV calls extrapolated from
SNP-based genotyping methods, providing greater confidence that our lack of associations
did not result from technical inadequacies. Indeed, independent technical validation studies
by qPCR confirmed the CNV genotyping accuracy of 74%, consistent with prior studies
using CGH. Furthermore, although our sample size of 383 trios is modest, because our
analysis was limited to only 69 variants, this study was adequately powered to appreciate
modest odds ratios of 1.35–1.8 for common CNVs (80% power to appreciate these ORs in
CNV with non-two-copy frequency .05–.50 in 383 trios, with nominal significance level of
α .05). While these odds ratios are larger than those attributed to most SNP-based variation
(with typical O.R.’s closer to 1.2), the effect size of pathogenic CNVs is frequently higher
than that of SNPs, presumably due to their large size physical size and greater likelihood of
disrupting gene function.[43] We are therefore confident that the common tested CNVs are
not important contributors in asthma pathogenesis. We are underpowered to identify minor
increases in risk in the rare CNV variants with MAF <5%, requiring OR >2 to meet
significance.

Although our results suggest no role for CNVs in the mechanisms underlying prior asthma
associations, it is important to emphasize that we have not excluded a broader role in asthma
pathogenesis for structural genetic variation. First, the goal of this study was to specifically
explore the relationship of CNV to previously implicated asthma genes, but was not
designed as a comprehensive genome-wide study of all genomic regions. Second, the
CAMP cohort we studied included children with mild to moderate asthma; given the
increasingly recognized heterogeneity in asthma phenotypes,[44] our negative results may
not extrapolate to other types of asthmatics (including, adult-onset or more severe asthma,
for example). Third, the customized array was designed to evaluate known variants
identified in small to modest sized cohorts, sampled without regard to asthma status. As a
result, the array would underrepresent highly penetrant asthma variants with low prevalence
in the general population. Fourth, though this study was well powered for common variants,
studies of rare variants require substantially larger cohorts. Though our pooled analysis of
42 rare variants showed no significant association, formal testing of individual variants in
larger cohorts is warranted. We note that the study of rare structural variants poses
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additional challenges beyond simple statistical power. Population-based CNV calling
algorithms are more accurate if the variant is more frequent, as clearer binning of observed
log2 intensity ratios into discrete copy-number counts is possible. For rare CNVs such as the
~2,500 with frequency <5% in our dataset, binning is less confident, with only the most
extreme outliers classified as variant. Finally, the lower size limit of CNVs targeted by our
array was >500 bp; the role of indels, inversions, and very small CNVs on the candidate
genes was not explored in this work. Improvements in CNV identification and
quantification, using next-generation whole-genome sequencing technology,[8] will
eventually address these limitations, enabling complete characterization of the spectrum of
structural genetic variation in asthma.

Our analyses identified two copy-number variable regions that exhibited (albeit marginal)
association with asthma. Particularly intriguing is the association of a NOS1 intronic CNV.
NOS1 encodes the nitric oxide synthase 1, which synthesizes NO from L-Arginine. While
present in less than 1% of the cohort, this CNV was noted only in parents, but was never
transmitted to asthmatic probands, suggesting a protective genetic effect. Several SNP-based
candidate gene studies of NOS1 have reported associations with asthma. However, there is
little evidence of reproducibility across studies, and the exact causal variants are not known.
[45, 46] The role of CNVs in NOS1 has never been previously assessed. As with any genetic
study, the importance of these CNVs in asthma pathogenesis must be confirmed with
replication in additional populations.

In summary, we have performed a comprehensive assessment of the role of copy number
variation in human asthma genes. Though 21% of asthma candidates are copy-number
variable and several rare CNVs were found to be weakly associated with asthma, the vast
majority of previously reported asthma-SNP associations do not appear to be due to the
effects of neighboring CNVs. Future studies of focusing on genome-wide structural variants
beyond those previously associated with asthma are required to search for additional
asthma-susceptibility structural genetic variants.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The certainty of CNV copy number call is predicated on discrete separation of signal
intensity log2 ratios. Representative examples of high certainty calls: (A) a common 600BP
gain in PTPRD; (B) a rare 1.5Kb loss in DPP10 (B) are presented. In comparison, a 1Kb
region near IL17RA (C) shows a suggestion of CNV, but bins much less clearly.
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Figure 2.
Distribution of 69 CNVs in or near asthma-associated genes
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Figure 3.
NOS1 CNV location and histogram.
Figure 3A. The 2kb CNV is intronic within NOS1, as shown in red.
Figure 3B. CNVTools calls a gain for all CNVs with log2ratio greater than 0.6, demarcated
with a red line in this image. All 7 gains (to the right of the red line) are in parents in the
CAMP cohort.
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