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Mini-REVIEW MINI-review

Introduction

The loss of mesencephalic substantia nigra (SN) dopaminer-
gic neurons in PD is responsible for its core motor symptoms.1 
However, a variety of other neurons exhibit signs of pathology 
in post-mortem analysis of PD patients. For example, intracel-
lular protein aggregates in the dorsal motor nucleus of the vagus 
(DMV), a region within the medulla oblongata, are a consistent 
feature of the pathology in the brains of PD patients.2,3 These 
aggregates are known as Lewy bodies and Lewy neurites or 
Lewy pathology. Alpha-synuclein is a major component of Lewy 
pathology, enabling pathologists to use immunocytochemical 
approaches to map Lewy pathology in postmortem samples from 
PD patients.4 Although they have caveats, these studies have 
given us a “roadmap” of the PD trajectory that should inform 
our theories about pathogenesis. This review attempts to sum-
marize this literature and to determine if there is a connection to 
mitochondrial dysfunction, which has long been thought to be a 
causative factor in PD.99
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An under-appreciated clue about pathogenesis in Parkinson 
disease (PD) is the distribution of pathology in the early and 
middle stages of the disease. This pathological “roadmap” 
shows that in addition to dopaminergic neurons in the 
substantia nigra pars compacta (SNc), a significant number of 
other central and peripheral neuronal populations exhibit Lewy 
pathology, phenotypic dysregulation or frank degeneration 
in PD patients. This spatially distributed, at-risk population of 
neurons shares a number of features, including autonomously 
generated activity, broad action potentials, low intrinsic 
calcium buffering capacity and long, poorly myelinated, and 
highly branched axons. Many, and perhaps all, of these traits 
add to the metabolic burden in these neurons, suggesting 
that mitochondrial deficits could drive pathogenesis in PD—
in agreement with a large segment of the literature. What is 
less clear is how this neuronal phenotype might shape the 
susceptibility to proteostatic dysfunction or to the spread 
of α-synuclein fibrils deposited in the extracellular space. 
The review explores the literature on these issues and their 
translational implications.
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Vulnerable Neuronal Populations in PD

Both central and peripheral nervous systems are affected in PD. 
The peripheral nervous system can be divided into three parts: 
sensory, motor and autonomic. Generally, peripheral sensory and 
motor neurons do not display Lewy pathology or signs of degener-
ation in PD patients. In contrast, there are clear signs of pathology 
in the autonomic nervous system. The autonomic nervous sys-
tem has three major divisions: sympathetic, parasympathetic and 
enteric. All three have been reported to exhibit Lewy pathology 
and dysfunction in PD patients. For example, orthostatic hypo-
tension occurs in a significant fraction of late stage PD patients. 
This symptom has been attributed to a sympathetic denervation 
of the heart or vasculature.5-9 In some PD and dementia with Lewy 
bodies patients, Lewy pathology is present in the peripheral vagal 
nerve and ganglia.10,11 These axons originate in the DMV. There 
are reports of strong Lewy pathology in the DMV preganglionic 
parasympathetic neurons of nearly all PD patients studied (see 
below). A subset of parasympathetic neurons in the intrinsic car-
diac ganglia also appear to be at risk in PD.8 The parasympathetic 
inferior salivatory nucleus (ninth cranial nerve), which innervates 
the parotid gland, also features Lewy pathology in PD,11,12 but it 
is unclear whether there is neuronal loss. In PD patients, Lewy 
pathology has been seen in both in the submandibular gland and 
the superior cervical ganglion.11 Djaldetti and colleagues have 
reported a marked denervation of all autonomic neurites in skin,13 
work supported by analyses of skin biopsies from PD patients.5,14

Lewy pathology and dopaminergic neuron loss also has 
been found in the enteric nervous system of many PD patients, 
particularly the lower gastrointestinal tract, which might be 
responsible for decreased gastric motility and constipation.15,16 
The inevitability of enteric nervous system pathology in PD has 
been challenged, however.17-19 These studies show that enteric 
nervous system Lewy pathology is a frequent, but not necessary 
concomitant of PD. Conversely, although gastrointestinal dys-
function is frequently found in PD patients,5 it is also common 
among aged individuals without any sign of PD.20 Making mat-
ters worse, enteric nervous system neurons are very heterogeneous 
and attempts to identify the phenotype of those exhibiting Lewy 
pathology have not reached a consensus.21,22

In summary, Lewy pathology is found in several types of 
peripheral neuron in PD. The only neurons that are well estab-
lished to be lost in PD are noradrenergic neurons innervating the 
heart and skin. Lower intestine enteric nervous system neurons 
commonly display Lewy pathology in PD patients and this might 
be responsible for constipation that commonly accompanies PD.
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locus coeruleus neurons and is absent from non-neuromelanin 
cells in the complex,34 confirming selective damage to noradren-
ergic neurons. Virtually all PD patients appear to have a substan-
tial loss of locus coeruleus neurons, with a mean neuronal loss of 
83% in later stages of the disease.38 There is also an average 68% 
loss of these neurons in Alzheimer disease, but the extent of locus 
coeruleus loss is more variable in Alzheimer disease patients than 
PD patients.38

Neurons in the raphe nuclei are responsible for serotoninergic 
innervation of the CNS. In incidental Lewy body disease and 
PD, Lewy pathology is most apparent in medium-sized neurons 
of the caudal raphe nucleus.12 The ventrorostral raphe region 
around the medial lemniscus also exhibits Lewy pathology in 
PD.34 Raphe nuclei neurons not only display Lewy pathology, 
but are lost in PD, with a reduction of over half these neurons in 
the median raphe and a somewhat smaller fractional loss reported 
in the raphe obscurus.34,42

The pedunculopontine nucleus is rostral to the locus coeru-
leus and includes a mixture of cholinergic, glutamatergic and 
GABAergic neurons with an array of targets in the mesencepha-
lon and diencephalon.43 The pedunculopontine nucleus was 
reported to exhibit Lewy pathology by Braak’s group.4,28 Lewy 
pathology and neuronal loss also were reported.44,45 Although 
prominent in PD, pedunculopontine nucleus loss is not specific 
to PD and is also seen in progressive supranuclear palsy and 
Alzheimer disease.42,44,45

There is also substantial pathology in regions rostral to the 
brainstem relatively early in PD. One of these is the olfactory 
system. In the olfactory bulb, mitral cells exhibit Lewy pathol-
ogy, but this is also seen in Alzheimer disease.46,47 The anterior 
olfactory nucleus also shows Lewy pathology in incidental Lewy 
body disease.12 The existence and targeting of neuronal loss in the 
olfactory system is controversial.48,49 This issue is complicated by 
the neurogenesis in this region.50

There are several other regions that have been reported to have 
either neuronal loss or Lewy pathology in PD, many in single 
studies. These include the lateral hypothalamus51 and the intra-
laminar nuclei of the thalamus.52 The specificity of these changes 
is unclear. In the case of the thalamic nuclei, the loss is also seen 
in progressive supranuclear palsy.52 In apparent later stages of PD, 
Lewy pathology is also scattered throughout the cerebral cortex, 
amygdala and hippocampus.53,54 Retinal dopaminergic also has 
been reported to decline, but Lewy pathology was not identified.55

The nucleus basalis of Meynert is a prominent site of Lewy 
pathology and cell loss in PD patients. The specificity of the 
pathology is less clear as the nucleus basalis of Meynert also figures 
prominently in Alzheimer disease.56 This issue was addressed by 
a comparative study that found a loss of about half of the nucleus 
basalis of Meynert neurons measured by cresyl violet label in 11 
PD patients, which was significantly greater than age-matched 
control subjects.57 Not all of these subjects displayed Alzheimer 
disease-like symptoms, suggesting that there was a symptom-
atic threshold. There was no correlation between PD symptom 
severity and nucleus basalis of Meynert loss in this study. The 
most extensive comparative study of PD and Alzheimer disease 
brains in this region found similar neuronal losses, also as labeled 

In the central nervous system, the vast majority of the neu-
rons lost or displaying signs of pathology in early and mid-state 
PD patients are found in the brainstem. In the brainstem, Lewy 
pathology and cell loss has been reported in the region of the 
DMV, the medullary reticular formation, the raphe nuclei, the 
locus coeruleus, the pedunculopontine nuclei, the substantia 
nigra pars compacta (SNc) and, to a lesser extent, the ventral 
tegmental area and retrorubral area. The evidence for the involve-
ment of these nuclei will be discussed in turn.

James Parkinson theorized that damage to the medulla caused 
PD. Axons entering the vagus nerve from the DMV can have 
strong Lewy pathology;23 Lewy pathology within the DMV has 
been reported in most,12 but not all PD patients.24,25 Additional 
neurons in this region have some variable degree of Lewy pathol-
ogy.12 Neuronal counts demonstrate that DMV neurons are 
lost in PD,26 but there are differences in the literature regard-
ing which neurons are lost, probably due to differences in stages 
of the disease. Classical studies report neuromelanin containing 
neurons in the DMV region were lost in PD brains, including 
the original report,27 which states that “The pigmented cells of 
the dorsal vagal nucleus also degenerated, often with vacuolation, 
by contrast with the non-pigmented cells in this nucleus which 
remained healthy.” Eadie did not confirm this and reported 
that cholinergic motoneurons were lost, consistent with a later 
study.26 Braak and collaborators suggest that the preganglionic 
parasympathetic projection neurons are first to degenerate, and 
neuromelanin neurons might be lost later.28 These might not be 
distinct neuronal populations, however. New work suggests that 
some cholinergic DMV neurons also express tyrosine hydroxy-
lase and aromatic acid decarboxylase, the enzymes that produce 
dopamine; while these neurons might synthesize catecholamines, 
they lack detectable vesicular monoamine transporter, making it 
unlikely they release it.29

The loss of dopaminergic neurons in the SNc is the best-
documented sequela of PD. The loss of neuromelanin in the 
SNc of PD patients was reported early in the 20th century30 
and confirmed by many subsequent studies.27,31-33 The loss of 
neuromelanin is seen in all PD patients,34 but not all patients 
with parkinsonism.35 Parkinsonism is a bradykinetic syndrome 
that can include rigidity, tremor and postural instability. PD 
is the most common cause of parkinsonism, but progressive 
supranuclear palsy and multiple system atrophy also fall into 
this category. Lewy pathology is nearly always found in the 
neuromelanin-positive neurons in the SNc of PD patients, par-
ticularly in the posterolateral regions.12 Some Lewy pathology 
has been reported in the neighboring ventral tegmental area and 
retrorubral field neurons as well,53 but neuronal loss in these two 
regions is variable.36,37 Profound neuronal loss in the SNc appears 
to be specific to parkinsonian etiologies119 and not Alzheimer 
disease.38 The most heavily neuromelanin pigmented neurons 
that are lost in the SNc of PD patients appear to be those with 
lower levels of vesicular monoamine transporter type 2 and with 
decreased vesicular accumulation of dopamine as well as low lev-
els of calbindin.39-41

Locus coeruleus neurons have long been known to be lost in 
PD.27,33 Lewy pathology is observed in neuromelanin pigmented 
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is low68 possibly reflecting the need to traffic mitochondria to 
axons. It is worth noting that α-synuclein is a presynaptic regula-
tor of synaptic vesicle exocytosis;69-71 the proteostatic burden it 
creates could scale with the number of synaptic release sites and 
may contribute to mishandling of presynaptic mitochondria.72 It 
is unclear whether ventral tegmental area and retrorubral field 
dopaminergic neurons have as extensive an axonal field as do SNc 
dopaminergic neurons. Matsuda et al. did not report profound 
differences in dorsal and ventral striatal terminal fields, which 
should correspond to SNc and ventral tegmental area; as a con-
sequence, the differences in vulnerability between these regions 
would have to be explained by other factors. Neurons of the locus 
coeruleus also have very long and complex projections. Based 
upon the distance traveled and terminal field, the axons of DMV 
neurons are also long and highly branched, and many enteric ner-
vous system neurons are also highly branched.

A common physiological phenotype. An extended discussion of 
this hypothesis has recently been published.73 PD is a disease of 
neurons, not of the liver, kidney or heart. An implication of this 
fact is that one or more of the features distinguishing neurons 
from these other cell types must contribute in a seminal way to 
pathogenesis. A cardinal feature of neurons that separates them 
from nearly all other cell types is excitability. Neurons use steep 
electrochemical gradients across their plasma membrane to per-
form computations on incoming chemical signals from other 
neurons and to pass the outcome of this computation to other 
cells. Each step in this process expends energy. Action potentials 
(or spikes) and synaptic transmission dissipate the ionic gradients 
for sodium, potassium, calcium and chloride that are maintained 
by adenosine triphosphate dependent pumps and exchang-
ers. Although all neurons share this basic set of properties, the 
parameters of spikes and synaptic transmission vary dramatically. 
The physiological phenotype of neurons ranges from what might 
be called a “wallflower” or quiescent phenotype to a “chatter box” 
phenotype that never stops spiking. SNc, locus coeruleus, raphe 
nuclei, nucleus basalis of Meynert, pedunculopontine nucleus 
and DMV neurons all fall into the chatterbox phenotype. That 
is, all of them spike continuously in vivo during the waking 
state.74-81 SNc, locus coeruleus, DMV and pedunculopontine 
nucleus neurons are autonomous pacemakers (they spike on their 
own in the absence of synaptic input).

One particularly expensive ion that enters neurons during 
spiking is calcium. It is metabolically expensive because it must 
be pumped out of the cell against a much steeper (~2,000-fold) 
electrochemical gradient than sodium, potassium or chloride 
ions. Most neurons keep this burden to a minimum by restrict-
ing calcium entry to the brief period during spikes, keeping these 
spikes short in duration and by expressing specialized calcium 
binding proteins that effectively buffer calcium—“grabbing” 
it after it enters and keeping it in place for plasma membrane 
pumps and transporters. This is not true of vulnerable neurons; 
they seem to do all the wrong things. For example, typically vul-
nerable neurons are continually spiking and have broad, slow 
spikes; this is certainly true of SNc, locus coeruleus, raphe nuclei, 
pedunculopontine nucleus and nucleus basalis of Meynert neu-
rons (see references above). Although less well studied, many of 

by cresyl violet, on average (~40%), but there was a great deal 
of variability.38 Thus, Lewy pathology and neuronal loss in the 
nucleus basalis of Meynert appears to be a common feature of PD 
and Alzheimer disease.

Determinants of vulnerability. The obvious question is what 
links this seemingly diverse set of neurons. There are several 
possible phenotypic traits that have been proposed to underlie 
vulnerability.

A common reactive neurotransmitter. SNc, locus coeruleus, 
raphe nuclei, enteric dopaminergic neurons and sympathetic 
postganglionic neurons each synthesize a monoamine neu-
rotransmitter and high levels of cytosolic monoamines are reac-
tive and hypothesized to underlie selective neuronal death under 
several conditions.58-62 Although pre-ganglionic DMV neurons 
are nominally cholinergic, some of these neurons appear to pos-
sess and/or secrete monoamines. SNc and locus coeruleus are the 
most similar in this regard and both have neuromelanin depo-
sition in humans. These two nuclei exhibit the greatest loss in 
PD. Nevertheless, some highly pigmented A2 catecholaminergic, 
neuromelanin-positive neurons in the caudal medulla do not 
appear to be lost in PD,32 and so neuromelanin synthesis per se, 
which may be a neuroprotective response,63,64 is not sufficient for 
neuronal death. In the periphery, the loss of NE neurons is vari-
able, with some sympathetic neurons appearing to be vulnerable 
and others not. Moreover, their loss is not specific to PD, as is also 
the case for locus coeruleus neurons.

However, there are two arguments against the reactive mono-
amine transmitter hypothesis of PD. One is that there clearly 
is pathology and loss of neurons that do not use monoamines. 
Vulnerable neurons in the DMV, pedunculopontine nucleus, 
LH, nucleus basalis of Meynert and enteric nervous system do 
not use a monoamine transmitter. It is true that neuronal loss 
in at least some of these regions is known not to be specific to 
PD. But the same is true of neuronal loss in locus coeruleus. It 
has been recently suggested that loss of cholinergic neurons is a 
consequence of the preceding loss of monoamine neurons,120 but 
this conjecture awaits compelling support. The other key argu-
ment is that use of L-DOPA—the precursor for dopamine—to 
treat PD does not accelerate the progression of the disease as one 
would expect if dopamine or noradrenaline was the toxic agent 
in the disease.1

A long, highly branched axon with multiple release sites. SNc, 
locus coeruleus, raphe nuclei, pedunculopontine nucleus, DMV 
and nucleus basalis of Meynert neurons all have unusually long 
highly branched axons that are unmyelinated or thinly myelin-
ated.7,65 This feature is particularly well documented for SNc 
dopaminergic neurons. Single SNc axons terminating in the 
striatum are highly branched and possess as many as several 
hundred thousand synaptic release sites.66 This is an order of 
magnitude greater than most neurons that have been carefully 
studied. Interestingly, these terminals do not appear to have an 
elevated mitochondrial oxidant stress.67 However, maintaining 
a massive terminal field is very likely to create a metabolic and 
proteostatic burden on the cell body. Mitochondrial trafficking 
could prove particularly problematic; in fact, mitochondrial den-
sity in the somatodendritic region of SNc dopaminergic neurons 
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levels seen in many vulnerable neurons could also play a direct 
role. For example, increasing calcium concentration, even tran-
siently, increases the aggregation of α-synuclein.103 Lysosomes 
and autophagic vacuoles that deliver intracellular components to 
lysosomes, key elements in the catabolic machinery, are depen-
dent upon calcium signaling for their regulation104 and are poten-
tial sites of ROS generation.64 A number of genes linked to PD 
have effects on lysosomal function as well.105 These observations 
raise the possibility that proteostatic challenges that increase 
lysosomal activity could exacerbate basal oxidant stress in vul-
nerable neurons, promoting degeneration.

Another hypothesis of pathogenesis that has received a great 
deal of attention lately is the so-called prion hypothesis.106 In this 
model, α-synuclein fibrils in the extracellular space are taken up 
by neurons and these fibrils seed Lewy pathology; some subset 
of these fibrils are then released, spreading the pathology. Thus, 
α-synuclein fibrils behave in a prion-like way. The most com-
pelling support for this hypothesis comes from (1) the observa-
tion that dopaminergic neurons grafted into the brains of PD 
patients rapidly developed Lewy pathology107 and (2) the dem-
onstration that inoculation of brains with α-synuclein fibrils 
leads to a spreading Lewy-like pathology.108,118 On the face of it, 
this model is very difficult to reconcile with the pattern of PD 
pathology. In the brain of a PD patient, Lewy pathology does 
not follow a nearest neighbor rule. For example in the caudal 
brainstem, neurons in the nucleus tractus solitarius never show 
Lewy pathology or degeneration in PD, but are near neighbors of 
DMV neurons and project axons to them. Synaptic connectivity 
per se also does not predict the pattern of Lewy pathology in PD. 
The spread of pathology reported by Lee’s group following injec-
tion of α-synuclein fibrils into the brain appears to be more like 
a wave than spread based upon the strength of synaptic connec-
tivity.108 Thus, if α-synuclein fibrils spread the pathology in PD, 
then there has to be a modifier of susceptibility that accounts for 
its non-uniform distribution. Could susceptibility to α-synuclein 
fibril “infection” be determined by physiological phenotype? 
One of the key features of these neurons is that they have robust 
elevations in cytosolic calcium concentration. Calcium regulates 
exocytosis and exosome-mediated protein release.109-111 These are 
the presumptive mechanisms by which α-synuclein fibrils will be 
delivered and taken up. Neuronal exosomal release is increased by 
depolarization112 and exosome-mediated release of α-synuclein in 
particular is calcium-dependent.113 Endocytosis, at least at nerve 
terminals, is also increased by calcium.114 The vast axonal arbor 
of vulnerable neurons could also serve as a potent conduit for 
the propagation of pathology. If activity-dependent elevation in 
cytosolic calcium is required for the spread of α-synuclein pathol-
ogy, then the pattern of pathology becomes understandable. It 
also would mean that vulnerable neurons are assaulted from two 
directions: metabolic and proteostatic.

Therapeutic implications. The translational question is how 
to devise a therapeutic strategy to stop or slow the progression 
of PD. Although there are not clear strategies for altering the 
risk factors associated with transmitter choice or axonal arbor, 
there is a way in which the consequences of the chatterbox phe-
notype on mitochondrial stress could be diminished. One of the 

the neurons in the autonomic nervous system, particularly those 
in the enteric nervous system, also are spontaneously active and 
have broad spikes.82-84 The expression of calcium binding pro-
teins is low in those vulnerable neurons that have been studied 
carefully. SNc, locus coeruleus and DMV neurons express rela-
tively little of these calcium binding proteins77,85 (raphe nuclei, 
pedunculopontine nucleus and nucleus basalis of Meynert have 
not been rigorously characterized in this regard to our knowl-
edge). In contrast, most other relatively PD-resistant autonomous 
pacemakers in the brain express a high level of calcium binding 
proteins (e.g., ventral tegmental area neurons, Purkinje neurons, 
globus pallidus neurons, striatal cholinergic interneurons).86,87 
The expression of known calcium binding proteins in the auto-
nomic nervous system and enteric nervous system varies from 
cell type to cell type.88-90 In addition, SNc and locus coeruleus 
neurons allow significant amounts of calcium to enter during the 
period between spikes.91-93

The pacemaking phenotype characteristic of vulnerable 
neurons opens the door to another potential source of stress. 
Pacemaking neurons reside at relatively depolarized membrane 
potentials where NMDA receptors are relieved of their magne-
sium block, creating another point of sodium and calcium entry 
during excitatory synaptic transmission; excitotoxicity is one of 
the earliest theories of pathogenesis in PD.94,95

In addition to creating a metabolic stress, activity-dependent 
elevation in cytosolic calcium levels increases cytosolic dopamine 
in SNc neurons, possibly due to an effect on synthesis.60 Enhanced 
dopamine levels in the cytosol can lead to α-synuclein-dependent 
neuronal death.60

In most neurons, the metabolic burden associated with activ-
ity and synaptic transmission is thought to significantly diminish 
the respiratory reserve of mitochondria.96 In SNc dopaminer-
gic neurons, and others of its kind, this reserve should be even 
smaller. In fact, there is a measurable increase in the oxidation of 
mitochondrial thiol proteins in SNc and DMV neurons that are 
simply pacemaking.97,98 Unpublished work by our group (DJS) 
has revealed that locus coeruleus neurons have a similar mito-
chondrial oxidant stress. Mitochondrial dysfunction is widely 
viewed as a pivotal step in PD pathogenesis.99 A sustained mito-
chondrial oxidant stress should in principle lead to the accumula-
tion of mitochondrial DNA (mtDNA) mutations and impaired 
complex I function seen in the SNc with aging and PD.100-102 
Genetic mutations affecting mitochondria and environmental 
toxins that compromise mitochondrial respiration could syner-
gize with this cell type specific stress, hastening bioenergetic fail-
ure and degeneration.

An interaction between neuronal phenotype and proteos-
tatic dysfunction. The data summarized thus far is consistent 
with the hypothesis that vulnerable neurons have a distinctive 
physiology, leading to increased mitochondrial oxidant stress and 
susceptibility to insults that compromise mitochondrial func-
tion. Does this model provide an explanation of Lewy pathol-
ogy and proteostatic dysfunction in these neurons? The answer 
is clearly no. However, it is self-evident that bioenergetic deficits 
could impair proteostatic function simply by diminishing the 
availability of adenosine triphosphate. Elevated cytosolic calcium 
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autonomously generated activity, broad action potentials, low 
intrinsic calcium buffering capacity and long, poorly myelin-
ated, highly branched axons. These features might render them 
more vulnerable to infection by prion-like α-synuclein fibrils and 
more likely to propagate it. Although this constellation of fea-
tures is likely to drive pathogenesis through a number of parallel 
pathways, mechanisms driven by the opening of L-type calcium 
channels appear to be the most therapeutically accessible.
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ion channels contributing to the basal metabolic stress in SNc, 
DMV and locus coeruleus neurons is the L-type calcium chan-
nel with a Cav1.3 pore-forming subunit. As mentioned above, 
antagonizing these channels diminishes mitochondrial oxidant 
stress in these neurons and lowers potentially damaging levels 
of cytosolic dopamine. Diminishing intracellular calcium levels 
could also lower the risk of α-synuclein aggregation and of taking 
up and passing on α-synuclein fibrils. There are FDA approved 
antagonists (dihydropyridines) of these channels that have an 
excellent safety record in humans. Moreover, there is epidemio-
logical evidence that sustained use of dihydropyridines reduces 
the observed risk of PD.115-117

Summary

The pathological “roadmap” created by Lewy pathology and 
neuronal loss shows that PD is far from just a disease of dopa-
minergic neurons in the SNc. The spatially distributed, at-risk 
population of neurons share a number of features, including 
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