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Calorie restriction (CR) extends life-
span in species ranging from yeast

to mammals. There is evidence that CR
also protects against aging-related dis-
eases in non-human primates. This has
led to an intense interest in the develop-
ment of CR-mimetics to harness the
beneficial effects of CR to treat aging-
related diseases. One potential CR-
mimetic that has received a great deal of
attention is resveratrol. Resveratrol
extends the lifespan of obese mice and
protects against obesity-related diseases
such as type 2 diabetes. The specific
mechanism of resveratrol action has been
difficult to elucidate because resveratrol
has a promiscuous target profile. A recent
finding indicates that the metabolic
effects of resveratrol may result from
competitive inhibition of cAMP-degrad-
ing phosphodiesterases (PDEs), which
increases cAMP levels. The cAMP-
dependent pathways activate AMP-acti-
vated protein kinase (AMPK), which is
essential for the metabolic effects of
resveratrol. Inhibiting PDE4 with roli-
pram reproduces all of the metabolic
benefits of resveratrol, including protec-
tion against diet-induced obesity and an
increase in mitochondrial function, phys-
ical stamina and glucose tolerance in
mice. This discovery suggests that PDE
inhibitors may be useful for treating
metabolic diseases associated with aging.

CR is the most robust non-genetic inter-
vention for life extension in many species,
including rodents and lower eukaryotes.1 If
started early in life, decreasing calorie
intake by 30% or more below ad libitum
intake increases maximum lifespan by
30–60% in rodents. In general, CR not

only extends the maximal lifespan but
also decelerates many aging-related physio-
logical changes and chronic diseases in
rodents. Whether CR extends the maximal
lifespan by delaying aging and/or by
decreasing incidence or progression of
aging-related diseases is controversial.
Nevertheless, the beneficial effects of CR
observed across a wide range of animals,
suggests that CR may also be beneficial
for primates, including humans. Although
studies of CR in non-human primates
have not yet concluded, evidence seems to
be pointing in that direction. Long-term,
moderate CR decreases aging-related
mortality and diseases in rhesus monkeys.2

As in rodents, CR decreases adiposity,
improves insulin sensitivity and lipid pro-
file and decreases inflammation. Aging-
related diseases such as cardiovascular
disease, type 2 diabetes, sarcopenia and
cancer are significantly lower in the CR
rhesus monkeys.2 Whether CR protects
against aging-related diseases by delaying
the aging process remains unanswered as
these monkeys have not reached their
maximum lifespan.

Despite the health benefits of CR,
countless past experiences with therapies
that rely on reducing food intake indicate
that CR is not a viable long-term therapy
except for the most disciplined few.
Therefore, CR research has triggered an
intense interest in the development of
CR-mimetics, drugs that produce the
biochemical, cellular and physiological
changes that are critical for the CR
benefits without limiting food intake.
One potential CR-mimetic that has
received a great deal of attention is
resveratrol, a polyphenol belonging to a
group of compounds called stilbenes,
which is produced in plants in response
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to stress and is present in many plant-
based foods, most notably red wine. A
number of studies have found that
resveratrol increases lifespan in lower
eukaryotes,3-5 although other studies have
disputed these findings.6,7 Resveratrol also
delays aging-related deterioration and pro-
duces a transcriptional profile that overlaps
that of CR in mice, but without extending
lifespan.8,9 In mice fed a high-fat diet,
resveratrol protects against obesity, type 2
diabetes10 and premature death.11 Several
clinical trials have been conducted to study
the metabolic effects of resveratrol.
Although these trials have used different
subject groups (e.g., obese healthy, type 2
diabetics or older adults with glucose
intolerance) and different resveratrol doses
(150 mg–2 g per day), they suggest that
resveratrol may improve insulin sensiti-
vity12,13 and mimic some aspects of CR.14

Although the beneficial effects of
resveratrol are widely accepted, the mecha-
nism by which resveratrol confers these
benefits was hotly debated. The notion
that resveratrol may be a potential CR-
mimetic was first proposed by Howitz et
al.15 who reported that resveratrol is an
activator of the protein deacetylase Sirt1.
Whether resveratrol is a direct activator of
Sirt1 came into question when several
groups showed that resveratrol activated
Sirt1 to deacetylate fluorophore-tagged,
but not native substrates.16-19 Inter-
estingly, resveratrol decreased acetylation
of Sirt1 substrates in vivo.10,11,20,21 The
Sirt1-dependency of some resveratrol
effects (reviewed in ref. 22) raises the
possibility that resveratrol activates Sirt1
indirectly in vivo via another target.
However, the acetylation status of a
protein is determined not only by the rate
of deacetylation but also by the rate of
acetylation, which may also be affected by
resveratrol.23 Therefore, until a direct
marker of Sirt1 activity becomes available,
it will be difficult to distinguish whether
Sirt1 activity is merely needed for the effects
of resveratrol or whether Sirt1 activity is
directly or indirectly induced by resveratrol.

The first clue regarding the possible
alternate mechanism of action of resvera-
trol came from the observation that
resveratrol activates AMP-activated protein
kinase (AMPK) in vivo.11,20,21,24,25 AMPK
senses nutrient deprivation by sensing the

AMP/ATP26 and ADP/ATP27 ratios and
has been shown to increase NAD+ levels
and to decrease acetylation of Sirt1
substrates.20,21,28,29 We and others have
shown that AMPK is required for the
metabolic effects of resveratrol,20,21 sug-
gesting that AMPK is the key mediator
of and is upstream of Sirt1 in the
resveratrol response. However, the epista-
sis between AMPK and Sirt1 may be
more complicated because AMPK activa-
tion is suppressed in Sirt1 knockout mice
treated with a low dose of resveratrol but
not with a high dose of resveratrol.30

Although the glucose lowering effect of
resveratrol is AMPK-dependent,20 it is not
Sirt1-dependent.30

Since resveratrol does not directly
activate AMPK, what is the upstream
target(s) that directly binds to resveratrol?
The target protein(s) should satisfy two
conditions: it should be upstream of
AMPK and it should be able to mediate
the CR-mimetic effects of resveratrol. In
response to conditions that decrease serum
glucose, serum levels of glucagon and
catecholamines rise. These hormones,
which stimulate adenylate cyclases and
cAMP production, act to increase glucose
production and to increase fat utilization.
Our observation that resveratrol increased
cAMP levels in myotubes31 led to the
discovery that resveratrol increased cAMP
levels by competitively inhibiting a num-
ber of cAMP phosphodiesterases (PDEs),
which degrade cAMP. Increased cAMP
levels activate AMPK by increasing intra-
cellular Ca2+ levels and the activity of
the AMPK kinase calcium/calmodulin-
dependent protein kinase β, processes that
are dependent on the cAMP effector
protein Epac1 (cAMP guanine-nucleotide
exchange factor).32,33 In certain conditions
or other cell types, another cAMP effector
protein kinase A appears to contribute to
resveratrol-mediated activation of AMPK
via AMPK kinase LKB1.

PDE4 comprises most of the PDE
activity in skeletal muscle, the tissue where
the metabolic effects of resveratrol are
best elucidated. If the metabolic effects of
resveratrol are mediated by inhibiting
cAMP PDEs, inhibiting PDE4 should
reproduce, at least qualitatively, the effects
of resveratrol. Indeed the PDE4 inhibitor
rolipram activated AMPK and reduced

acetylation of the Sirt1 substrate PGC-1a
as well as increasing mitochondrial content
and respiration in myotubes.31 In mice fed
a high-fat diet, rolipram increased meta-
bolic rate, protected against obesity and
improved glucose tolerance.31

Inflammatory signaling contributes to
development of type 2 diabetes, and
suppressing it with anti-inflammatory
drugs improves insulin sensitivity.34

Resveratrol may improve insulin sensitivity
partly by suppressing inflammatory signal-
ing because resveratrol has been reported
to attenuate inflammatory signaling in
primary and 3T3-L1 adipocytes.35

Consistent with the notion that resveratrol
inhibits PDE4, inhibitors of PDE4 sup-
press inflammation,36 and mice deficient
in PDE4B have reduced obesity-induced
inflammation in adipose tissue.37 The anti-
inflammatory effect of PDE4 inhibition is
most likely related to the ability of cAMP-
induced signals to interfere with the
function of the proinflammatory transcrip-
tion factor nuclear factor-kB.38

It is unlikely that PDE inhibition will
reproduce all of the effects of resveratrol
because resveratrol binds to many other
proteins19 and also because the target of its
action may differ depending on the tissue
or cell type and the effects under study.
However, the therapeutic potential of
resveratrol is complicated by such a
promiscuous target profile.19 Clinical trials
using resveratrol have shown modest
metabolic benefits without obvious toxi-
city, but they used small sample sizes and
the trials lasted no more than four
weeks.12-14 Whether resveratrol can be
useful as a drug for chronic diseases such
as type 2 diabetes will depend on the
robustness of its efficacy long-term as well
as its possible toxicity, which are currently
unknown. A more promising strategy may
be to use a PDE4 inhibitor to reproduce
the metabolic benefits of resveratrol.
Indeed, the PDE4 inhibitor roflumilast,39

which was recently approved by the FDA
for the treatment of chronic obstructive
pulmonary disease, was unexpectedly
found to significantly lower glucose in
individuals with type 2 diabetes.40

Therefore, the potential utility of PDE4
inhibitors for treating type 2 diabetes
and other aging-related diseases is worth
investigating.
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