Skip to main content
. Author manuscript; available in PMC: 2013 Mar 27.
Published in final edited form as: Neural Comput. 2010 Nov 24;23(2):374–420. doi: 10.1162/NECO_a_00076

Table 1.

NEBLS Estimation Formulas for a Variety of Observation Processes, as Listed in the Left Column.

Observation Process Observation Density: PY|X(y|x) Numerator of Estimator: L{PY}(y)

General discrete A (matrix) (AXA−1)PY(y)

Additive:
 General (section 6.1) PW(yx) yPY(y)F1{iwln(PW^(ω))PY^(ω)}(y)

 Gaussian (Miyasawa, 1961; Stein, 1981*) exp12(yxμ)T1(yxμ)2π (yμ)PY(y) + Λ ∇y(y)

 Laplacian 12αe(yx)α yPY(y)+2α2{PWPY}(y)

 Poisson λkeλk!δ(yxks) yPY(y) − λs PY(ys)

 Cauchy 1π(α(α(yx))2+1) yPY(y){12παyPY}(y)

 Uniform {12a,yxa0,yx>a} yPY(y)+aksgn(k)PY(yak)12PY(y~)sgn(yy~)dy~

 Random number of components PW(yx), where:
Wk=0KWk,
Wk i.i.d. (Pc), K ~ Poiss(λ)
yPY(y) − λ{(yPc) ⋆ PY}(y)

 Gaussian scale mixture Y=x+ZU,
U ~ N(0, Λ), Z ~ pZ
yPY(y)+(F1{0zpz(z)ez12ωTωdz0pz(z)ez12ωTωdz}yPY)(y)

Discrete exponential:
 General (section B.1)
  (Maritz & Lwin, 1989; Hwang, 1982*)
h(x)g(n)xn g(n)g(n+1)PY(n+1)

 Inverse (Hwang, 1982) h(x)g(n)xn g(n)g(n1)PY(n1)

 Poisson (section 6.1)
  (Robbins, 1956; Hwang, 1982*)
xnexn! (n + 1)PY(n + 1)

Continuous exponential:
 General (section B.3)
 (Maritz & Lwin, 1989; Berger, 1980*)
h(x)g(y)eT(y)x g(y)T(y)ddy(PY(y)g(y))

 Inverse (Berger, 1980*) h(x)g(y)eT(y)/x g(y)yT(y~)g(y~)PY(y~)dy~

 Laplacian scale mixture 1xeyx, x, y > 0 Pr{Y > y}

Power of fixed:

 General (section B.3) PYX^(ωx)=[PW^(ω)]x (F1{1iddwln(PW^(ω))}(yPY))(y)

 Gaussian scale mixture 12πxey22x EY{Y; Y > y}

 Signal-dependent AWGN Y=ax+xW, WN(0,1) sgn(a)((eaxI{ax<0})(yPY))(y)

 Multiplicative α-stable Y=x1αW,  W α-stable (F1{isgn(ω)ωα1}(yPY))(y)

Multiplicative lognormal (section B.4) Y = xeW, W Gaussian e32σ2PY(eσ2y)y

Uniform mixture (section B.5) 12x,yx0,y>x yPY(y) + Pr{Y > ∣y∣}

Notes: Expressions in parentheses indicate the section containing the derivation and brackets contain the bibliographical references for operators L, with the asterisk denoting references for the parametric dual operator, L*. Middle column gives the measurement density (note that variable n replaces y for discrete measurements). Right column gives the numerator of the NEBLS estimator, L{PY}(y). The symbol * indicates convolution, a hat (e.g., PW^) indicates a Fourier transform, and F1 is the inverse Fourier transform.