Table 1.
NEBLS Estimation Formulas for a Variety of Observation Processes, as Listed in the Left Column.
| Observation Process | Observation Density: PY|X(y|x) | Numerator of Estimator: L{PY}(y) |
|---|---|---|
|
| ||
| General discrete | A (matrix) | (A ∘ X ∘ A−1)PY(y) |
|
| ||
| Additive: | ||
| General (section 6.1) | PW(y − x) | |
|
| ||
| Gaussian (Miyasawa, 1961; Stein, 1981*) | (y − μ)PY(y) + Λ ∇y(y) | |
|
| ||
| Laplacian | ||
|
| ||
| Poisson | yPY(y) − λs PY(y − s) | |
|
| ||
| Cauchy | ||
|
| ||
| Uniform | ||
|
| ||
| Random number of components |
PW(y − x), where: , Wk i.i.d. (Pc), K ~ Poiss(λ) |
yPY(y) − λ{(yPc) ⋆ PY}(y) |
|
| ||
| Gaussian scale mixture |
, U ~ N(0, Λ), Z ~ pZ |
|
|
| ||
| Discrete exponential: | ||
| General (section B.1) (Maritz & Lwin, 1989; Hwang, 1982*) |
h(x)g(n)xn | |
|
| ||
| Inverse (Hwang, 1982) | h(x)g(n)x−n | |
|
| ||
| Poisson (section 6.1) (Robbins, 1956; Hwang, 1982*) |
(n + 1)PY(n + 1) | |
|
| ||
| Continuous exponential: | ||
| General (section B.3) (Maritz & Lwin, 1989; Berger, 1980*) |
h(x)g(y)eT(y)x | |
|
| ||
| Inverse (Berger, 1980*) | h(x)g(y)eT(y)/x | |
|
| ||
| Laplacian scale mixture | , x, y > 0 | Pr{Y > y} |
|
| ||
| Power of fixed: | ||
|
| ||
| General (section B.3) | ||
|
| ||
| Gaussian scale mixture | EY{Y; Y > y} | |
|
| ||
| Signal-dependent AWGN | , | |
|
| ||
| Multiplicative α-stable | , W α-stable | |
|
| ||
| Multiplicative lognormal (section B.4) | Y = xeW, W Gaussian | |
|
| ||
| Uniform mixture (section B.5) | ∣y∣PY(y) + Pr{Y > ∣y∣} | |
Notes: Expressions in parentheses indicate the section containing the derivation and brackets contain the bibliographical references for operators L, with the asterisk denoting references for the parametric dual operator, L*. Middle column gives the measurement density (note that variable n replaces y for discrete measurements). Right column gives the numerator of the NEBLS estimator, L{PY}(y). The symbol * indicates convolution, a hat (e.g., ) indicates a Fourier transform, and is the inverse Fourier transform.