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Abstract

Nuclear receptors (NRs) are a superfamily of ligand-regulated transcription factors that interact
with coregulators and other transcription factors to direct tissue-specific programs of gene
expression. Recent years have witnessed a rapid acceleration of the output of high content data
platformsin thisfield, generating discovery-driven datasets that have collectively described: the
organization of the NR superfamily (phylogenomics); the expression patterns of NRs, coregulators
and their target genes (transcriptomics); ligand- and tissue-specific functional NR and coregulator
sitesin DNA (cistromics); the organization of nuclear receptors and coregulators into higher order
complexes (proteomics); and their downstream effects on homeostasis and metabolism
(metabolomics). Significant bioinformatics challenges lie ahead both in the integration of this
information into meaningful models of NR and coregulator biology, aswell asin the archiving
and communication of datasets to the global nuclear receptor signaling community. While holding
great promise for the field, the ascendancy of discovery-driven research in thisfield brings with it
a collective responsibility for researchers, publishers and funding agencies alike to ensure the
effective archiving and management of these data. This review will discuss factors lying behind
the increasing impact of discovery-driven research, examples of high content datasets and their
bioinformatic analysis, aswell as a summary of currently curated web resourcesin thisfield.
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1. Introduction

Nuclear receptors (NRs) comprise a superfamily of conserved transcription factors (encoded
by 48 genes in humans and 49 genes in the mouse) that are regulated by small lipophilic
ligands and cellular signaling pathways to play essential rolesin diverse biological processes
[1]. For example, the estrogen, progesterone and androgen receptors are important in
reproduction, glucocorticoid receptors in glucose metabolism and stress, the thyroid
hormone receptor in oxidative metabolism, and PPARs?in lipid and energy metabolism.
NRs also encompass one of the most successful group of targets for drugs currently
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available, or being developed, to treat a multitude of therapeutic indices, including
hypertension, cancer, diabetes, cardiovascular disease, cholesterol gallstone disease and
metabolic syndrome [2-5]

Since the cloning of the first NR coactivator, SRC-1/NCOAL1, in 1995 [6], intensive
characterization has cast coregulators as molecules required by NRs (and other DNA-
binding transcription factors) for efficient regulation of gene expression [7, 8]. In contrast to
NRs, which are structurally conserved, their coregulators are diverse, both structurally and

in the way they contribute to the transcriptional process, namely through a diverse array of
reversible enzymatic activities such as acetylation, methylation, ubiquitination and
phosphorylation, or as chromatin remodelers. Given their intercession in multiple aspects of
NR function, including transcription, translation, splicing and a variety of functional
endpoints such as cell motility, coregulators are essential effectors of the biological activities
of NRs and their ligands.

A recent phenomenon in the NR signaling and other transcriptional fieldsis the growing
volume of high content or discovery-ariven datasets whose data points are generated not in
pursuit of a specific research hypothesis, but rather with the intent of affording broad,
unbiased perspectives on the myriad processes that accompany the regulation of gene
networks /1 vivoby NRs and coregulators. This review will begin by discussing the
political, cultural and technological factors that are shaping the increasing footprint of
discovery-driven research. It will go on to describe the various flavors of high content data
and the biological processes they inform upon, illustrating this with examples of insights
they have afforded that would not have readily accrued from focused hypothesis-directed
research. The review will go onto describe how bioinformatic approaches are being applied
to integrate these diverse datasets into working systemic models of NR and coregulator
biology. Finally it will describe actively-curated Internet web resources developed by NR
scientists which complement traditional publication models and help ensure the unrestricted
access of the global NR signaling community to the results of discovery-driven research.

2. Evolution of discovery-driven research in nuclear receptor signaling

While its genomic datasets have been in existence for over a decade, a number of forces
have combined in recent yearsto drive the acceleration of discovery-driven research in the
nuclear receptor signaling field. Firstly, funding agencies face greater demands from
government for accountability and an increased focus on tangible benefits of publicly-
funded research in the form of novel therapeutic approachesto disease [9]. Accordingly,
they are increasingly turning to collaborative, discovery-driven scientific consortiato
complement and enhance the research strategies pursued by individual investigators. A
second factor fueling the progress of high content datasetsis the robust evolution in
instrumentation and the increased affordability of machines that greatly improve on previous
generations in capacity, speed, sensitivity and applicability. Mutliplexed reagents allow for
the interrogation of large numbers of molecular speciesin space and time and advanced
labeling and detection systems can rapidly and sensitively discern specific assay molecules
in complex biological mixtures. In many cases software analysis platforms are integrated
into these instruments, providing for immediate end user analysis of data points. The end
result is that genome-wide, transcriptome-wide and proteome-wide analyses are increasingly
cost effective, providing awealth of datathat, if properly annotated and archived, will be an
invaluable environment for hypothesis generation and testing for the entire field. Indeed
such istheir perceived potential to revolutionize biomedical research that high throughput
analysis platforms are candidates for aggressive investment on the part of the National
Ingtitiutes of Health [9]. A final factor fueling the evolution of high content datasets is the
growing appreciation by scientific publishers of the need to recognize the merits of these
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studies as valid and meaningful contributions to scientific research and as enduring
resources for the wider research community. Thiswill be discussed in more detail later in
this review, but the fact that scientists can now publish discovery-driven datasetsin peer-
reviewed journals, and have these achievements recognized by institutional promotional
committees, augurs well for the future growth and importance of such resources in the field.

3. Categories of discovery-driven research in nuclear receptor and
coregulator signaling

The last decade has seen the evolution of avariety of high content platforms, each of which
provides information on distinct but inter-related processesin NR signaling (Figure 1 and
Table 1). Theseinclude: phylogenomic and genomic analyses which defined the evolution
of the NR superfamily in distinct species (Figure 1a); quantitative analysis of the expression
patterns of NRs and coregulators (Figure 1b); the definition of ligand- and tissue-specific
transcriptomes for NRs and their ligands using expression microarrays (Figure 1c); cistromic
analysis of functional genomic sites of occupancy of NRs and related transcription factors
(Figure 1d); proteomics-based spatial organization of NRs and coregulators into functional
higher order complexes, as well as post-translational modification of these proteins (Figure
1e); and the application of metabolomicsto linking disruption of NR or coregulator genesin
animal models to imbalances in metabolic intermediates (Figure 1f).

3.1 Genomics and Phylogenomics

The protein sequences of NRs deduced from their cloned cDNAS had by the late 1980s
established the existence of a NR superfamily. It was not until the late 1990s however that
the pioneering bioinformatic milestone in the field was reached, namely the drafting of a
systematic phylogeny and nomenclature for the superfamily, based on the comparative
evolution of the conserved DNA- and ligand-binding domains of its members[10]. The
phylogeny described 6 subfamilies and 26 groups of receptors; gene names comprised the
prefix "NR" followed by an Arabic numera for the subfamily, a capital |etter for the group
and another arabic numeral for individual genes. The largest family, family 1, includes the
TR, PPAR, RAR, RevERB, ROR and L XR subfamilies, in addition to FXR, CAR, VDR,
PXR. Family 2 includes the COUP-TF, HNF4 and RXR subfamilies, aswell as PNR, TR2
and TR4. Additional familiesinclude: family 3, which includes the steroid receptors (ERSs,
GR, MR, PR and AR) and the ERR subfamily; family 4 (NURR1, NOR1, NUR77); family 5
(SF-1 and LRH-1); and family 6 (GCNF). In addition, family O included receptors
containing only one of the conserved domains, including SHP and DAX1.

Assisted by an almost religious commitment to data archiving, the intensive, heavily-funded
genome sequencing efforts of the late 1990s and early 21 century documented the
distribution of genes encoding NRsin avariety of species, including 48, 49 and 47 in the
human [11], mouse [12] and rat [13] genomes respectively, 21 in the Drosophila
méanogaster genome [14] and a surprisingly large number (270) in Caenorhabditis elegans
[15]. A comparative genomic analysis of the human, mouse and rat NR superfamilies found
that although a high degree of sequence conservation existed across species, the variation
was sufficient between some members, such as PXR and CAR to suggest ongoing species-
specific adaptations to environmental factors [13]. These initial discovery-driven surveys of
NR genes in the context of their cognate genomes laid the groundwork for the rapid
accumulation of data that described their transcriptional and functional biologies.

3.2 Transcriptomics

3.2.1 NR and coregulator target gene transcriptomics—The NR signaling field has
been extremely active in the production of expression array datasets —a recent study by
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NURSA archived nearly 1200 individual datasets across over 300 unique tissues and cell
lines, 91 ligands and 35 NRs[16] which are accessible in the Molecule Pages for individual
NRs and ligands on the NURSA website (see later in thisreview for afuller discussion).
Expression arrays, when analyzed using appropriate statistical methods [17] have shown
themselves in this and other fields to be powerful tools for linking genome-wide fluctuations
in gene expression to specific signaling inputs and in turn to broader cellular function. These
datasets have emerged largely from hypothesis-driven studies focused on individual genes
and while they have been useful as far as those studies have gone, they have been largely
under-utilized as a basis for a database of target genes of NRs and their ligands. In afield
which is, at its essence, transcriptional in nature, thereis a glaring need for such aresource
and it is hoped that funding agencies eventually recognize and redress the wide gap in
knowledge that existsin its absence.

3.2.2 NR and coregulator gene transcriptomics

3.2.2.1 Broad strokes: anatomical and circadian profiling of nuclear receptors. Until
the mid 2000s, NRs as a superfamily had been classified solely based on the phylogenomic
approach described above [10], but a pioneering discovery-driven initiative to classify them
according to expression pattern, thereby garnering some insight into their functional
relationships, was undertaken under the auspices of the Nuclear Receptor Signaling Atlas
(NURSA). The NURSA Consortium was the first examplein the field of a collaborative
consortium model organized to generate and distribute to the community a series of inter-
related discovery-driven datasets [18]. The Q-PCR-based study established anatomical
expression profiles for the 49 members of the NR superfamily in 39 tissues from two
different strains of the most widely used mouse models, C57BI/6 and 129SvJ[19]. While
piecemeal approaches to characterizing NR expression patterns were available in avariety
of published reports, they lacked common methodological platforms and protocols, making
meaningful comparisons between them difficult. The Q-PCR NR expression profiling
depicted anatomical NR expression depicting as a circular dendrogram through
bioinformatic clustering of the NR tissue expression profile [19]. The dataset highlighted
groups of NRs whose patterns of expression hinted at their potential to coordinate the
transcriptional programs necessary to affect physiological pathways along two major axes:
1) reproduction, development, and growth and (2) nutrient uptake, metabolism, and
excretion. [19]. In aparalld study to the anatomical profiling, NURSA established for the
community a comprehensive, unbiased and quantitative cartography of the expression of all
NRs over a 24 hr cycle in white and brown adipose tissue, liver, and skeletal muscle [20].
While these studies are tempered with caveats such as cell-specific expression of receptors,
aswell as the relationship between mMRNA and protein, they were nevertheless an important
step towards establishing a framework for hypothesis generation and testing in the field.

3.2.2.2 Filling in the gaps: NR expression in normal physiology and disease: The two
initial NURSA Q-PCR NR profiling studies were the first attempt to define, on asingle
technological platform and using a highly sensitive quantitative method, the steady-state
expression levels of NRs. Theseinitia low-resolution passes set the stage for subsequent
discovery-driven efforts pursuing more detailed analyses of NR expression during
development [21] and in the adult endocrine pancreas [22], bone [23] and brain [24], as well
asin two workhorse cell lines, HepG2 and HelL a[25], providing a valuable resource for the
many researchers using these cell lines. Aswith the original NURSA study, these expression
profiles identified potential functional relationships between receptors that had not been
previously considered.

One of thefirst key follow-up studies [21] to the NURSA study was one that profiled NR
expression during development of a higher organism, namely the zebrafish Danio rerio,
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which was chosen since its transparency during embryogenesis lent itself to systematic
whole mount /n situhybridization. While less amenabl e to quantification than quantitative
PCR, this approach offers the advantage of affording a perspective on the cellular
distribution of NRs within a given organ or tissue. Charting the spatiotemporal expression
101 NR and coregulator genes during zebrafish development, this study offered awhole-
organism view of their sites of action, and identified their potential functionsin central
nervous system devel opment. As with a previous NURSA dataset, tissue-to-tissue
fluctuations in the expression of coregulators were less dramatic relative to NRs. Based on
this the authors asserted that the tissue-specificity of NR action was due to NRs rather than
coregulators, but thisislikely an oversimplification given the widely-acknowledged
potential of coregulator complex composition and post-translational modification to
influence the regulation of NR target genes[26, 27]. Extending the embryonic theme into a
mammalian setting, a NURSA study profiled NR expression in human and mouse
embryonic stem cells and embryoid bodies [28]. The surprisingly large discrepancy in the
expression patterns between the two species of certain receptors, ERRB, DAX-1 and LRH-1
in particular, was taken to indicate distinct species-specific functions in these cases.

Follow-up studies have been extended to several tissues types, including the pancreas, in
which substantial divergence in expression of members of the NR superfamily was
demonstrated across distinct cell types[22]. Moreover, this study was extended to evaluate
the relative expression of NRs during hyperglycemia and showed that16 NRs were
significantly altered mRNA levels compared to norma mouseislets. A study in bone
provided interesting insights into the possible role of NRs in determining the fate of
multipotent cell types, one of which isthe calvarial osteoblast, which can follow either an
osteogenic or adipogenic differentiation pathway. The study binned NRs into one of four
expression clusters, namely: those upregulated during osteogenic, but not adipogenic,
differentiation; upregulated in both conditions, with greater upregulation during
adipogenesis; upregulated equally in both conditions; and downregulated during adipogenic,
but not osteogenic, differentiation [23]. Finally, a Q-PCR-based brain study demonstrated
unambiguous grouping of some NRs with no previously known functional implication, such
as Coup-TFl and Rev-erba in a subgroup of brain regionsinvolved in learning and memory
[24]. Thistype of quantum leap in our understanding of the role of NRs normal physiology
can only be afforded by large-scale profiling projects of this type, and in concert they
establish a solid rationale for future hypothesis-based research.

A substantial amount of evidence implicates individual NRs as causative or preventative
agentsin avariety of disease states, and so a clear rationale exists to investigate expression
patterns across the superfamily in established models of human disease. Macrophage
activation plays a central role in atherogenesis, autoimmunity, and a variety of other
inflammatory diseases. Barish et a. [29] demonstrated that 28 NRs were expressed in
macrophages activated by bacterial lipopolysaccharide or by interferon-y, with specific
temporal induction patterns unique to each stimulus. Extending the analysis to the NCI60
panel of cancer cell lines, a subsequent NURSA study [30] showed that specific NR
expression patterns were predictive of the drug responses of individual cell lines, suggesting
that multiplex profiling of NR expression patterns in tumors might afford predictability of
the sensitivity of tumors to specific NR-based therapeutics.

3.3 Proteomics

NR signaling is driven by protein-protein interactions between NRs and coregulators, as
well as between coregulators which associate as components of large modular complexes
[8]. Understanding the composition of functional NR-coregulator complexes in specific
signaling contexts could provide a basis for the development of novel NR- and coregulator-
targeted therapeutics. In comparison to expression arrays and, to alesser extent Q-PCR,
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high-content proteomics in the NR signaling field is at arelatively early stage of
development. Aninitial informatics study [31] combined literature mining with yeast two-
hybrid screening to assemble a database of NR-coregulator interactions.

More recently the NURSA Consortium has devoted considerable effort documenting the
composition of native HeL a cell coregulator complexes using a combination of affinity
purification and mass spectrometry [32]. The immunoprecipitation (1P) / mass spectrometry
(MS) protocol involves cellular fractionation to generate high concentrations of protein
extracts; (ii) arapid two-step I P protocol with reducing stringency of washes; (iii) SDS-
PAGE of the immuno-complex and division of each IP gel laneinto 6 regions for
seguencing in separate chromatographic runs [33]. The group has developed a software-
based approach to filtering out non-specifically binding proteins, which has been a perennial
problem in coimmunoprecipitation. These efforts have culminated in the recent release of a
large dataset documenting 5000 individual coregulator-coregulator interactions
(Malovannayaet al., /n Press). Although at an early point its development, high-content
analysis of the many post-translational modifications in NR and coregulator signal
transduction [8] will be an important source of information in building models for the role of
cellular signaling pathways in regulating the activity of NRs and coregulators.

The NURSA proteomics datasets demonstrate how a discovery-driven dataset can provide
an experimental framework for drawing parallels between distinct biological systems that
were not previoudly inferred. Kittler et al. [34] carried out a genome wide screen for RNA
interference (RNAI) screen for genesimportant for cell division. Among other findings, they
identified a set of transcriptional regulators whose knockdown resulted in defectsin
cytokinesis, one of which was SMRT/NCOR2. Bioinformatic analysisimplied a functional
interaction between SMRT/NCOR2, TBL1X and MLL5, an inference the authors were able
to confirm with reference to the presence of TBL1X and MLL5inaHelLacell SMRT
complex from Mitch Lazar’s project (10.1621/datasets.01002). Another study [35] described
the cloning and characterization of anovel coregulator of ERa, CCAR1. Again, the authors
leveraged the observation of the presence of CCAR1 proteolytic fragmentsin a TRAP230/
MED12 complex characterized by the NURSA proteomics effort [32] to confirm their own
data suggesting that CCAR1 was associated with Mediator complexes.

3.4 Cistromics and Epigenomics

While expression microarrays provide a valuable global perspective on the collective
transcriptional response to a given stimulus, they are insufficient, in the context of NR-
mediated signaling, to implicate the specific receptors, coregulators or ancillary transcription
factors that mediate those responses. Moreover they are not designed to distinguish between
directly and indirectly-regulated genes, nor the contribution, if any, of pre-genomic ligand
functions to the transcriptional output. The relatively new discipline of genome-wide
location analysis (GWLA) encompasses a group of techniques which provide data on the
specific genomic locations of NRs and coregulators in specific signaling contexts. The term
“cistromics wasfirst coined by Myles Brown’s laboratory —recognized as the pioneer in the
field - in the latter part of the last decade to describe “the complete set of ¢isacting targets
of a transacting factor across the genome [36]. Early adopters of GWLA used affinity
purification of protein-DNA mixtures (chromatin IP, or ChlP) coupled to solid phasetiled
arrays (ChlP-chip) but this technique has been largely supplanted by the advent of
massively-parallel sequencing platformsin the form of ChiP-seq. The GWLA waters are
muddied to an extent by the fact that DNA-bound NRs can influence transcriptional events
at promoters far distant from their sites of occupancy, both proximal and distal, such that
tying transcription of a specific gene to a specific DNA-binding event can be done only
tentatively. Brown’s groundbreaking papers demonstrated unequivocally that crosstalk on
DNA of ERa with transcription factors such as FoxA1 was an early event in the regulation
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of 17p-estradiol/ERa target genesin MCF-7 cells [37, 38] (Figure 1d). A more recent
variant on the GWLA theme is GRO-Seq (Global Run-On-seq)), a deep sequencing approach
that acts as a measure of direct transcriptiona output by mapping the location and
orientation of RNA Polymerase Il [39]. Lee Kraus' laboratory has applied the technique to
17p-estradiol stimulation of MCF-7 cells, opening up the possibility of defining the time
course of regulation of 17pE2 directly-regulated transcripts [40]. In addition to cistromics, a
nascent discipline is epigenomics, namely the genome-wide study of covalent modifications
of DNA by NRs and associated coregulators, and the impact of these interactions on tissue-
specific NR-regulated transcriptomes. Initial studies in this area have cast histonesin the
role of fine-tuners of NR binding and suggesting arole in tissue-specific patterns of NR
recruitment to target genes. For example, PPARYy binds preferentially to genomic regions
divested of repressive histone H3 lysine 9 dimethylation (H3K9me2) and H3K27me3 marks
in 3T3-L1 cells undergoing adipogenesis [41]. Moreover, the H3K4me2 mark is a key
determinant of tissue-specific binding by FOXA1 and ERa [42] and enrichment of the
histone variant H2A.z is observed in hormone-induced GR-accessible sites [43]. Future
studies will undoubtedly shed further light on the role of chromatin-NR-coregulator
interactions in regulating cell-type specific expression of NR cistromes.

3.5 Metabolomics

The research output of |aboratories such as Bruce Spiegelman, Ronald Evans, Bert
O’'Malley and others over the past 20 years has drawn the field inexorably to the realization
that both NRs and coregulators are key players in carbohydrate, fat and lipid metabolism
and, as such, are eminently positioned as therapeutic leverage points in a broad spectrum of
diseases of Western society including diabetes, obesity and the metabolic syndrome.
Metabolomics is the systematic profiling of metabolic intermediates involved in biochemical
processes in cellular systems, and two studies from the NURSA Consortium illustrate the
power of an unbiased metabolomic approach to identify subtle but critical fluctuationsin
metabolic intermediates that clarify the phenotypes of animal models with altered expression
of NRs or coregulators. The first demonstrated that knockout of SRC-2/Ncoa?has avery
specific metabolic phenotype of hypoglycemia and hepatic overstorage of glycogen, similar
to the human genetic disorder type 1 glycogen storage disease or Von Gierke's disease [44].
More recently, work from the NURSA Consortium has demonstrated that knockout of
SRC-1/Ncoal has a more complex metabolic phenotype, involving impaired
gluconeogenesis, decreased glycolytic flux, and compensatory increases in fatty acid and
amino acid oxidation (Louet et al. Cell, in revision, 2009).

3.6 Small Molecule Modulators

As druggable proteins, NRs and their associated coregul ators are eminently positioned as
therapeutic targets in awide variety of diseases and disorders. While NR modul ator-based
research platforms are well established in private pharmaceutical companies, notably
GlaxoSmithKline, Johnson & Johnson, Wyeth Pharmaceuticals and others, the field to date
has lacked a public discovery-driven effort to generate small molecule modulators and
ligands for the use of the research community. Similarly, while for-fee access databases such
as that of the American Chemical Society are comprehensive, public resources such as
NCBI PubChem remain in a developmental stage— ligands for specific NRs are not yet
linked to records for those receptorsin NCBI Entrez. A recent effort to redress this
imbalance and provide the broader research community with a high throughput screening
service isthe Molecular Libraries Program (MLP). The goal of the MLPisto provide
researchers with what would otherwise be the prohibitively expensive chemistry, screening
and informatics support required to probe the role of small molecule modulatorsin cellular
pathways.
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4. The role of bioinformatics

At its essence, bioinformatics complements discovery-driven research efforts by (i)
developing computational and mathematical approaches to detect statistically significant
patterns and trends across complex and diverse discovery-driven datasets; and (ii)
developing web applications designed to facilitate the annotation, widespread accessibility
and enduring availability of these datasets to a userbase of technologically diverse
biologists. In this section | will provide arecent example of an integrative anaysis of high
content datasets, as well as discussing currently-curated web resources of relevance to this
field.

4.1 Bioinformatics challenge I: integrative analysis of discovery-driven datasets

An important bioinformatic goal is the successful integration of the myriad types of high
content data depicted in Figure 1 with the goal of developing reliable paradigms for NR
signaling, within which the posing and testing of hypotheses might take place. In alandmark
study Lanz et a. established a paradigm for how bench transcriptomics, cistromics and
proteomics could be married by integrative bioinformaticsin awell-established model for
NR action, namely 17p-estradiol stimulation of MCF-7 cells [45]. In doing so, they framed a
working model for how functional interactions between activated NRs, coregulators and
DNA giveriseto efficient regulation of gene networks /n vivo. The first component of the
analysis was an affinity purification/mass spectrometric analysis of ERa and SRC-3-
associated proteinsin MCF-7 cells treated with 17BE2. The second component was a
previous study from NURSA, namely the GEM S 17BE2/M CF-7 expression microarray
meta-analysis dataset [46], which drew upon the combined statistical power of multiple
aligned microarray experiments to establish a consensus transcriptional response in this
system. The final components were an SRC-3/NCOA3 GWLA analysisin 17BE2-treated
MCF-7 cells, in addition to previously published GWLA experiments in the same model
system [38]. The increased confidence resulting from integrating multiple experimental
approaches allowed the group to paint ontology annotations onto the 17BE2 transcriptome
and common ERa/SRC-3 ChlIP binding signatures, effectively correlating the system’s
endpoint biology with promoter occupancy. While confirming previously characterized
functions of SRC-3 on 17BE2 target genes (7FFZ, XBPI), thisanalysis also identified
SRC-3 and ERa. hinding on previously unrecognized ERa targets such as ERBBZ.
Moreover, the unbiased approach identified an anticipated high degree of convergence
between ERa and SRC-3 binding sitesin addition to significant overlap between SRC-3 and
FoxA1 which was taken to represent an unexpected convergence in the biology of these
proteins [45].

4.2 Bioinformatics challenge II: archiving and communicating discovery-driven research

Since the mid 19t century, the peer-reviewed primary research article that establishes a
hypothesis, describes the methods, reports the results of the experiments and interprets their
significance, has been the mainstay of scientific communication. While printed journals
were adequately scoped to accommodate the discrete, circumscribed content these articles
contained, they were never designed to communicate the high content datasets this review
has discussed. Expression microarrays, for example, demonstrate the glaring lack of
infrastructure in place in journals, even those on advanced electronic publishing platforms,
to effectively accommodate high content datasets. The expedient in this case has been that
due to printed page constraints, the authors select a handful of genes that show significant
regulation - the so-called gene list - and communicate those in the paper. The actual array
data, if available at al, appears often as aflat PDF in supplemental materials, and even rarer
till, is submitted to a publically-accessible database. This situation is unsatisfactory at best,
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leaving the vast majority of expression array data not only unreported, but refractory to
further analysis by other investigators [47].

The opacity of the traditional research article to data mining, and the rapid evolution in
Internet technologies that provide for rich, intuitive user experiences in websites, have
driven the evolution of a new generation of biological databasesin which afirm emphasisis
placed on usability, that is, the interface between the human researcher and the biological
data. Many of these sites— NCBI (National Center for Biotechnology Information)
PubMedP, NCBI PubChem, NCBI GEO (Gene Expression Omnibus) and EBI UniProt to
name afew — are generic, broad spectrum resources with whole genome coverage. In
addition to these, the NR and coregulator field has a number of actively-curated, freely-
accessible specialist databases (Table 2).

4.2.1 NURSA—The Molecule Pages of the NURSA website have evolved since their
launch in 2003 into a portal which encompasses a broad variety of biological resources of
relevance to NRs, their ligands, coregulators and target genes, both from datasets generated
as part of the NURSA Consortium as well as from wider community sources (Table 2).
These pages include links to cDNA and genomic DNA sequence repositories such asthe
NCBI database collection (including NCBI RefSeq, GenBank and UniGene); protein
seguence repositories such as the UniProt/EBI-databases SwissProt, Pfam and the protein
structural and crystall ographic database PDB; portals for species-specific gene collections
such as HUGO (human), MGl (for mouse data), RGD (rat); gene expression resources
(NCBI GEO, MousePAT, Allen Brain Atlas); reciprocal links with specialist resources such
asthe FAST-DB transcript & splicing resource and the Phosphosite Plus post-translational
protein modification resource; and NCBI's literature resource, NCBI PubMed. NURSA has
engaged members of both the academic and industrial communitiesin developing its NR
ligand database, which integrates information from resources such as NCBI PubChem and
PDB on nearly 250 NR ligands. Other content includes a Diseases and Phenotypes module
which integrates curated, literature-based information on the disease involvement and
animal model phenotypes of NRs and coregul ators from generic resources such as OMIM,
HPRD, GAD (Table 2). An Interactions module combines literature-based information on
the protein-protein interactions of NRs and coregulators from NCBI, as well as coregul ator
proteomics data generated by NURSA (Figure 1€). The most recent addition isa
Transcriptomics and Cistromics module, which catalogs published expression microarray
and GWLA studiesrelated to NRs and their ligands and annotates them for tissue or cell line
and species of study [16].

The website also has an electronic publishing alliance with the premier specialist research
journa in the field, Molecular Endocrinology, through which reciprocal links are established
between journal articles and related Molecule Pages on the NURSA website. These
annotations provide article readers with one-click access to contextual information, and
NURSA website users with targeted content from a respected journal in the NR signaling
field.

4.2.2 IUPHAR—The International Union of Basic and Clinical Pharmacology (IUPHAR),
formerly the International Union of Pharmacology, was established in 1959 as a forum for
scientistsin avariety of pharmacol ogy-related fields, including NRs, G-protein coupled

bURLs for generic bioinformatics resources are as follows: NCBI PubMed: www.nchi.nlm.nih.gov/pubmed; NCBI PubChem: http://
pubchem.nchi.nim.nih.gov; NCBI GEO www.nchi.nlm.nih.gov/geo; NCBI OMIM: www.ncbi.nlm.nih.gov/omim; EBI UniProt
www.uniprot.org; NCBI RefSeq: www.nchi.nlm.nih.gov/refseq; NCBI GenBank: www.nchi.nlm.nih.gov/genbank; NCBI UniGene
www.nchi.nlm.nih.gov/unigene; EBI UniProt http://www.uniprot.org; Pfam: http://pfam.sanger.ac.uk; PDB: www.pdb.org; HUGO:
www.genenames.org; MGI: www.informatics.jax.org; RGD: http://rgd.mcw.edu; HPRD: www.hprd.org; GAD: http://
geneticassociationdb.nih.gov; Phosphosite Plus: www.phosphosite.org; Molecular Libraries Program: http://mli.nih.gov.

Biochim Bigphys Acta Author manuscript; available in PMC 2013 March 27.


http://pubchem.ncbi.nlm.nih.gov
http://pubchem.ncbi.nlm.nih.gov
http://www.uniprot.org
http://pfam.sanger.ac.uk
http://rgd.mcw.edu
http://geneticassociationdb.nih.gov
http://geneticassociationdb.nih.gov
http://mli.nih.gov

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

McKenna

Page 10

receptors and others. IUPHAR has taken aleading role in establishing nomenclatures for
gene families and regularly solicits reviews from leading investigatorsin specific fields to
summarize recent research [48, 49]. IUPHAR has recently undertaken an initiative to
migrate expert-curated content from its reviews into relational databases, and to establish
links with other generic and specialist resources to provide contextual information for its
userbase. The IUPHAR database on NRs (Table 2) provides information on NR orthologs,
ligands, interactions, target genes and animal models that was originally published in a
series of reviews on the NR field. As a specialist pharmacology resource, IUPHAR is
uniquely placed to provide expert curation in the area of NR ligands, and it is hoped that
future versions of the database will continue to add to its content in this area for the benefit
of users of this and other databasesin the field.

4.2.3 Nuclear Receptor Resource—The Nuclear Receptor Resource was the first
presence for the NR community on the Internet and included several interconnected but
distinct web resources focussed on difference receptors or receptor subfamilies [50], see also
below. Several of the sites are unfortunately no longer actively curated and those that remain
have been consolidated into a single resource that provides educational resources,
information on NR-regulated pathways, NR interactions and NR expression patterns,
reproduced from the original NURSA expression studies [19, 20] (see Table 2 for URL).
The site also links to atool for searching for PPAR response elementsin any given genomic
DNA sequence.

4.2.4 Androgen Receptor Mutations Database—This well-established resource,
launched in 1998 and updated monthly, documents published and unpublished somatic
mutations and polymorphismsin the human AR genein avariety of diseases, including
prostate cancer and diseases associated with CAG tract length variations. It also includes a
list of AR-interacting proteins curated from the published literature (see Table 2 for URL).

4.2.5 Androgen-Responsive Gene Database—Thisweb resourceis based on
intensive curation of the published literature to assemble a database of atotal of 3300
human, mouse and rat androgen-regulated genes, along with essential hand-curated metadata
such as expression fold change, androgen-responsive sequence (where available), response
time, tissue/cell type, experimental method, and ligand identity and concentration, The
database is integrated with multiple external resources, including NCBI, Gene Ontology,

and Kyoto Encyclopedia of Genes and Genomes pathway, to afford the user convenient
access to information on the biological characteristics and context of androgen-regul ated
genes (see Table 2 for URL).

In addition to these active bioinformatic resources, many useful databases existed at one
time but have since gone offline or are no longer actively curated, presumably due to lack of
financial support. These include NUREBASE [51], NucleaRDB [52], NRSAS [53], NRMD
[54], ERGDB [55], ERTargetDB [56] and KBERG [57]. Some of the earliest effortsto
establish a presence on the Internet for the NR signaling community occurred under the
auspices of the Nuclear Receptor Resource [50], and included Mark Danielsen’s
Glucocorticoid Receptor Resource and David Moore' s Thyroid Receptor Resource, both of
which are now defunct. The loss of the time and effort that were in invested in collecting,
curating and maintaining these and other databases is highly regrettable, and thereisa
glaring need for funding agencies worldwide to recognize the value to the research
community of continuing investing in web-based resourcesin thisfield in order to ensure
their ongoing curation. Conceivably, funding could be made available, at least for American
resources, through the US National Library of Medicine to maintain and ensure the
continued curation of some of the larger resources for posterity.
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5. Concluding remarks

Supported by an increasingly sophisticated data gathering analysis and distribution
infrastructure, discovery-driven research has made tangible progress over the last decade or
so in deconstructing the barogque biology of NRs and their coregulators. The next challenge
at the bench level is one of resolution: to date, most large scale data acquisitions have been
at the level of the tissue or organ, glossing over issues such as the cell- and promoter-
specificity of NR and coregulator function. Single cell- and organelle- level analyses will
provide valuable information on the subcellular dynamics of NRs and coregulators, the
function of splice forms of these factors, the role of specific post-translational modifications
in fine-tuning their modes of action. Extrapolating these observationsto fluctuationsin
single-cell metabolomes will conceivably provide for more accurate information on the
relationship between ligands, NRs, coregul ators and homeostatic control at the cellular level.
Finally, defining the relationship at the single cell level between these factors and the
regulation of cell division and motility will undoubtedly expose leverage points for
therapeutic intervention in the myriad neoplastic diseases in which they are implicated.
Gathering, archiving and analyzing these data in anintegrated fashion will be a tremendous
experimental and bioinformatic challenge, but the payoff in terms of more focused, efficient
and cost-effective therapies, is likely to be commensurate.

Despite its size and demonstrable relevance to health and disease however, the field of NR
signaling has arelatively small number of specialist, publically-available web and
bioinformatic resources. Given the number of established journalsin the field this has until
recent years not been a pressing concern, but the growing number and diversity of high
content technological platformsindicates that dataset archiving, analysis and distribution
will become critical elements of future scientific progressin thisfield. The daunting volume
of data points that will be generated by these and other initiatives over the next decade
warrants a committed effort on the part of researchers, funding agencies and publishers to
ensure that the bioinformatic infrastructure is in place to ensure the effective management of
these data resources, and that data mining does not develop into a bottleneck to restrict
progressin thefield.

While this review hasto date focused on NR and coregulator signaling-specific resources,
their multifaceted rolesin physiology and disease argues strongly for existing and future
bioinformatics efforts to engage resourcesin parallel disciplines with aview to sharing
database resources for the mutual benefit of their respective user bases. Consider, for
example, aclinician searching a diabetes-focused database who is empowered to view
expression of NRs and coregulatorsin the diabetic endocrine pancreas, or a NR scientist
who is able to tap into cancer gene expression data from another database, filtered by NR or
coregulator Gene IDs. The synergy that arises from the intersection of the datain distinct
databases in these and otherinstances can be readily appreciated, and the incipient efforts of
the National Institute of Diabetes, Digestive and Kidney Diseases in establishing dkCOIN
[58] bodeswell in thisregard. This network of databases is being developed to establish
interconnectivity between molecule-, disease- and organ- and mouse model-centric
databases to provide clinicians and scientists with access to data resources beyond their own
sphere of research or interest.

Their full value of high-content datasets will be realized only with their full unrestricted
availabhility, and it isincumbent on the community to ensure they are archived and annotated
with the same alacrity as were DNA sequences in the 1980s and 1990s. Unlike sequence
data, these datasets are highly contextual in nature and must be associated with detailed
critical metadata that articulate these contexts. Without a commitment on the part of funding
agencies to funding and maintaining databases curated by expertsin the field, there can be
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little doubt that much of it will be lost to posterity. Equally, if publishers do not apply
rigorous standard to the deposition of high content datasets in appropriate public
repositories, much of it will never reach the public domain, as has regrettably been the case
for expression array datasets [47]. If these goals can be achieved however, discovery-driven
research and bioinformatics will undoubtedly form the foundation of significant stridesin
our understanding of NR and coregulator biology in the next decade and beyond.
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Figure 1.

Six generations of discovery-driven research in nuclear receptor signaling, 1999-2011: a)
Phylogenomics, b) NR & NR ligand target gene transcriptomics, ¢) NR and coregulator gene
transcriptomics, d) cistromics, €) proteomics and f) metabolomics. See text for details.
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