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Abstract

In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and
osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as
extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides
adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases.
SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are
impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required
for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand
induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells.
Thus, podosome formation and function in dendritic cells is independent of SWAP-70.
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Introduction

Dendritic cells (DCs) are the most efficient antigen presenting

cells and act as key regulators of the immune system [1]. Immature

DCs reside in peripheral tissues and become activated either

spontaneously or by encounter with pathogen molecules. Upon

activation, DCs undergo a tightly regulated maturation process

that enables them to migrate to secondary lymphoid organs to

initiate immune responses. This maturation process is typically

accompanied by changes in DC morphology and behavior. For

example, DCs rearrange their actin cytoskeleton to migrate rapidly

through complex environments in the interstitium. Activated DCs

also up-regulate co-stimulatory molecules to induce either

immunity or tolerance by presenting acquired antigens to naı̈ve

T cells in lymph nodes [1,2]. Hence, elucidating the mechanisms

that regulate DC migration from peripheral tissues to lymph nodes

upon activation is essential to understand central functions of the

immune system.

To facilitate migration through the extracellular matrix, DCs

need to adhere to their environment with specific adhesion

structures. In addition to classical adhesion structures like filopodia

or focal adhesions, DCs and other cells like macrophages and

osteoclasts assemble highly dynamic actin structures called

podosomes [3]. These F-actin-based adhesion structures share

many, but not all, proteins and are structurally and functionally

different: the F-actin-core within podosomes is oriented perpen-

dicular to the plasma membrane whereas focal adhesions display

elongated F-actin structures with tangential orientation to the

substrate. To facilitate movement focal adhesions are connected

with the F-actin network of lamellipodia to generate tension.

Lamellipodia are typically mobile F-actin elements at the leading

edge of the cell that are initiated by actin nucleation at the plasma

membrane and generate treadmilling movements. Podosomes are

more dynamic, consists of an actin core and a ring complex, and

tend to display a gliding movement [4].

Podosomes are involved in important cellular processes such as

extracellular matrix degradation, bone resorption by osteoclasts

[3], and trans-cellular diapedesis of lymphocytes [5]. Besides

adhesion and migration, podosomes enable DCs to degrade the

connective tissue just behind the leading edge by using matrix

metalloproteinases [6]. In DCs, podosome dynamics is also

regulated by toll-like receptor (TLR) signaling. Upon activation

by TLR ligands such as lipopolysaccharide (LPS) DCs transiently

disassemble podosome structures in vitro accompanied by reduced

migratory capacity and increased endocytosis. After approximately

two hours DCs reassemble podosomes and resume migration

[7,8]. It has been proposed that this transient loss of migration

prevents DCs from leaving the area of pathogen encounter and

thus leads to enhanced local antigen uptake. The mechanisms with

which DCs and other cell types regulate podosome formation,

stability, disassembly and function, however, remain to be fully

described. Podosomes consist of an F-actin-rich core that is

surrounded by a ring or matrix of adhesion and scaffolding

proteins, including integrins, paxillin, gelsolin, vinculin, and talin.

Several proteins that are related to F-actin dynamics, such as

ARP2/3, WASP, the small RhoGTPases Cdc42 and Rac1, and

cofilin, have been shown to regulate the F-actin network within

podosomes [3,9].

Murine SWAP-70 regulates integrin-mediated adhesion and

migration of B cells, mast cells, DCs, and erythroid cells [10–14].

In DCs, SWAP-70 localizes to the cytoplasm, and dependent on

the activation status of the cells, may localize to cytoplasmic
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membranes, at sites of cell–cell contact, to micropinosomes, and

co-localizes with RhoGTPases and F-actin [12,15]. Functionally,

SWAP-70 supports surface localization of peptide-loaded MHC

class II [12] and regulates S1P induced motility of DCs [11].

SWAP-70 binds PIP3, F-actin, cofilin, and RhoGTPases

[12,14,16,17]. We demonstrated that SWAP-70 preferentially

interacts with active RhoA and Rac1 in lysates of stimulated DCs,

contributes to activation of Rac1 in DCs, and binds to GTP-

loaded and non-loaded Rac1 or RhoA [11,12,14], illustrating the

complex relationship between SWAP-70 and RhoGTPases.

Unlike immature wild-type (wt) bone marrow-derived DCs,

immature Swap-70–/– DCs contain constitutively active RhoA

[12]. Recently, we have shown that SWAP-70 deficient osteoclasts

are impaired in formation of F-actin rings, which are assembled

from podosomes [18,19], and in bone resorption [20]. Together

with its role in regulation of the F-actin cytoskeleton these findings

suggested a role of SWAP-70 in DC podosome formation and

dynamics, which we set out to test in this study.

Materials and Methods

Mice
Swap-70–/– and isogenic wt mice of the 129/SvEMS strain were

described before [21]. Animals were bred and maintained under

pathogen-free conditions Experimental Center of the Medizinisch-

Theoretisches Zentrum of the Medical Faculty at the Dresden

University of Technology according to approved animal welfare

guidelines, permission number 24-9168.11-1/2011-13 granted by

the State of Saxony. The university animal welfare committee of

the Medical Faculty Carl Gustav Carus, TU Dresden has

approved this study, recommended approval to the State officials

(who will grant the final permission), who then granted permission

as described above.

Cell culture
DCs were generated from mouse spleens as described elsewhere

[7] with small modifications. Briefly, spleens from 6- to 8-week-old

Swap-70+/+ and Swap-70–/– mice were homogenized through a cell

strainer. After red blood cell lysis, cells were washed once and

seeded at a density of 16106 cells/ml in DMEM (Invitrogen)

supplemented with 10% fetal calf serum (FCS) (Invitrogen), 1%

Penicillin/Streptomycin (10000 U/ml/10 mg/ml, Biochrom AG),

50 mM 2-mercaptoethanol, 10% GM-CSF supernatant obtained

from J558 cells, and 1 ng/ml recombinant human TGF-b (R&D

Systems or PeproTech) into a 24 well plate (1 ml/well) at 37uC in

a humidified atmosphere and 5% CO2. Every 4 to 5 days half of

the medium was changed. DCs were used at days 12 to 16 of

culture at which point 80 to 90% of the cells were CD11c positive

as analyzed by FACS (data not shown).

Immunocytochemistry
Podosome dynamics were analyzed by staining DCs for F-actin

and vinculin and analyzed by confocal laser scanning microscopy.

DCs were harvested and seeded on poly-L-lysine coated glass

coverslips in a 24 well plate (26105 cells/well in supplemented

medium) and incubated for different time periods at 37uC and 5%

CO2. For some experiments DCs were incubated with 1 mg/ml

LPS (Salmononella enterica, Sigma) for 60 min additionally.

Coverslips were washed once with prewarmed PBS followed by

fixation with 3.6% formaldehyde in PBS at room temperature

(RT) for 10 min. After permeabilization using 0.1% Triton X-100

cells were stained with 13.2 nM rhodamine phalloidin (Invitrogen)

and 6.5 mg/ml monoclonal anti-vinculin FITC conjugate (Sigma)

in PBS at RT for 1 h. Stained cells were washed three times with

PBS, mounted with Fluoromount-G (SouthernBiotech) containing

1 mg/ml DAPI (49,6-diamidino-2-phenylindole), visualized using a

Zeiss LSM 510 confocal laser scanning microscope, and processed

with ImageJ software (http://imagej.nih.gov/ij/).

DC retroviral transduction
To analyze podosome turnover, DCs were transduced with a

vector coding for GFP-tagged actin using a retroviral transduction

system as previously described [12] and analyzed with fluorescence

activated cell sorting (FRAP). Retrovirus was produced by

transfecting the Phoenix Eco 293T packaging cell line with a

vector coding for actin-GFP. DCs were then infected with the

retrovirus containing supernatant by spin infection at days 9 and

10 of culture. The plate was centrifuged for 60 to 90 min at 1000 x

g at 37uC and subsequently incubated overnight at 37uC and 5%

CO2. The retrovirus containing supernatant was changed the next

morning approx. 14 h post-infection. Infection procedure was

repeated once more as described. GFP expression was checked by

fluorescence microscopy and DCs were analyzed at day 15 of

culture using FRAP.

FRAP analysis of podosome turnover
DCs expressing actin-GFP were harvested at day 15 of culture

and seeded at 26105 cells per dish onto poly-L-lysine coated glass

bottom microwell dishes (35 nm dish, 20 nm glass bottom,

MatTek) and incubated overnight at 37uC and 5% CO2. FRAP

experiments were performed using a Leica TCS SP5 confocal

system (Leica) at 37uC without CO2 source. Experiments and data

analysis were performed using the Leica FRAP application wizard,

images were processed with ImageJ software. Each experiment

was conducted at 100% laser power, acquiring 5 images with

acousto optic tunable filter (AOTF) set to 30%, 10 bleaching

images with AOTF set to 100% with zoom-in, and 70 images of

fluorescence recovery with AOTF set to 30%. The time between

frames was minimized. The fluorescence recovery half-time, t1/2,

was calculated as the time necessary for the fluorescence signal to

recover to 50% of the asymptote intensity.

Matrix degradation
Glass coverslips were coated with Oregon Green 488-labeled

gelatin (Invitrogen) (10 mg/ml) for 30 min at RT and subsequently

stabilized with 3.6% formaldehyde in PBS for 15 min. After

washing extensively with PBS and medium the coverslips were

blocked with medium containing 10% FCS for 30 min. Coverslips

were washed once more with medium and 2.56106 DCs per

coverslip/well (24 well plate) were added in complete DC medium

(500 ml/well). The cells were then incubated for 4 h before fixation

with 3.6% formaldehyde, permeabilization with 0.1% Triton X-

100, and staining with 13.2 nM rhodamine phalloidin (Invitro-

gen). Coverslips were mounted with Fluoromount-G (South-

ernBiotech) containing 1 mg/ml DAPI and visualized using a Zeiss

LSM 510 confocal laser scanning microscope. Matrix degradation

was quantitated by measuring the area where the Oregon Green

gelatin signal was below the threshold and counting the number of

cells with ImageJ software (http://imagej.nih.gov/ij/).

Statistical analysis
Statistical analysis and graphing were performed using Prism 5

(GraphPad) or Excel (Microsoft). Unpaired two-tailed student’s t-

test (confidence interval 95%) was employed to determine

statistical significance. Error bars indicate standard deviation

(SD). N.S. denotes not significant.
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Results

SWAP-70 is present at podosome sites in DCs
SWAP-70 regulates RhoA activity in bone marrow-derived DCs

and has been shown to stabilize actin filaments directly and

indirectly thereby controlling F-actin dynamics [12,22]. Moreover,

we have demonstrated very recently that SWAP-70 deficient

osteoclasts are impaired in formation of distinct podosome

structures and bone resorption capacity [20], known to require

RhoA activity for their formation [19]. Thus, an involvement of

SWAP-70 in controlling DC podosome dynamics appeared very

likely.

To test this hypothesis, Swap-70–/– DCs were analyzed. SWAP-

70 is mainly found in the cytoplasm in steady state situations but

can localize to the membrane or the nucleus upon stimulation

[15,23]. Interestingly, our group observed recently that SWAP-70

accumulates in close proximity to the podosome belt in mature

osteoclasts [20]. To investigate SWAP-70 localization in immature

podosome bearing DCs, wt DCs differentiated from splenocytes

were co-stained with phalloidin for F-actin and SWAP-70 and

Figure 1. SWAP-70 localizes to podosome clusters but podosome formation is not affected by SWAP-70 deficiency in DCs. (A) Swap-
70+/+ DCs were stained with anti-SWAP-70 (green), rhodamine phalloidin for F-actin (red), and DAPI for the nucleus (blue) and analyzed with confocal
laser scanning microscopy. Representative picture is shown. (B) Confocal immunofluorescence microscopy analysis of two individual Swap-70+/+ (a,
b) and Swap-70–/– (c, d) DCs. DCs were seeded and incubated for at least 2 h and stained with anti-Vinculin (green), rhodamine phalloidin for F-actin
(red), and DAPI for the nucleus (blue). (C) Quantification of the number of DCs exhibiting podosome clusters. .100 cells were analyzed per genotype
and experiment. Mean values of 4 independent experiments with error bars indicating +SD are shown. (D) Quantification of the mean fluorescence
intensity (mfi) per area of podosome structures by measuring fluorescence intensity of rhodamine phalloidin staining (F-actin). Mean values of 30
individual cells per genotype of 2 independent experiments with error bars indicating 6SD are shown. (E) Quantification of the number of podosome
actin cores per cell. Mean values of 35 individual cells per genotype of 2 independent experiments with error bars indicating 6SD are shown. N.S.
denotes not significant. Scale bars, 20 mm.
doi:10.1371/journal.pone.0060642.g001
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analyzed using confocal microscopy. SWAP-70 was shown to be

present at sites of podosome structures characterized by the typical

actin core and ring structure at the leading edge but does not

specifically localize to the protein cloud surrounding the F-actin

core in spleen-derived DCs (Figure 1A) and bone marrow-derived

DCs (data not shown).

Podosome formation is independent of SWAP-70 in DCs
To address whether SWAP-70 plays a role in proper formation

and structure of podosomes in DCs, podosomes were analyzed by

staining DCs of wt and Swap-70–/– mice with phalloidin for F-actin

and an antibody for the podosome-associated protein vinculin

(Figure 1B). DCs of both wt and Swap-70–/– mice showed the

characteristic podosome pattern with a dense phalloidin stained F-

actin core (red) surrounded by vinculin (green) staining located

typically at the leading edge of cells (Figure 1B, a-d) [24]. F-actin

cores varied between each wt or Swap-70–/– DC, presumably

representing different stages of podosome formation. One

representative cell of more dense (a, c) and more distant actin

core (b, c) podosomes of each wt (a, b) and SWAP-70 deficient (b,

c) DCs are shown in figure 1B. The percentage of cells displaying

podosome structures was quantified and no difference between wt

and SWAP-70 deficient DCs was found (Figure 1C). Generally 50

to 85% of DCs exhibited vinculin-positive podosome structures.

To investigate whether the F-actin density in podosome structures

was affected by SWAP-70 deficiency, fluorescence intensity of

phalloidin staining in podosome areas was analyzed. Mean

fluorescence intensity (MFI) per area was measured and quantified

showing no influence of SWAP-70 deficiency on F-actin density in

DCs (Figure 1D). Additionally, the number of actin cores per cell

within podosome structures was quantified. Although the number

generally varied greatly (20 to 90 cores per cell), SWAP-70

deficiency did not affect the number of actin cores per cell

affirming the above results (Figure 1E). Podosome formation in

BMDCs was not affected by SWAP-70 deficiency either (data not

shown). We thus conclude that podosome formation is indepen-

dent of SWAP-70 in murine DCs.

TLR-mediated loss of podosomes is independent of
SWAP-70

Next, we analyzed the dynamics of podosome assembly and

disassembly in SWAP-70 deficient DCs. It has been shown

previously that DCs start to disassemble podosome structures upon

TLR-mediated activation within approximately 10 to 20 min after

LPS addition [7]. To investigate if TLR-induced disassembly of

podosomes requires SWAP-70, the percentage of wt and SWAP-

70 deficient DCs after 60 min of LPS incubation was quantified

and compared (Figure 2). After 60 min of TLR4-induced

activation both wt and Swap-70–/– DCs showed significantly less

cells exhibiting podosome structures (Figure 2A-B). However, we

did not observe a significant difference in TLR-induced podosome

disassembly between wt and SWAP-70 deficient DCs (Figure 2B).

Quantification of DCs showing podosomes with and without LPS

treatment revealed that approximately half of the cells had

disassembled podosome structures after 60 min (Figure 2B).

Analysis of earlier and later time points after LPS addition did

not reveal differences either (data not shown). Hence, TLR-

mediated decrease of podosome structures in DCs is independent

of SWAP-70 as well.

Podosome turnover is not affected by SWAP-70
deficiency

Wt and Swap-70–/– DCs were transduced with a retroviral

vector coding for actin-GFP to analyze F-actin turnover in

podosomes using FRAP. Transduced DCs displayed the typical

actin-GFP dense podosome core clusters at the leading edge. After

photo-bleaching of discrete circular areas, podosomes rapidly

reincorporated actin-GFP as previously shown by others (West et

al., 2004). In both wt and SWAP-70 deficient DCs, fluorescence of

actin-GFP in podosomes reappeared after 30 to 90 sec after

bleaching (Figure 3A). The fluorescence recovery in podosome

cores fitted closely an exponential law with a characteristic

dynamical time, t1/2, ranging from 20 to 40 sec, depending on the

cell considered (Figure 3B) confirming published results in

RAW267 cell-derived osteoclasts [25]. t1/2 represents the time

required for half of the fluorescence intensity of actin-GFP to

recover and as such can be used to compare actin turnover in

individual cells. Quantification of t1/2 of FRAP experiments with

Figure 2. LPS-induced podosome disassembly is not affected
by SWAP-70 deficiency in DCs. (A) Swap-70+/+ and Swap-70–/– DCs
were treated with or without LPS for 60 min. Cells were stained with
anti-Vinculin FITC (green), rhodamine phalloidin for F-actin (red), and
DAPI for the nucleus (blue) and analyzed by confocal laser scanning
microscopy. (B) Quantification of the number of DCs exhibiting
podosome clusters with and without LPS treatment for 60 min. Graph
indicates the number of cells with podosomes after LPS treatment
relative to control (without LPS treatment). Mean values of 3
independent experiments with error bars indicating +SD are shown.
N.S. denotes not significant.
doi:10.1371/journal.pone.0060642.g002
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wt and SWAP-70 deficient DCs revealed no significant difference

in podosome turnover (Figure 3B).

Matrix degradation capacity of DCs is not altered in the
absence of SWAP-70

Swap-70–/– osteoclasts are impaired in matrix degradation

capacity and F-actin-ring formation [20]. To investigate whether

DC podosomes of SWAP-70 deficient mice were similarly

impaired in function, we examined their capacity to degrade

extracellular matrix. DCs were plated on Oregon Green-labeled

gelatin coated coverslips for 4 h and stained for F-actin before

analysis using confocal laser scanning microscopy. Discrete holes

in the gelatin matrix could be observed in the vicinity of podosome

clusters (Figure 4A and B) as it has been shown before [8].

Additionally, this assay showed that podosome formation and

occurrence was comparable in wt and Swap-70–/– DCs on a more

natural substrate than poly-L-lysine. Quantitative analysis of the

total area of degraded gelatin per cell revealed that there was no

major difference between wt and Swap-70–/– DC’s capacity to

degrade matrix in vitro (Figure 4C). Thus, podosomes in SWAP-70

deficient DCs are functional in matrix degradation.

Taken together these results suggest that SWAP-70 is dispens-

able for podosome formation, F-actin turnover, LPS-induced

disassembly, and matrix degradation function in murine DCs.

Discussion

Podosomes are F-actin-based protrusions of the membrane that

form close contact with the surrounding substrate and can be

found in a wide variety of cells including endothelial cells,

osteoclasts, macrophages, and DCs [9]. They are involved in

migration, extracellular matrix degradation [6], and osteoclast

bone resorption [3]. The importance of podosomes in cellular and

systematic functions has been emphasized recently by the first

report of podosome structures in vivo [26]. Among many other

adhesion and scaffolding proteins, the characteristic actin-rich core

of podosomes featuring proteins like gelsolin and cortactin, is

surrounded by a cloud including integrins, vinculin, paxillin,

cofilin, the RhoGTPases RhoA, Rac1, and Cdc42, and other

proteins [3,9,18].

SWAP-70 controls RhoA, Rac1, and integrin activity [10,12–

14,27,28] and binds F-actin and cofilin [16,29] (Chacón-Martı́nez

et al., submitted). Additionally, we lately found SWAP-70 to bind

to Cdc42 in vitro (unpublished data). Recently, we showed that

SWAP-70 deficient osteoclasts exhibit impaired podosome-ring

formation and bone resorption capacity [20]. In DCs, SWAP-70

deficiency leads to a delayed entry into lymph nodes upon

activation and a decreased number of DCs present in the lymph

nodes at steady state in vivo [11]. Although this decreased

migration could be explained by SWAP-70’s regulation of S1P

signaling, impaired podosome regulation in SWAP-70 deficient

DCs may contribute as well. Indeed, SWAP-70 localizes to

podosomes in DCs.

However, the data reported here show that at least under the

conditions applied in this study, SWAP-70 is not relevant for

podosomes. In particular, SWAP-70 is not required for formation

of podosomes in wt-like numbers per cell, for generating of

normal-sized podosomes, for F-actin turnover within podosomes,

for the loss of podosomes in LPS-activated DCs, and for the

capacity of DCs to degrade matrix degradation. Hence, SWAP-70

Figure 3. Podosome turnover is not affected by SWAP-70 deficiency in DCs. (A) FRAP analysis. Actin-GFP transduced Swap-70+/+ and Swap-
70–/– DCs were seeded on poly-L-lysine coated glass coverslips and discrete areas (white circles) were photobleached. Representative selected pictures
are shown with times in seconds. (B) Quantification of fluorescence recovery half-time (t1/2) in seconds from experiments in (A). Mean values of 7
individual photobleached cells per genotype of 2 independent experiments with error bars indicating 6SD are shown. N.S. denotes not significant.
doi:10.1371/journal.pone.0060642.g003
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seems to be dispensable, at least in the context of podosomes, for

expression and secretion of matrix metalloproteases as well.

These findings indicate that SWAP-70 plays a role in podosome

biology and biochemistry in osteoclasts but not in DCs. An

explanation for this difference could be that SWAP-70 exhibits

different modes of action in different cells types. SWAP-70

regulates adhesion in B cells, mast cells, and erythroid cells [13].

Moreover, a crucial role of SWAP-70 in B cells depends on its

nuclear function to regulate class switching [21,30] and plasma cell

development [31], whereas in other cell types SWAP-70 is

apparently exclusively acting in the cytoplasm or at the

membrane. Another possible explanation is that differential

expression of other proteins in DCs and osteoclasts compensate

for the lack of SWAP-70 in DCs. For example, DEF6 (also called

SLAT or IBP), the only protein closely related to SWAP-70 [32–

34], may complement effects of SWAP-70 deficiency on podo-

somes in DCs. However, initial experiments using DCs deficient in

either one or both proteins, SWAP-70 and DEF6, suggest that the

lack of DEF6 does not affect podosome formation either (data not

shown).

Another reason for the osteoclast-DC difference may be that

podosomes in DCs and in osteoclasts are rather different structures

with similar components but different fate. In osteoclasts, but not

in DCs, the supra-molecular organization of the individual

podosomes into podosome/F-actin rings, which then generate

the sealing zone to form the resorption pit, may require SWAP-70.

No such rings are formed by DCs. SWAP-70 localizes in close

proximity to the inner side of the F-actin-ring in osteoclasts [20].

Thus, SWAP-70 might only regulate the formation of larger F-

actin rings rather than affecting the individual podosome cores.

Similar to SWAP-70, the actin severing protein gelsolin regulates

podosome formation and function in osteoclasts [35] but not in

DCs [36]. It seems logical that podosomes of different cell types

that have distinct functions exhibit also differences in their

regulation. Future investigations have to focus on distinct

requirements of specific cell types.
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