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Abstract

The endogenous circadian timing system has evolved to synchronize an organism to periodically recurring environmental
conditions. Those external time cues are called Zeitgebers. When entrained by a Zeitgeber, the intrinsic oscillator adopts a
fixed phase relation y to the Zeitgeber. Here, we systematically study how the phase of entrainment depends on clock and
Zeitgeber properties. We combine numerical simulations of amplitude-phase models with predictions from analytically
tractable models. In this way we derive relations between the phase of entrainment y to the mismatch between the
endogenous and Zeitgeber period, the Zeitgeber strength, and the range of entrainment. A core result is the ‘‘180u rule’’
asserting that the phase y varies over a range of about 180u within the entrainment range. The 180u rule implies that clocks
with a narrow entrainment range (‘‘strong oscillators’’) exhibit quite flexible entrainment phases. We argue that this high
sensitivity of the entrainment phase contributes to the wide range of human chronotypes.
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Introduction

The circadian clock possesses two core properties. The first one

is the endogeneity of circadian rhythms, and consequently the

existence of a well-defined natural period t, which expresses itself

under constant environmental conditions. The second property is

the capability to synchronize to a periodic external Zeitgeber by

establishing a precise phase relation to it. This paper applies

mathematical modeling to connect these two properties and to

explain in a systematic way how the timing between the clock and

its Zeitgeber is determined by clock and Zeitgeber parameters.

Without external time cues, which are called Zeitgebers, a clock

runs with its characteristic period t, which may deviate from 24 h.

On the other hand, many Zeitgebers on the Earth are quite

precise and possess a ‘‘dian’’ period T of exactly one day. If the

strength of the Zeitgeber is capable to overcome the period

mismatch t{T , the Zeitgeber enforces the periodicity of 24 h in

the clock. This situation is called synchronization or entrainment.

The range of the period mismatches t{T for which synchroni-

zation occurs is called entrainment range. In fact, it is the difference

of both periods t and T (but not the single periods per se) that

determines whether the clock would be synchronized or not for a

given Zeitgeber strength.

In a synchronized situation, the intrinsic clock adopts a stable

phase relation to the Zeitgeber. The difference y~W{q between

the phase of the Zeitgeber W and the phase of the clock q attains a

well-defined value called ‘‘phase of entrainment’’. A large body of

research has been accumulated on the phase of entrainment, since

it is critical for the coordination of daily rhythms in physiology,

metabolism, and behavior [1]. Variations of the phase of

entrainment has been extensively studied in the past decades

[2,3,4,5]. From an evolutionary perspective, the phase of

entrainment is a parameter under selection and, hence, a tight

regulation is expected [6].

The goal of this paper is to study systematically how the phase of

entrainment depends on the clock and Zeitgeber properties. We

approach this problem by theoretical studies of analytically

tractable models, supported by numerical simulations. Our main

result relates the phase of entrainment y to the period mismatch

t{T , Zeitgeber strength, and the range of entrainment. A

cornerstone of this theory is the ‘‘180u rule’’ asserting that within

the range of entrainment, the entrainment phase can vary over a

range of about 180u. A similar behaviour of entrainment phase has

been already noticed in earlier studies [1,7,8]. Here we explain

how the 180u rule can be rigorously derived from three quite

different modeling approaches. We additionally discuss the

applicability of the rule and point out its limitations.

The 180u rule implies that clocks with a narrow range of

entrainment exhibit high sensitivity of entrainment phase to the

mismatch between endogenous and Zeitgeber periods. We argue

that this high sensitivity of entrainment phase contributes to the

wide range of chronotypes found in humans [4,9]. Furthermore,

our conceptual framework provides insight how midnight-locked,

dusk-locked, and dawn-locked entrainment phases can be

obtained [2,5]. Our theory predicts also the dependence of

entrainment phase on Zeitgeber strength (see [10] for experimen-

tal data).

On the theoretical side, our results bridge discrete and

continuous approaches to circadian entrainment. Both time-

discrete, PRC/PTC-based models and time-continuous models for

the phase of clock lead essentially to the same dependencies of

entrainment phase on oscillator and Zeitgeber parameters.
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Mathematical Model
A hierarchy of mathematical models has been developed to

describe circadian oscillators ranging from van der Pol oscillators

[7] to comprehensive biochemical models [11,12]. Basic features

of entrainment, however, can be studied with the help of simple

yet generic amplitude-phase models [13]. We assume that the

oscillator of interest is characterized by its amplitude, its intrinsic

period, and its stability with respect to amplitude perturbations.

These general oscillator properties can be parameterized by the

Poincaré oscillator [14,15], which is given in polar coordinates

with radius r and phase Q by

dr

dt
~{lr r{A0ð Þ,

dQ

dt
~

2p

t
:

ð1Þ

Here, the parameters A0 and t denote amplitude and intrinsic

period of the oscillator. The ratio
2p

t
is the angular frequency of

the oscillator. The parameter l quantifies the relaxation of

perturbations to the stable limit cycle with r~A0. Small values of l
correspond to slow and large values of l to fast amplitude

relaxation to the stationary value r~A0. Two characteristic values

of l were used: l~1:0 for ‘‘strong’’ oscillators and l~0:35 for

‘‘weak’’ oscillators, see below.

We have shown recently that oscillators with large amplitude A0

and large relaxation rate l exhibit narrower entrainment ranges

[10]. Such oscillators will be termed ‘‘strong’’ in this paper

(compare Figure 1). We will show below that strong oscillators are

characterized by quite flexible entrainment phase.

Results

Entrainment Phase for Strong and Weak Oscillators
The framework that we are going to present can be applied to

the circadian clock on the organismic level [8] as well as in

different tissues [16,17]. In both cases, a large range of

entrainment phases has been reported. Recently, temperature

cycles were described as a universal entrainment clue for different

tissues [18]. It has been shown that the mammalian pacemaker,

the suprachiasmatic nucleus (the SCN), is quite resistant to phase

resetting. Contrarily, pituitary and lung cultures were found to be

easily entrainable [10,18].

The low and high susceptibility of circadian oscillators to

Zeitgebers leads to the concept of strong and weak oscillators

[8,10]. Weak oscillators have a wide entrainment range, tolerating

large mismatches to Zeitgeber periods. Lung tissues, as an example

of a weak oscillator, can be entrained by alterations between 37uC
and 35uC using Zeitgeber periods of 20 and 28 h [10]. In contrast,

the suprachiasmatical nucleus is quite entrainment-resistant

[10,18] and has, consequently, a narrow range of entrainment.

The distinction of strong and weak oscillators can be also applied

to clocks on the organismic level. For example, Aschoff and Pohl

in [8] suggest that vertebrates exhibit narrow entrainment ranges

compared to unicellular organisms and plants. These differences

might be due to differential responsiveness to the entrained signal

[8] and/or due to different feedback couplings [8,10]. Mathemat-

ically, strong oscillators are characterized by large oscillation

amplitudes, fast relaxation of perturbations, and small-amplitude

PRCs [10].

As discussed above, the value of the period mismatch t{T

determines whether the clock would be entrained or not. Thus we

can on equal footing study mismatches due to varying endogenous

period t (different phenotypes) as well as experimental variations

of Zeitgeber periods T [6]. Positive mismatches t{T result, e.g.,

from driving the circadian oscillator with a short Zeitgeber period

T~20 h. Negative mismatches correspond to tvT . For example,

a patient with the Familial Advanced Sleep Phase Syndrome

(FASPS) had a short endogenous period of t~23:3 h [19] leading

to a mismatch of t{T~{0:7 h.

Figure 1 shows the phase of entrainment y as a function of the

mismatch t{T for strong and weak oscillators. The points A and

B mark the borders of the entrainment range. Our simulations

reproduce the observations that the entrainment phase increases

with mismatch t{T [1]. This implies, for example, that

organisms with a short endogenous period have earlier activity

Figure 1. Dependences of entrainment phase y on period mismatch t{T between endogenous and Zeitgeber periods. Left:
strong oscillator with narrow entrainment range resulting in high sensitivity of the entrainment phase on mismatch. Right: weak oscillator with wide
entrainment range and smaller slope of the function y t{Tð Þ.
doi:10.1371/journal.pone.0059464.g001
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phases. For a given endogenous period t, we find early peaks for

Zeitgeber period T longer than 24 h [6].

Both strong oscillators (left) and weak oscillators (right)

reproduce the expected increase of y with mismatch t{T . An

obvious difference is the steepness of the increasing function

y t{Tð Þ. The strong oscillator (left) exhibits a high sensitivity of

the entrainment phase y to changes of the mismatch. In the

following, we relate this finding to properties of the oscillator and

its Zeitgeber. The slope of the curves in Figure 1 is determined by

the width of the entrainment range and the vertical phase span.

The vertical variation is in both cases about 12 h. The

entrainment range, however, is quite different. Consequently,

the slope of the curve is nearly reciprocal to the width of the

entrainment range. In other words, strong oscillators with a

narrow entrainment range (see Figure 1, left panel) exhibit a quite

flexible entrainment phase.

This strong dependence of the phase sensitivity on the

entrainment range is based on the observation that both oscillator

Figure 2. Phase response curves of strong (left) and weak (right) oscillators. The extrema marked by A and B are related to the borders of
the entrainment range (compare Figure 1) as explained in the text.
doi:10.1371/journal.pone.0059464.g002

Figure 3. Phases of entrainment within the entrainment regions. Left: Numerical simulations of amplitude-phase model. Right: Entrainment
phases from Eq. (2) derived from the Kuramoto phase equation. In both cases the entrainment phase varies from 26 h to 6 h between the
borderlines of entrainment. Note that the lines with +6 h are very close to those with +5 h and are not marked separately for the sake of clarity of
the graphical representation.
doi:10.1371/journal.pone.0059464.g003
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types exhibit a 12 h range of entrainment phases. A 12 hours

variation corresponds to 180u for periods of about 24 hours. Our

simulations in Figure 1 suggest that a 180u variation of phase y
within the entrainment range is a common feature of periodically

driven oscillators. Empirical data from many organisms [8]

support the theoretical prediction [7] that the entrainment phase

spans a range of about 180u. We derive below this ‘‘180u rule’’

using discrete and continuous models of entrainment.

Is there a 180u Rule?
The most striking result of the previous section is that for both

strong and weak oscillators, the phase can vary over the same

range of about 180u across the entrainment range. Here, we

Figure 4. Flexibility of entrainment phases y due to small variations of the endogenous period. The inserts show normally
distributed periods with a standard deviation of 0.2 h. Simulations of amplitude-phase models illustrate the flexibility of entrainment phases for
strong oscillators (left) compared to weak oscillators (right).
doi:10.1371/journal.pone.0059464.g004

Figure 5. Sinusoidal phase response curve (PRC) and associated phase transition curves (PTCs) according to Eq. (5). Applying T-
periodic pulses, stationary entrainment phases are given by the intersections of the PTC with the diagonal ynz1~yn [15]. Upper graphs: Vanishing
frequency mismatch V~0 leads to a stable entrainment phase y~12 h. Lower graphs: Period mismatches t{T~+1:5 correspond to the
borderlines of the entrainment range. The corresponding entrainment phases of 18 h and 6 h are associated to the extrema of the sine-function and
are 12 h (or 180u ) apart.
doi:10.1371/journal.pone.0059464.g005
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provide an explanation for this fact based on three different

approaches: phase response curves, the Kuramoto equation for the

phase of entrainment and a forced linear damped oscillator. All

three approaches result in similar phase flexibility under variation

of the period mismatch. Note that these considerations are applied

to oscillators with relatively narrow entrainment ranges, charac-

teristic for many vertebrates including humans [20,21].

Phase response curves. Phase response curves (PRCs) are

an established theoretical tool in chronobiology [20]. For a

circadian oscillator, a PRC describes the amount of phase shift,

caused by a short Zeitgeber pulse in dependence on when the

Zeitgeber pulse is applied.

In Figure 2 we plot numerically obtained PRCs of the strong

and weak oscillators from Figure 1. In both cases, there are

positive and negative phase shifts: During the first half of the

circadian cycle, a short Zeitgeber pulse instantaneously advances

the clock, whereas in the second half a Zeitgeber pulse delays the

clock. The strong oscillator (on the left) has a PRC with a smaller

amplitude compared to the weak one. Being phase variables,

phase shift and the relative position of the pulse can be specified

either in hours or in degrees or radians.

In order to entrain stably an oscillator by a T -periodic (i.e. with

a period of T hours) sequence of Zeitgeber pulses, each pulse in

the sequence must result in a delay or an advance that would

compensate the period mismatch t{T . This requirement

conditions the entrainment phase. Pulses must occur at the phase

where the corresponding value of the PRC equals the mismatch

t{T . Thus, the largest mismatches that can be compensated

correspond to the maximum and the minimum values of the PRC

[1].

For the PRC of the strong oscillator in Figure 2 (left), we can

compensate mismatches of up to +0:5 h. Negative mismatches of

t{T~{0:5 (clock faster than Zeitgeber) can be compensated by

aligning the phases of the clock and the Zeitgeber in such a way,

that the Zeitgeber pulse comes approximately at 270u. This allows

for the desired phase delay of {0:5 h, compensating for the faster

clock. Analogously, for a clock slower than the Zeitgeber

(mismatch t{T~0:5 positive), the phases of the clock and the

Zeitgeber must be aligned such that the light pulse arrives at

approximately 90u, thus advancing the phase by about 0:5 h. The

same logic applies to the weak oscillator in Figure 2 (right). Here

the PRC suggests that light pulses can compensate for larger

mismatches up to approximately 1:2 h.

We have now illustrated that the maximum and the minimum

of the PRC correspond to the maximum and minimum

mismatches t{T , which can be compensated in entrainment,

i.e. they correspond to the borders of entrainment range. The

corresponding phases of pulses thus give the entrainment phases at

the borders of the entrainment range. Both PRCs in Figure 2 are

nearly sine-like, which implies that the maximum and minimum

are nearly 180u apart and, consequently, the phase of entrainment

can vary over a range of 180u. This is exactly the result from

Figure 1 we were seeking to explain.

The 180u rule will be modified if the PRC is not well

approximated by a sine-curve. Still, the maximum and minimum

of the PRC determines the range of the entrainment phases. In

‘‘Methods’’ section, we provide mathematical details regarding the

phase response curve/phase transition curve approach.

We emphasize that rodent and human PRCs resemble sine-

curves for long durations of light pulses [22]. On the other hand,

experimental PRCs based on short light pulses often clearly

deviate from a sinusoidal shape [1]. Thus, a more general theory

of phase response is required to deal with natural light-dark cycles,

as described below.

Kuramoto phase equation. A serious limitation of the

aforementioned PRC approach is the assumption that the

Zeitgeber acts as a sequence of short pulses, each of them

instantaneously introducing a phase delay or advance to the

oscillator. For a continuously varying Zeitgeber, such as the daily

variation of light intensity, this might be not the best represen-

tation. Fortunately, there is another theoretical tool which allows

to overcome this limitation: The so-called Kuramoto equation

describes the phase difference between the oscillator and its

Zeitgeber for arbitrary Zeitgeber waveform [23]. The Kuramoto

equation accounts for the Zeitgeber waveform by integrating its

product with the PRC, compare Eq. (6). The integral produces

sine-like waveforms even for PRCs deviating strongly from a sine-

curve.

As outlined above and more detailed in ‘‘Methods’’ section, the

phase of entrainment is essentially determined by the compensa-

tion of the mismatch t{T by the effective Zeitgeber strength.

This implies that the Zeitgeber strength determines the allowed

range of mismatches, for which entrainment occurs. This agrees

with the intuition that larger Zeitgeber strength implies broader

entrainment range (see next section).

The exact expression for entrainment phase y from the

Kuramoto theory is

y~ arcsin
V

K
, ð2Þ

Figure 6. Amplitude and phase of a periodically driven weakly damped oscillator. The amplitude (left) shows a resonance peak near the
intrinsic frequency v0~

2p
24

. Near the resonance the phase difference between the oscillator and the driver is changing by about 180u (right).
doi:10.1371/journal.pone.0059464.g006
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where V~v{v0 is the frequency mismatch between the

Zeitgeber frequency v and endogenous frequency v0. The

parameter K represents the effective Zeitgeber strength. For the

phase of entrainment, Eq. (2) has the following consequences.

First, it limits the choice of frequency mismatches V where

entrainment is possible to the interval of ½{K ,K� (recall that the

arcsin-function is defined for arguments with the absolute value

less than one). This results in the Arnold tongue, which is discussed

in detail in the next section. Secondly, the unique values of the

arcsin function span a range of 180u, which supports our 180u
rule. The extrema of the entrainment phase are assumed at the

border values of V~+K , or, equivalently, in V
K

~+1. There, the

arcsin function produces values of 690u, correspondingly.

Curiously, for a sinusoidal Zeitgeber, the expression for phase of

entrainment obtained from the Kuramoto model coincides with

the one for an oscillator with sinusoidal PRC under T-periodic

sequence of light pulses. The explanation for this fact can be

obtained by considering a continuous sinusoidal Zeitgeber as a

superposition of many short pulses with a sinusoidal amplitude. A

generalization of PRC theory leads to an integral of the product of

PRC and the Zeitgeber, see section ‘‘Methods’’, compare also

[24]. When any of those two are sine-functions, the integral

produces another sine-function, whose maximum and minimum

are necessarily 180u apart. This again results in a 180u range of

entrainment phase within the entrainment range. The Kuramoto

theory can be thus also used to describe and predict the response

of a circadian oscillator with a non-sine PRC to a periodic

Zeitgeber.

Periodically driven damped oscillator. It has been shown

that linear damped oscillators can be adequate models for the

circadian rhythms in single cells [25]. This simple model allows an

exact calculation of the phase difference between the external

driving force and the oscillator, see ‘‘Methods’’ section.

When the period of the driving Zeitgeber is close to the intrinsic

period of the oscillator, a resonance occurs – an increase of the

amplitude of the driven oscillations. At the same time, the phase

difference between Zeitgeber and the oscillator shows an

interesting behavior. For a slow Zeitgeber (with Twt), the phase

difference is nearly zero – the oscillator and the Zeitgeber are in

phase. In other words, the forced oscillator can follow the slow

driver without any delay. On the other hand, if the Zeitgeber is

fast compared to the oscillator (with Tvt), the phase difference y
approaches 180u and the oscillator lags in antiphase behind the

Zeitgeber. Again, between a fast and a slow Zeitgebers the phase

difference can vary over a range of 180u, which nicely agrees with

the aforementioned 180u rule.

For periodically driven damped oscillator with the eigenfre-

quency v0 and damping rate c, the phase difference y between

driving force with frequency v and oscillator is given by

y~ arctan
cv

v2
0{v2

� �
: ð3Þ

The arctan function produces values in the range of [0u ,180u].
The lower limit 0u is achieved when the argument of the arctan
function becomes close to zero (v?0), i.e. when Zeitgeber is much

slower than the endogenous clock. If, on contrary, v is much

larger than v0, the argument of the arctan function becomes

negative and y assumes the value of 180u. This is exactly our 180u
rule – the phase difference varies over a range of 180u. Even

though a driven linear oscillator has not an entrainment range in a

strict sense, there is still a 180u phase difference between the

oscillator response to slow and fast Zeitgeber periods.

In summary, three different approaches indicate that for strong

oscillators, a phase range of about 180u can be expected within the

entrainment range. This is not a strict rule since deviations from

sinusoidal waveforms can cause variations of the 180u range.

Entrainment for Variable Zeitgeber Strength
So far, we have considered Zeitgebers with a constant strength.

A Zeitgeber can vary in its strength, like the amount of perceived

daylight over different seasons or on different geographical

latitudes [2]. The Zeitgeber strength, among other factors,

determines the phase of entrainment. The main result of this

section is that the 180u rule approximately holds for any Zeitgeber

strength. As Zeitgeber strength increases, entrainment range

spreads over larger mismatches t{T and so does the observed

180u flexibility of entrainment phase.

Plotting the entrainment range versus increasing Zeitgeber

strength produces a wedge-shaped entrainment region, see

Figure 3, termed ‘‘Arnold tongue’’ (referring to the Russian

mathematician V.I. Arnold). As intuitively expected, small

Zeitgeber strength can overcome only small mismatches t{T .

With increasing Zeitgeber strength, the Arnold tongue opens up

and entrainment ranges over several hours can be observed

[15,26]. In Figure 3, we plot the phase of entrainment inside the

Arnold tongue by different grades of blue. Close to the borders of

the tongue, the entrainment phase assumes values of about +6 h.

For small Zeitgeber strength, the phase of entrainment can vary a

lot for small period mismatch changes due to a narrow

entrainment range. This implies a high sensitivity of entrainment

phase to mismatch t{T . Contrarily, for large Zeitgeber strength,

the entrainment range is large and the sensitivity of entrainment

phase to mismatch is lower.

The effective Zeitgeber strength scales reciprocally with the

oscillator amplitude [1,10,27]. Thus, the interaction of a given

oscillator with a relatively small Zeitgeber strength is similar to the

behavior of a strong oscillator. On the other hand, a strong

Zeitgeber acting on a reference oscillator resembles a weak

oscillator. Near the tip of the Arnold tongue where the

entrainment range is narrow, the situation corresponds to

entrainment of a strong oscillator. For large Zeitgeber strength,

the entrainment range is wider, bearing a similarity to a weak

oscillator.

Based on the Kuramoto equation, we show in ‘‘Methods’’

section that the phase of entrainment depends only on the ratio

between normalized Zeitgeber strength K and mismatch t{T .

The condition for a constant entrainment phase can be expressed

as

K

t{T
~const:

In coordinates ‘‘Zeitgeber strength – mismatch’’ K,t{Tð Þ, this

is an equation for a straight line, going through the origin K~0,

t{T~0. This finding nicely corresponds to the numerically

obtained Figure 3, showing the lines of constant phases (isophases)

as nearly straight lines, originating at zero Zeitgeber and

mismatch. The above result implies that the phase of entrainment

remains unchanged, if both Zeitgeber strength and mismatch are

varied proportionally to each other.

Human Chronotypes from a Theoretical Perspective
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Entrainment Phase Flexibility and Chronotypes
We can use our previous theoretical results to explain how small

variations in endogenous periods can result in large variations in

chronotype. The endogenous period in human populations has

been found to be fairly precise [28] with a standard deviation of

about 12 minutes [29]. On the other hand, the mid-sleep time

associated with entrainment phase y has been found to have a

much larger variability of +1:4 h [9]. It has been shown in [30]

that the phase of entrainment y is strongly determined by the

intrinsic period t. As an extreme example of high entrainment

phase sensitivity, a patient with Familial Advance Sleep Phase

Syndrome (FASPS) with a moderate mismatch t{T~{0:7 h has

a 4 hour phase advance [19]. A question arises: How is it possible

that a few minutes faster clock advances activity rhythms by more

than an hour?

An answer is given by inspection of Figure 1 (a): for oscillators

with a narrow entrainment range the slope of the function y tð Þ is

quite large. Consequently, small differences in t lead to large

changes of the entrainment phase. For an entrainment range of

+2 h we obtain, for instance, a slope of 3 due to the 12 h range of

the entrainment phase. As an approximation, we can use the

relation

Dy~
12h

entrainment range ½h�
:Dt, ð4Þ

connecting period changes Dt to variations of the entrainment

phase Dy. The numerator is fixed to be about 12 h according to

the 180u rule. Consequently, the denominator governs the slope. A

narrow entrainment range leads to large slopes of the function

y tð Þ. Figure 4 from the Aschoff survey [8] summarizes the

experimentally found relations between the phase of entrainment

and the range of entrainment in 15 species. From that survey

slopes between 0.5 (for unicellular organisms) and 4.5 (for birds)

can be extracted.

We illustrate our explanation of the relation between t and

chronotype in Figure 4. We simulated two ensembles with strong

and weak oscillators, correspondingly, with a Gaussian distribution

of t with the mean of 24 h and a standard deviation of 0.2 h. For

strong oscillators (Figure 4, left) we obtain a wide range of

entrainment phases whereas a weak oscillator (Figure 4, right)

leads to a narrow distribution of y. The standard deviation of

entrainment phase of strong oscillators was found to be nearly

three times larger than for weak ones. Thus, for strong oscillators

including the human clock, small variations in t lead to highly

variable entrainment phases.

Discussion

Flexibility of Entrainment Phase
We provide a conceptual framework how oscillator properties

control the entrainment phase. Strong oscillators with a narrow

entrainment range exhibit more flexible entrainment phases (see

Figure 4). This implies that small variations of the endogenous

period t lead to different phases, associated with different

chronotypes.

The core of our theory is the ‘‘ 180u rule’’ formulated already by

Wever [7]: under general assumptions, the entrainment phase

varies within the entrainment range by 180u (or 12 h given a

period of 24 h). This rule is rigorously derived using 3 different

approaches: (i) phase response curves, (ii) phase model (Kuramoto

equation) and (iii) resonance theory. Numerical simulations of limit

cycle models as in Figures 1 and 3 confirm the 180u rule. As

discussed in ‘‘Methods’’, Eq. (6), the integral of the product of

Zeitgeber and PRC determines the phase dynamics. Even for non-

sinusoidal PRCs, the 180u rule can hold, as long as the integral in

Eq. (6) produces a sine-like function. Indeed, already Aschoff and

Pohl [8] suggested that the 180u rule is approximately valid in

many organisms, even though most PRCs deviate from a

sinusoidal shape [1].

Generalizations of the Theory
Our central equation (4) that connects phase variations Dy to

period changes Dt and the entrainment range is a linear

approximation of the y tð Þ functions. Inspection of Figure 1

reveals that there are clear deviations from linearity. Sigmoidal

functions y tð Þ have been reported earlier [8]. Our calculations

predict curved y tð Þ relationships near the borderlines of the

entrainment range. The theory of driven damped oscillators leads

directly to sigmoidal functions. Sinusoidal PRCs and Kuramoto

phase equation result in arcsin functions resembling the simulation

results in the left graph of Figure 1. Consequently, our theory is

also capable to explain deviations from a linear function y t{Tð Þ,
which have been experimentally found [7,8,31].

In Figure 3, we have implicitly assumed that the intrinsic period

t is not changing with Zeitgeber strength. It is known, however,

that light intensity may change the endogenous period t [6,31].

This would lead to skewed Arnold tongues. Furthermore, seasonal

variations implicitly change Zeitgeber strength and induce period

and entrainment phase variations [31,32]. These issues will be

addressed systematically in a forthcoming study.

Theoretical Predictions
As visualized in Figure 3, our theory predicts the dependence of

the entrainment phase on mismatch t{T and Zeitgeber strength.

For twT , an increase of the Zeitgeber strength leads to earlier

entrainment phases. This effect has been shown recently in

temperature entrainment studies [10]. The phase of entrainment

of lung tissue was decreased by 3 h by increasing Zeitgeber

strength (compare Figure S5 in [10]). Comparable predictions

relate light intensity and chronotypes [33]. For night owls with

twT we expect that more light leads to earlier phases.

Considering the left half of Figure 3, large Zeitgeber strength

leads to later phases for tvT . Altogether, the theory predicts that

stronger Zeitgebers lead to narrower distributions of chronotypes.

This prediction can be tested comparing chronotype distributions

from different countries or in summer and winter [34].

Evolutionary Aspects of Entrainment Phase Flexibility
Temporal coordination of physiology and behavior with

extrinsic Zeitgebers leads to evolutionary benefits of a properly

functioning circadian clock. In particular, a suitable phase of

entrainment most likely provides selective advantages. It is by no

means obvious whether or not a stable entrainment phase as

observed for weak oscillators or a flexible phase for strong

oscillators is advantageous. For example, bird and butterfly

navigation can be supported by a phase marker that is precisely

aligned to Zeitgeber phase [35,36]. If an organism can track noon

independent of season and latitude, the highest point reached by

the sun always defines south direction in the northern hemisphere.

In many other situations a flexible phase of entrainment is

required. The prime example is the adaptation to seasonal

changes. Frequently the circadian clock allows to track dusk and

dawn. This can be achieved partly by masking [37], but the

observation of activity peaks tracking sunrise and sunset indicates

successful adaptations of the entrainment phase to seasonal

changes [1,2].
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Across many organisms narrow and wide ranges of entrainment

are observed [8]. This implies that the slopes of the function y tð Þ
varies from 0.5 (unicellular organisms) up to 4 (vertebrates) since

the ‘‘180u rule’’ associates entrainment ranges with the phase

variability described by the slope
d y

d t
. A wide entrainment range

corresponds to a high responsiveness to Zeitgeber clues. For

example, the clock of unicellular organisms is heavily influenced

by inputs.

In mammals, a hierarchy of circadian oscillators exists. The

suprachiasmatic nucleus (SCN) receives direct light input and

orchestrates peripheral clocks [38]. The SCN is a quite strong

oscillator with a relatively narrow range of entrainment. This has

been shown recently for temperature as a universal Zeitgeber

[10,18] but applies also to light inputs since phase response curves

have typically relatively small advance and delay portions [39]. In

contrast, peripheral clocks have large PRCs and wide entrainment

ranges [10]. These observations might reflect a design principle of

mammalian clocks: the pacemaker subject to noisy inputs is quite

strong whereas peripheral clocks constitute weak oscillators that

can be easily entrained by neuronal and humoral signals or body

temperature. The theory of entrainment phase control, as

discussed in this paper, emphasizes that the robustness of the

SCN implies flexible entrainment phases due to large slopes of the

function y tð Þ. The wide spread of chronotypes reflects this large

phase flexibility. Moreover, the sensitivity of the entrainment

phase allows adaptation to seasons and latitudes. In a forthcoming

study we will show how oscillator properties rule seasonal

adaptations as observed in the classical work of Daan and Aschoff

[2].

Methods

Figures 1–4 are based on simulations of the amplitude-phase

oscillator Eq. (1) with A0~1. Periodic forcing is simulated by

adding the term F sin
2p

T
t

� �
to the x-coordinate of the oscillator

with Eq. (1) re-formulated in the Cartesian coordinates. The

parameter F is termed ‘‘Zeitgeber strength’’ in Figure 3. The PRC

in Figure 2 is obtained with pulses of strength P~0:2 lasting

30 min. The entrainment phases visualized in Figure 3 are based

on simulations with varying period mismatch and Zeitgeber

strength. For each parameter set, 24 initial conditions were chosen

equally distributed along the limit cycle. The median entrainment

phase after 50 days was plotted using contour lines. Numerical

simulations were performed in MATLAB (2007a, The Math-

Works, MA, Natick).

Below we consider generic models of periodically driven

oscillators. We present calculations showing that under quite

general assumptions, the entrainment phase varies over about

180u (or 12 h for circadian periods). The derivation of this ‘‘180u
rule’’ points also to limitations and generalizations of this finding.

Sinusoidal Phase Response Curve
In many cases the effects of external driving forces can be

studied successfully using Phase Response Curves (PRCs)

[20,31,40]. If the relaxation of a perturbation is fast compared

to the period of the oscillator, PRCs can be used to calculate the

phase of entrainment for periodical stimulations [41]. This discrete

approach to the entrainment of circadian clocks is mathematically

related to stable fixpoints of the associated Phase Transition Curve

(PTC).

For a sinusoidal PRC we find the following PTC [15]:

ynz1~ynzt{TzK sin
2p

t
yn

� �
: ð5Þ

Here the phase variable yn is normalized to the range ½0,t), where

t is the endogenous period. Further, T denotes the period of the

Zeitgeber and the parameter K represents the effective Zeitgeber

strength.

The upper graphs in Figure 5 show a sinusoidal PRC and its

associated PTC for the frequency detuning V~0 and Zeitgeber

strength K~1:5. The PTC can be considered as an iterated map

[15], i.e. subsequent perturbations lead to a series of iterated

phases y0,y1,y2, . . .. Fixpoints of this map are given by the

intersection with the diagonal ynz1~yn. A stable fixpoint (e.g. the

full circle at y~12 h in Figure 5) corresponds to the entrainment

phase. Increasing the frequency mismatch V leads to a loss of

entrainment, since there are no more intersections of the PTC

with the diagonal. This happens at the marked point B via a

saddle-node bifurcation (see [15] for details). The disappearance of

a stable fixpoint marks the borderline of the entrainment region

(compare Figure 1). Similarly, negative values of the frequency

mismatch V lead to a loss of entrainment at point A. The critical

entrainment phases at A and B correspond to the extrema of the

PRCs in Figure 2, since the PTC is essentially a rotated version of

the PRC [41]. For sinusoidal PRCs, these extrema are half a

period (or, equivalently, 180u) apart. This implies that the phase

entrainment varies by 12 h as illustrated in Figure 1.

Note that Figures 1–4 are obtained from simulations of

amplitude-phase oscillators with sinusoidal periodic forcing.

Consequently, the PTC-theory discussed above is only approxi-

mately valid. Thus, the entrainment range is larger and more

asymmetric than the advances and delays in Figure 2 in the main

text. A more general approach of periodically driven limit cycle

has been developed by [23] and will be discussed below.

Entrainment Phase of Periodically Driven Limit Cycles
Kuramoto [23] studied extensively the phase dynamics of

driven oscillators. His theory is intimately related to the continuous

approach of Aschoff [6]. The following differential equation for

the phase difference y between the periodic force and oscillator

can be derived:

dy

dt
~Vzk

ð2p

0

Z tð ÞPRC t{yð Þdt: ð6Þ

Here, V has the same meaning as the frequency mismatch

between the Zeitgeber and the oscillator as above. The integral

represents the cumulative action of the Zeitgeber Z tð Þ as ‘‘sensed’’

by the PRC. If PRC or Zeitgeber are sinusoidal, the integral can

be computed analytically and the above equation simplifies to

what we know nowadays as the Kuramoto equation:

dy

dt
~V{k sin y: ð7Þ

The equation looks quite similar to the PTC discussed in the

previous section. Again the extrema of the sine-function (180u
apart) correspond to the borderline of the entrainment range. A

stationary phase determined by the condition dy
dt

~0 equals
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y~ arcsin
V

k

within the entrainment range V[½{k,k�. This implies that the

entrainment phase varies again by 180u within the entrainment

range. The arcsin-function resembles the simulation result in

Figure 1, left graph. In the middle, its slope dy
dV is approximately

given by 1
k

, i.e. for small entrainment ranges large slopes occur.

Due to the periodicity of Zeitgeber and PRC, the integral in Eq.

(6) is a 2p-periodic function in phase y. A special case of certain

shapes of Zeitgeber and PRC is worth to be discussed separately: If

one of the functions Z tð Þ or PRC tð Þ contains no higher harmonics

(i.e. is either a pure sine or a cosine function or a linear

superposition of such), the integral would contain no higher

harmonics either. As a consequence, the 180u rule would hold

exactly in this case. Under a milder assumption that both

Zeitgeber and PRC do contain higher harmonics, the integration

would suppress them.

In comparison to the PRC approach, the Kuramoto theory

provides a more general framework for entrainment. The

entrainment phase can be determined for different Zeitgebers

and PRCs. According to the above calculation, any combination

of Zeitgeber and PRC that produces a phase equation similar to

Eq. (7) implies the 180u rule. In summary, the phase equation

according to Kuramoto [23] leads to a similar conclusion as the

PRC approach. Narrow entrainment ranges imply strong depen-

dences of the entrainment phase y on the mismatch t{T .

Periodically Driven Damped Oscillator
Even though the circadian clock has been proven to be a self-

sustained oscillator, weakly damped oscillations exhibit somewhat

similar features when periodically driven [42]. Amplitudes increase

via resonance and phases vary with the mismatch between

intrinsic angular frequency v0 and driver frequency v. For a

linear oscillator

d2x

dt2
zc

dx

dt
zv2

0x~F : sin vtð Þ ð8Þ

the amplitude A and the phase y of the driven oscillation can be

calculated

A ~
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2v2z v2{v2
0

� �2
q ,

y ~ arctan
cv

v2
0{v2

� �
:

ð9Þ

Figure 6 shows the corresponding functions. For slow external

frequencies v, the forced oscillator is in phase with the driving

force, whereas it lags behind it by 180u for fast drivers (with high

v). This model shows large phase shifts near the resonance

resembling entrainment phase variations of driven limit cycle

oscillators. It has been shown recently that weakly damped

oscillators are fairly good approximations of circadian single cell

rhythms [25]. If the amplitude shows resonance behavior as

observed in lung tissues [10] and skin cells [43], the theory of

weakly damped oscillators can serve as a reasonable approxima-

tion.

We do not claim that the ‘‘180u rule’’ derived here can be

considered as a universal law. Obviously, deviations from a

sinusoidal PRC shape, phase resetting by large pulses, and

periodically driven relaxation oscillators require a more general

theory. Nevertheless, the ‘‘180u rule’’ is supported by quite

different mathematical approaches (PTC, Kuramoto’s phase

equation, resonance theory) and can be successfully applied to

strong oscillators with type-1 PRCs and narrow entrainment

ranges. These assumptions are reasonable for many vertebrates [8]

including humans [21].
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