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Abstract
Objective—To determine if a prediction rule for hospital mortality using dynamic variables in
response to treatment of hypotension in patients with sepsis performs better than current models

Design—Retrospective cohort study

Setting—All intensive care units at a tertiary care hospital

Patients—Adult patients admitted to intensive care units between 2001 and 2007 of whom 2,113
met inclusion criteria and had sufficient data

Interventions—None

Measurements and Main Results—We developed a prediction algorithm for hospital
mortality in patients with sepsis and hypotension requiring medical intervention using data from
the Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II database). We extracted
189 candidate variables, including treatments, physiologic variables and laboratory values
collected before, during and after a hypotensive episode. Thirty predictors were identified using a
genetic algorithm on a training set (n=1500), and validated with a logistic regression model on an
independent validation set (n=613). The final prediction algorithm used included dynamic
information and had good discrimination (AUC = 82.0%) and calibration (Hosmer-Lemeshow C
statistic = 10.43, p=0.06). This model was compared to APACHE IV using reclassification indices
and was found to be superior with a NRI of 0.19 (p<0.001) and an IDI of 0.09 (p<0.001).
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Conclusions—Hospital mortality predictions based on dynamic variables surrounding a
hypotensive event is a new approach to predicting prognosis. A model using these variables has
good discrimination and calibration, and offers additional predictive prognostic information
beyond established ones.
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Introduction
A number of scoring systems have been developed for use in critically ill patients to
determine disease severity and predict mortality. Commonly used outcome prediction scores
include the Acute Physiology and Chronic Health Evaluation (APACHE) scores (1),
Simplified Acute Physiology Scores (SAPS) (2), and the Mortality Probability Models
(MPM)(3). These are based on a combination of variables that reflect pre-existing health as
well as variables that reflect physiologic derangement due to acute illness. The first two
systems rely on the worst physiologic variables collected within 24 hours of intensive care
unit (ICU) admission (4). While these scoring systems have the potential to inform
prognosis and resource allocation retrospectively at a cohort level in the ICU (5), their use
has been mostly restricted to clinical trials (6), for case-mix determination in retrospective
data analyses (7) and benchmarking ICU performance (8). This is largely due to the
observation that these scoring systems perform well in predicting outcome at the group
level, but continue to perform poorly when predicting survival in individual patients.

There are a number of reasons for the limited predictive ability of current systems. Pertinent
causal factors such as genetic factors may be excluded (4). Recently, it has been shown that
identification of “worst” values over a day by clinicians is biased (9), which may partially
contribute to lower prediction performance than should be possible. In addition to this,
scores used to benchmark ICU performance can only use information that is not influenced
by local practice (admission and following 24 hours) and therefore do not benefit from the
potential prognostic value of later observations.

Additional factors that are currently not well understood may also exist. Recent research has
emphasized the importance of early goal directed therapy in reducing mortality from septic
shock (10), increasing the need for accurate early warning systems. Changes in the
physiologic variables measured within hours of this early critical period may be more
predictive of outcome than focusing on the worst values measured within the day after ICU
admission. While current scoring systems such as APACHE (1, 11, 12) try to capture the
severity of the initial insult, they are likely limited in their ability to capture the “physiologic
reserve” of a patient to respond to this insult because they tend to focus on the worst
recorded value over 24 hours, and not on the variability in an individual’s immediate
response to the physiologic insult (for example hypotension) and its treatment. Additionally,
current severity scoring systems have been developed using a knowledge-driven approach
where predictors are chosen based on known clinical variables associated with poor
outcome. Recent developments in the field of genetic epidemiology (the study of the role of
genetic factors in determining health in populations) have demonstrated that study designs
which use a heuristic and data-driven approach to select predictors (13) have the potential to
discover new causal factors of disease.

Unfortunately, most ICU databases lack sufficient information to fully characterize critical
events such as the development of hypotension in sepsis. These variables are captured in
MIMIC II (14), an open-access ICU research database that contains highly granular data
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including minute-by-minute changes in hemodynamic and other physiologic data as well as
time-stamped treatments and their dosage, e.g. fluids, blood products, medications.
Databases such as these can offer a extremely large number of potential predictive variables,
and use of dimensionality reduction optimization procedures such as genetic algorithms (15)
should be used in order to select candidate variables for predictive modeling.

In this study, we set out to determine if dynamic variables that change with the onset and
treatment of hypotension in septic shock patients can provide prognostic information for
mortality beyond the standard variables used in current severity scoring systems. Variables
used for inclusion in our final prediction rule were selected via a combined heuristic and
automated approach, with the latter approach employing a genetic algorithm, in order to
discover new predictors of mortality.

Materials and Methods
Patient Population

MIMIC II is an open-access research database that encompasses 32,075 patients (in version
2.6) admitted to the medical and surgical at the Beth Israel Deaconess Medical Center
(BIDMC, Boston, MA) since 2002 (14) and is freely available on PhysioNet (16). An
Institutional Review Board (IRB) approval was obtained from both the Massachusetts
Institute of Technology (MIT) and BIDMC for the development, maintenance and public
use of a de-identified ICU database. This database contains high-temporal resolution data
including lab results, electronic documentation, bedside monitor trends and waveforms.

Using the MIMIC II database, we identified 6,970 patients (21.7%) that matched the
definition of sepsis and severe sepsis proposed by Angus et al. (17) of whom 2,155 (6.7%):

1. Had two consecutive nurse-verified recordings of mean arterial blood pressure
below 60 mmHg (18);

2. Received vasopressors and/or fluid resuscitation from the onset of the event to its
end.

42 patients (2.7%) with more than 50% missing data were excluded from further study
leaving 2,113 patients in the final dataset (Figure 1).

For each patient record, we extracted at admission or over three different time windows
(before, during and after the onset of the hypotensive episode) the following available
variables from the database, (Figure 2):

• Demographic data: Age (years), weight (kg), height (cm).

• Hemodynamic variables: Hypotensive event length (hrs) and time from admission
to onset of the hypotensive event (hrs), arterial blood pressure components
(systolic, diastolic, mean in mmHg), central venous pressure (mmHg), heart rate
(bpm), peripheral arterial oxygen saturation (%), and respiratory rate (rpm) 2 hours
before the onset, during, and 2 hours after the termination of the hypotensive event

• Lab and clinical values: Patients’ lab results during the 24 hours before the onset
and after the end of the hypotensive event: PaO2 (mmHg), FiO2 (mmHg/torr),
Glasgow Coma Scale (19), temperature (°C), arterial pH (units), bicarbonate (mEq/
L), Blood Urea Nitrogen (BUN, mg/dL), hematocrit (%), hemoglobin (g/dL),
platelets (K/μL), calcium (mg/dL), chloride (mEq/L), creatinine (mg/dL), glucose
(mg/dL), lactate (mmol/L), magnesium (mg/dL), phosphorous (mg/dL), potassium
(mEq/L), sodium (mEq/L), white blood cell (WBC) count (K/μL), total bilirubin
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(mg/dL), alanine transaminase - ALT (IU/L), PaCO2 (mmHg), Albumin (g/dL),
and INR.

• Established severity of illness scores: Only SAPS-I, APS and SOFA can be
automatically calculated from the database, and thus SAPS-I was used rather than
SAPS-II. APACHE-IV was calculated after manual review of discharge summaries
to extract the additional necessary information. Co-morbidities were scored
according to the van Walraven comorbidity measure, which weights each of the 30
comorbidities present in the Elixhauser score with a coefficient derived from
228,565 hospital admissions (20, 21).

• Treatment: The amount of uid (mL) given during the event. The administration (or
not) of any dose of the following vasopressors: dopamine, epinephrine,
norepinephrine, phenylephrine, vasopressin and dobutamine, and finally, the
presence of mechanical ventilation and renal replacement therapy.

• Outcome: For each patient, hospital mortality was extracted from the database.

Clinically meaningful non-linear transforms of raw physiological variables were derived: the
PaO2/FiO2 ratio (mmHg/torr), heart rate to systolic blood pressure ratio (bpm/mmHg) (also
known as the “shock index” (22, 23)) and the BUN to creatinine ratio. Variables known to
follow an exponential distribution such as urine output, time from admission to hypotensive
episode, length of hypotensive episode and SpO2, were log-transformed. For variables
typically sampled at a rate of more than one per day, the minimum, median and maximum
values were extracted for each time window (before, during and after the hypotensive
episode). The standard deviation was also computed for hemodynamic variables, which have
higher temporal resolution. Finally, the algebraic difference between “post” and “pre”
measurements was computed resulting in a total of 179 variables. Observations outside a
physiologically feasible range were excluded. Missing values were imputed by the mean
over the training set (see below).

Development of model for predicting hospital mortality
The dataset was split into a training set with the first 1,500 patients (ordered by a randomly
allocated ICU identification number) and a validation set with the last 613 patients (29.0%).
The training set was used to select variables and train the model while the validation set was
kept for external validation of performance.

Given the large number of potential predictors available, care must be taken to prevent over
tting of the model to the training observations. As a general rule, the maximum number of
predictors to include in a model should be no greater than the number of events (i.e. deaths)
in a sample divided by ten (24). With 1,500 training samples and a mortality rate in this
sample of 30%, up to 40 variables could potentially be included in the final model. Trying
all possible combinations of 40 (or less) variables from a total of 179 potential variables is
computationally prohibitive. Therefore, we used a genetic algorithm (GA) to nd the best
combination of variables to be included in our model.

A GA is a search heuristic that mimics the mechanisms of DNA replication and natural
selection. It was applied on the training set (n=1,500) to identify the optimal combination of
variables to be included in our model. In the first iteration of the algorithm, different subsets
of all potential predictors are randomly generated and the performance of each is estimated.
At each iteration, the subsets of potential predictors showing the best performance are
recombined to generate new subsets of the potential predictors. This process is repeated until
the performance stops progressing or when the maximum number of iterations has been
reached; this evolutionary process therefore selects the most adapted set of predictors with
respect to the given performance (15, 25, 26). The GA has been successfully applied to
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variable selection (27) and in particular on biomedical datasets (28). Technical aspects of the
GA are further described in the Supplemental Digital Content 1, where a link to the open-
source code developed for this work is also provided.

Parameters that are selected most often with the GA in the training set were subsequently
used to fit a multivariate logistic regression model to predict hospital mortality, and model
performance (29, 30) was subsequently evaluated in a completely independent test set
(n=613). The area under the receiver operating characteristic curve (31) was estimated using
the Wilcoxon statistic (32). Model calibration was assessed by calculation of the Hosmer-
Lemeshow C-statistic (33) and calibration plots are provided as recommended by Kramer et
al. (34) and can be found in the appendix.

The baseline predicted mortality was obtained with APACHE-IV (1) in the test set.
Measures of statistical significance for difference with baseline predicted mortality was
computed for a conservative comparison of AUCs derived from the same cases (35).
Recently, investigators have suggested that a more useful comparative metric of model
performance is risk reclassification (36). Therefore, we calculated the Net Reclassification
Improvement (NRI) (37) (38), which measures the ability of a new model to reclassify a
high risk individual as higher risk, and a low risk individual as lower risk, for our model as
compared to APACHE-IV. Finally, the Integrated Discrimination Improvement (IDI) (36)
which takes into account the overall joint improvement in sensitivity and specificity of the
new model, was also computed in comparison to APACHE-IV.

We also compared our model to traditional severity scores such as SAPS-I, APS, SOFA, the
APACHE-III and IV and the Van Walraven co-morbidity score. The Van Walraven score is
a modification of the Elixhauser comorbidity score (20), equivalent to the Charlson score
(39, 40), which provides a weighting for 30 comorbidities: it is a validated and easily
obtainable proxy for comorbid conditions. Scores designed to be measured at admission
such as APACHE-IV were computed only at admission, while others were also evaluated
for the day following the hypotensive episode. Finally the Complete Septic Shock Score
(CSSS) (41), which is severity score for septic shock patients based on APACHE-III
variables (11) was computed.

Results
Patient Characteristics

A total of 2,155 patients met the inclusion criteria of sepsis or severe sepsis with
documented hypotension requiring medical intervention, of whom 2,113 had enough data.
The demographic and clinical characteristics of these patients are shown in Table 1. Median
age was 70.3 (57.2–80.3) years and the overall in-hospital mortality was 28.6%. The median
amount of crystalloid administered during the hypotensive event was 1.85 L (0.9 – 3.7).
Vasopressors were administered to 1,107 patients (52.4%) during this event.1,486 patients
(70.3%) were mechanically ventilated, and 249 (11.8%) underwent renal replacement
therapy over the time period considered.

Variables in final model
The genetic algorithm was run 500 times and the most frequently selected variables
identified by the genetic algorithm were selected for inclusion in the final model (see Table
2). The model dimensionality was set by the GA as explained in the Supplemental Digital
Content 1.
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Analysis of model performance by discrimination, calibration, and risk reclassification
indices

Our final model had good discrimination with an AUC of 82.0% as well as good calibration
with a Hosmer-Lemeshow C statistic of 10.4 (p=0.064). The performance of our model was
compared to multiple other models for mortality prediction in Table 3. When using the AUC
as a performance metric, our model had the best performance with a statistically significant
(p<0.001) improvement of 12.4 percentage points in AUC over APACHE IV, which had an
AUC of 69.6%. The NRI based on continuous measures was 0.19 (p<0.001), indicating that
on average, 19% of subjects had their hospital mortality predictions from APACHE IV
accurately reclassified with our model designed with a genetic algorithm. Similarly, the IDI
was 0.09 (p<0.001) indicating that an aggregate measure of sensitivity and specificity was
superior for our model when compared to APACHE IV.

Discussion
In this study, we took a novel approach to the development of a hospital mortality prediction
algorithm by focusing on dynamic variables surrounding a hypotensive event in patients
with sepsis and hypotension. Additionally, we used a combined heuristic and algorithm-
driven approach to variable selection. When compared to mortality predictions from
APACHE IV, our model had a significantly higher AUC and superior risk reclassification.
Direct comparison of our results against APACHE-IV is however not straightforward. First,
in terms of discriminative power, APACHE-IV was designed for benchmarking and does
not use values recorded after the first day of admission that potentially contains
discriminative information, whereas our approach does. Second, in terms of calibration,
APACHE-IV does not benefit from a re-calibration on our data since chronic health
conditions and admission were only extracted for patients in our validation set. Third,
without comparing the performance of our model against APACHE IV in an external cohort,
we cannot accurately say that our model outperforms APACHE IV under all circumstances,
since the ability of a model to discriminate and calibrate decreases when applied to new
populations (42). Thus it is not entirely unexpected that our GA based model outperforms
APACHE IV when evaluated using our test set, since our training set was drawn from the
same population as the test set. However, the robust performance of our model in predicting
hospital mortality is notable, and this new approach to predictive modeling in sepsis using
dynamic information in conjunction with a heuristic search algorithm such as the GA is
promising.

We believe that focusing on dynamic variables surrounding a hypotensive event allows us to
capture the individual variation in the response to both a physiologic insult as well as the
response to treatment. Current prognostic scoring systems often predict similar outcomes for
patients with the same comorbidities, severity of physiologic injury, and degree of organ
dysfunction. In clinical practice, there is often wide inter-individual variability in outcome
even when subjects fall within the same risk strata according to these scoring systems. This
may be because an important predictor of outcome, the individual’s physiologic reserve
(43), has not been captured in these scoring systems. Physiologic reserve may account for
the difference in clinical outcome that two patients with identical mortality risks (as
traditionally defined by age, severity of illness and co-morbidities) and treatment may have.
Bion places a large emphasis on the importance of cellular processes in response to stress
and oxygen delivery as the major determinant of this physiologic reserve, which is thought
to vary between patients because of genetic differences (44).

Prior studies have attempted to measure aspects of the physiologic reserve. For example,
Vallet et al demonstrated that in a uniform population of patients with sepsis and normal
lactate levels, survivors have an increase in oxygen delivery in response to dobutamine (45);
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this finding was subsequently validated by Rhodes et al (46). Identification of subjects with
relative adrenal insufficiency with the corticotropin stimulation test may capture another
aspect of the physiologic reserve (47). The physiologic reserve is likely to be dependent on
the complex interplay between an individual’s genetic background (48) and the physiologic
insult. We suspect that after controlling for comorbidities, severity of insult and treatment,
the dynamic variables surrounding a hypotensive event allow us to determine the
contribution of an individual’s physiologic reserve to prognosis, thus allowing better
individual (as opposed to group) predictions of hospital mortality in patients with septic
shock.

Dynamic information was included in the model in two ways: inclusion of the “delta”
variables (the difference between value after the hypotensive episode and before it) for
chloride, GCS, creatinine and PaO2; and the selection of a variable at two different time
windows as for SOFA, INR, temperature and SpO2 standard deviation, which altogether
accounted for nearly half the variables in the model (46.7%). Variables after the hypotensive
episode, while closer in time to the hypotensive episode and therefore believed to have a
greater predictive power, only summed up to a third of the selected features. Finally,
variables before the hypotensive episode (including at admission) represented half the
model’s features.

Interestingly, while the genetic algorithm selected previously known predictors of mortality
such as age, urine output, shock index, SOFA score and comorbid conditions as measured
by the Van Walraven score (21), we also identified the change in serum chloride levels
spanning the 24 hour interval before and after the hypotensive event as a significant
predictor of hospital mortality. While this finding is interesting, at this point the association
of changes in chloride in response to hypotension and sepsis remain speculative and are
currently being investigated within our research group.

Strengths of our study include the novel focus on the dynamic events surrounding a
hypotensive event in patients with sepsis, in order to capture the inter-individual variability
in the response to septic shock and treatments; this may address why prior prediction rules
have been useful at the group level but performed poorly when applied clinically to
individual patients. Modeling patient-specific physiologic responses to a specific dose of
treatment, e.g. blood pressure rise in response to a certain volume of crystalloids, urine
output after a certain dose of diuretic, or level of sedation after a certain dose of
benzodiazepine, has the potential to personalize treatment guidelines to a degree never
achieved before.

Furthermore, a data-driven approach using a genetic algorithm, which is not dependent on
prior known biology, allowed us to select the best predictors for inclusion in our model. The
adequate use of a cross-validation technique within the fitness function, in addition to an
early-termination criterion during the process of feature selection, also prevented overfitting
of our model on the available data, which showed good generalization properties on the test
set. Finally, this study also demonstrates the significant potential of electronic health records
to contribute to scientific research (49, 50).

There are several limitations to this study. Given that this is a retrospective cohort study, and
one that involves a single center, further validation of this prediction algorithm either
through a prospective study, or in an independent patient population, is required.
Furthermore, calculation of mortality using this prediction algorithm may be burdensome for
the busy clinician. However, with the increased use of paperless records and digitalization of
ICU data, such algorithms can be embedded in the electronic medical record and
automatically calculated to provide real-time mortality predictions with immediate
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application at the bedside. Ultimately, outcome prediction algorithms can be best fine-tuned
using local or regional databases that reflect the patient population and physician practices at
each center. Finally, the variables selected for inclusion in our model depended on what was
available in MIMIC II. While MIMIC II is a highly granular database, in this version some
important predictive variables such as the presence or absence of certain co-morbidities and
the likely source of infection (pulmonary vs. intra-abdominal vs. bloodstream) are currently
not easily obtained, although future versions of the MIMIC database will be more
comprehensive. It is possible that with even higher-dimensional data, the variables
ultimately selected for inclusion in our predictive model would be different. Thus the
strength of our model may lie in the approach, and not specifically in the exact variables
chosen for the final model.

In summary, we have demonstrated that dynamic variables measured at the time of
hypotension, and in response to fluid and vasopressor treatment, can strongly predict
hospital mortality from septic shock. Additionally, we showed that use of a sophisticated
algorithm combined with a data-driven approach to predictor selection is a viable approach
to outcomes modeling in patients with sepsis and hypotension. We also identified the
additional interesting association between dynamic change in chloride during hypotension
and hospital mortality, which may deserve further investigation. While further studies in
additional ICU populations are needed to validate this approach and these findings, this
study is the first to demonstrate that such an approach has the potential to provide better
predictions for hospital mortality, highlighting the role that clinical data mining will
increasingly play in both knowledge generation and the way we practice medicine.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Patient record selection. Using the MIMIC II database, we identified 2,113 patients that
matched the ICD-9 and procedure codes defining severe sepsis (Angus et al. 2001), met the
definition of hypotension (at least 2 nurse-verified MAP recordings below 60mmHg), and
required initiation of fluid resuscitation or change in or increase of vasopressors. Patients
with more than 50% missing data were excluded.
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Figure 2.
Dynamic variables extracted from MIMIC II. Physiologic variables 2 hours before the onset,
during, and 2 hours after the end of hypotension, as well as laboratory values 24 hours
before the onset and 24 hours after the end of hypotension were extracted. In addition,
demographic and other baseline variables were extracted.

Mayaud et al. Page 12

Crit Care Med. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Mayaud et al. Page 13

Table 1

Characteristics of study patients (N=2,113)ab

Parameters Survivors (n=1,508) Non-Survivors (n=605) P-value

Patients’ data at admission

Age (years) 69.4 (56.6–78.9) 72.7 (59.9–83.0) <0.001

Male (%) 47.3 45.5 0.439

Ethnicity (%)

 White 75.1 69.4 0.007

 Black 8.0 6.8 0.330

 Hispano 2.8 1.8 0.199

 Asian 1.9 2.0 0.847

 Other 12.2 20.0 <0.001

SAPS-I 16 (12–19) 19 (15–23) <0.001

GCS 13 (8–15) 10 (7–15) <0.001

Mean Arterial Blood Pressure (mmHg) 66.5 (62.5–72.0) 64.5 (61.0–70.0) <0.001

Organ Failure (%) 34.8 49.9 <0.001

 Single Organ failure 3.1 2.2 0.226

 2 Organ failures 8.2 7.8 0.767

 3 organ failures 8.2 7.8 0.767

 4 organ failures 11.7 12.6 0.568

Hypotensive episode and treatments

Time to hypotensive episode onset (hrs) 13.0 (5.3–40.8) 24.3 (5.9–83.1) <0.001

Length of hypotensive episode (hrs) 1.5 (1.0–3.0) 2.0 (1.0–3.8) 0.002

Crystalloid (L) administered during hypotensive event 1.8 (0.8–3.5) 2.0 (1.0–4.0) 0.028

Vasopressors used (%) 48.1 63.1 <0.001

 Exactly one 32.2 27.8 0.048

 Exactly two 10.6 20.2 <0.001

 Exactly three 4.1 11.1 <0.001

 Exactly four 1.3 4.1 <0.001

Type of vasopressors

 Dobutamine 2.9 7.3 <0.001

 Dopamine 11.5 20.3 <0.001

 Epinephrine 2.9 1.8 0.174

 Vasopressin 4.4 17.2 <0.001

 Milirone 4.8 2.5 0.016
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Parameters Survivors (n=1,508) Non-Survivors (n=605) P-value

Renal Replacement Therapy (RRT) (%) 8.4 20.5 <0.001

Mechanical Ventilation (%) 62.9 86.5 <0.001

a
Continuous values presented as mean (standard deviation) if normally distributed, median (interquartile range) if not normally distributed

b
The p-value shows the non-parametric Kolmogorov-Smirnov test with the null hypothesis that the two groups come from the same distribution.
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Table 3

Comparing performance of our model (Dynamic Information) with other severity of illness scoring systems on
n=613 patients in the test set. Predictions from other models made using either data from admission or with
data from the day following the offset of hypotensive episode for models not specifically designed on
admission data. P-values for AUC is taken from a 1000 bootstrap of the difference. P-values for NRI and IDI
are testing the null hypothesis that there is no difference compared to APACHE-IV for the reclassification
indices

Models
Area Under the ROC

Curve (p-value)
Hosmer-Lemeshow C

statistic (p-value)
Net Reclassificati on

Index (p-value)

Integrated
Discrimination

Improvement (p-value)

CSSS (admission) 56.0 (0.001) >1000 (<.001) −0.23 (<.001) −0.11 (<.001)

SAPS-I (admission) 53.6 (<.001) 51.95 (<.001) −0.21 (<.001) −0.11 (<.001)

Van Walraven 61.6 (0.008) 13.45 (0.030) −0.17 (0.002) −0.07 (0.005)

SOFA (admission) 62.3 (0.018) 8.18 (0.095) −0.06 (0.165) −0.04 (0.077)

APS (admission) 67.3 (0.106) 15.75 (0.015) −0.05 (0.153) −0.02 (0.106)

APACHE-III 68.7 (0.240) N.Aa −0.05 (0.067) −0.01 (0.208)

SOFA (post) 69.2 (0.406) 14.06 (0.026) −0.01 (0.395) 0.00 (0.453)

APACHE-IV 69.6 (N.A.b) 42.46c (<.001) N.A.b N.A.b

APS (post) 71.2 (0.288) 13.94 (0.027) 0.02 (0.323) 0.01 (0.290)

Dynamic Information 82.0 (<.001) 10.43 (0.064) 0.19 (<.001) 0.09 (<.001)

a
Coefficients for calibration of APACHE-III in septic shock population were not found

b
APACHE-IV served as the comparison model for the calculation of NRI and IDI

c
APACHE-IV was not be recalibrated since it was only extracted on the test set
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