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Abstract
Positron Emission Tomography (PET) has been used for more than three decades to image and
quantify dopamine D2 receptors (D2R) in vivo with antagonist radioligands but in the recent years
agonist radioligands have also been employed. In vitro competition studies have demonstrated that
agonists bind to both a high and a low-affinity state of the D2Rs, of which the high affinity state
reflects receptors that are coupled to G-proteins and the low-affinity state reflects receptors
uncoupled from G-proteins. In contrast, antagonists bind with uniform affinity to the total pool of
receptors. Results of these studies led to the proposal that D2Rs exist in high and low-affinity
states for agonists in vivo and sparked the development and use of agonist radioligands for PET
imaging with the primary purpose of measuring the proportion of receptors in the high-affinity
(activating) state. Although several lines of research support the presence of high and low-affinity
states of D2Rs and their detection by in vivo imaging paradigms, a growing body of controversial
data has now called this into question. These include both in vivo and ex vivo studies of anesthesia
effects, rodent models with increased proportions of high-affinity state D2Rs as well as the
molecular evidence for stable receptor–G-protein complexes. In this commentary we review these
data and discuss the evidence for the in vivo existence of D2Rs configured in high and low-affinity
states and whether or not the high-affinity state of the D2R can, in fact, be imaged in vivo with
agonist radioligands.
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1. Introduction
Neuroreceptor imaging techniques such as Positron Emission Tomography (PET) and Single
Photon Emission Computed Tomography (SPECT) have been used for more than three
decades to image and quantify dopamine D2 receptors (D2R) in the primate brain.
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Neuroreceptor imaging has also been used to assess endogenous dopamine release indirectly
by measuring the dopamine displacement of D2R radioligand binding after a
pharmacological challenge with psychostimulants (e.g., amphetamines or methylphenidate).
The theoretical justification for this approach to measuring dopamine release in vivo was
provided by the classical occupancy model. Briefly, amphetamine-induced release of
endogenous dopamine will increase occupancy of the D2Rs by dopamine, thereby
decreasing the binding potential (BPND) of the radiotracer, a parameter that is measured in
PET imaging and is proportional to the product of receptor density (Bmax) and the affinity
(1/Kd) of the radiotracer [1]. Several imaging studies have provided support for the
occupancy model using benzamide antagonist radioligands and amphetamine challenge.
However, even at high doses of amphetamine, D2R radioligand binding is not reduced
beyond ~50%, a phenomenon referred to as the ceiling effect [1–4]. Several explanations
have been proposed for this ceiling effect: (1) receptors located extrasynaptically are less
accessible to competition from synaptically released dopamine, or maybe there is not
enough dopamine to fully displace the radioligand, (2) internalized receptors are
inaccessible to dopamine competition but still accessible to the relatively lipophilic
radioligand, and/or (3) since D2Rs are configured in high and low-affinity state for agonist
binding, dopamine competes primarily at the high-affinity sites of D2R but spares the low-
affinity sites [1]. Although several lines of research support the presence of high and low-
affinity state D2Rs and their detection by in vivo imaging paradigms, a growing body of
evidence has now called this into question. The purpose of this commentary is to review
these data and promote discussion about the existence in vivo of two populations of the D2R
configured in high and low-affinity states for agonist binding, and to address whether a high-
affinity state of the D2R can in fact be imaged with agonist radioligands.

2. The two-state occupancy model
The experimental basis for imaging high-affinity state D2Rs with agonist radioligands was
provided by competition binding assays in washed brain membrane homogenates. These
assays demonstrated that agonists bind with both high and low-affinity to the D2R in the
absence of guanine nucleotide triphosphate (GTP), but with low-affinity in the presence of
GTP [5–7]. GTP binding to Gα subunit promotes G-protein activation and dissociation from
the receptor, resulting in a loss of high-affinity agonist binding. The ternary complex model
provided the first description of the mechanistic interactions of agonist-receptor–G-protein
(Fig. 1). In this model the receptors exist as G-protein coupled and uncoupled: the G-protein
coupled state has a high-affinity for agonist binding whereas the uncoupled form has a low-
affinity for agonist [8]. The ternary complex model provided the theoretical framework for
the two-state occupancy model for neuroreceptor imaging. The two-state occupancy model
predicts that amphetamine challenge would show greater displacement of agonist than of
antagonist radioligands by dopamine, and the ceiling effect could be conceptualized as
displacement by dopamine only of the fraction of receptors configured in the high-affinity
state. A confounding issue with this conceptualization is that cells are not GTP depleted and
the ternary complex does not accumulate in vivo as it does in steady state measurements in
in vitro membrane preparations. This issue will be discussed further in the section describing
the molecular mechanism of agonist binding.

3. PET studies of D2Rs in the high-affinity state
Since the initial proposal of the two-state occupancy model, multiple studies have aimed at
imaging the D2R in the high-affinity state with agonist radioligands [9–12]. A review of 13
PET studies reveals inconclusive evidence for the two-state occupancy model (Table 1).
Seven studies (all used anesthesia) supported the ability to image high-affinity state D2Rs
with agonist radioligands while six studies (four used anesthesia) failed to support this
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hypothesis. Consistent with the two-state occupancy model, three novel agonist radioligands
[11C]PHNO (4-propyl-9-hydroxynaphthoxazine), [11C]NPA ((−)-N-propyl-
norapomorphine) and [11C]MNPA ((R)-2-CH3O-N-n-propyl-norapomorphine) showed
almost two-fold greater displacement after amphetamine challenge than antagonist
radioligands in anesthetized animals [13–18]. In contrast, amphetamine challenge did not
produce greater displacement of [11C]MNPA or [11C]NPA than of [11C]raclopride in
conscious monkey or human, suggesting a confounding effect of anesthesia [17,20]. In line
with this, PET studies of anesthetized vs conscious monkeys showed increased [11C]MNPA
and decreased [11C]raclopride baseline BPND under anesthetized conditions. Moreover,
methamphetamine (1 mg/kg iv) produced a ~44% decrease of [11C]MNPA BPND in
anesthetized monkeys but only ~17% decrease in conscious monkeys, an effect that
appeared to be primarily due to the increased baseline BPND of [11C]MNPA [17,21]. The
exact mechanism for the effect of anesthesia on BPND of agonists and antagonists is unclear
but thermodynamic properties of the ligands, shift of high/low-affinity ratio as well as the
type of anesthesia have been proposed [17,22–24]. Two other challenge studies used
increasing doses of exogenous D2R agonist to establish an inhibition curve in vivo similar to
those obtained with competition assays in vitro [25,26]. Neither study was able to
demonstrate the bi-phasic displacement of [11C]raclopride characteristic of the high and
low-affinity states observed in in vitro studies. The agonist apomorphine showed similar
IC50 value for [11C]MNPA and [11C]raclopride, suggesting that the PET radioligands bind
to an indistinguishable population of the D2Rs in vivo [25,26]. In agreement with this, a
PET study of a mouse model reported to exhibit increased proportions of high-affinity state
D2Rs failed to find increased baseline BPND of [11C]MNPA compared to wildtype mice
[27–29].

Thus, PET studies have not consistently supported the possibility of imaging high-affinity
state D2Rs with agonists; therefore, the evidence for this is inconclusive.

4. Ex vivo studies of D2Rs in the high-affinity state
The possibility of measuring high-affinity state D2Rs with agonist radioligands has also
been investigated in a number of ex vivo studies. Briefly, these studies were performed by
intravenous administration of radioligands in either conscious or anesthetized rodents. The
rodents were euthanized by decapitation at various time points and the radioactivity was
measured in the brain tissue. As was the case for the PET investigations, a review of 12 ex
vivo studies revealed inconclusive evidence for the two-state occupancy model (Table 2).
Seven studies, using striatal tissue from rats that had not received anesthesia, found no
difference in the displacement of [11C] or [3H]PHNO, [3H]MNPA [3H]NPA and
[3H]raclopride by amphetamine challenge or exogenously administered agonists [30–33].
Notably, one of these studies was performed using rat models previously reported to have an
increased proportion of D2R in the high-affinity state measured with competition binding in
striatal homogenates [30,34,35]. In contrast, four studies, including one model of increased
high-affinity D2R, did report greater displacement of agonist than antagonist radioligands by
amphetamine challenge or exogenously administered agonists in tissue from conscious
rodents [36–38]. A recent ex vivo study by McCormick and colleagues investigated the
effect of anesthesia on radioligand binding [33]. As was seen for in vivo PET imaging,
anesthesia produced a marked increase in baseline binding of agonist radioligands
accompanied by a significantly larger displacement by amphetamine than [3H]raclopride. In
contrast, amphetamine challenge produced a similar magnitude of displacement of both
agonists and [3H]raclopride in tissue from conscious rats [33].
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In summary, the evidence for high-affinity state D2Rs in vivo and ex vivo has so far been
inconclusive. To explore and discuss potential explanations for this conflicting literature, we
will review the molecular basis for high-affinity agonist binding.

5. Molecular mechanisms of agonist binding at the dopamine D2 receptor
The high and low-affinity states of the D2R are often referred to as G-protein coupled and
uncoupled, respectively. While this makes sense in terms of the ternary complex model and
under GTP depleted and stabilized conditions in membrane binding assays, evidence for the
existence of pre-coupled complexes in living cells is conflicting. Two different theories have
been proposed to explain receptor–G-protein interaction in the absence and presence of
agonist (Fig. 2):

1. The pre-coupled theory proposes that some receptors form stable complexes with
G-proteins. These complexes induce a state of the receptor with high-affinity for
agonist binding. Agonist binding induces a conformational change of the receptor
that activates the G-protein [39,40].

2. The collision theory proposes that receptors and G-proteins diffuse freely within
the plasma membrane in the absence of agonist. Upon agonist binding, the receptor
adopts a conformation with a higher affinity for G-protein, which enhances
interaction with and subsequent activation of the G-protein [39,40].

These hypotheses have been investigated using resonance energy transfer (RET) techniques,
such as förster/fluorescence (FRET) and bioluminescence (BRET) resonance energy
transfer, which allow direct assessment of the interactions between receptor and G-protein.
The RET techniques makes use of recombinant receptor and G-protein constructs fused with
donor and acceptor molecules. By measuring the energy transfer from donor to acceptor,
which takes place only when the molecules are in close proximity (≤10 nm), the RET
techniques can study receptor–G-protein interactions [41,42]. One study interpreted basal
FRET signal from receptor and G-protein as evidence for pre-coupling but did not further
investigate the interactions [43]. Despite the existence of a basal BRET signal that could be
consistent with some pre-coupling of receptor and G-protein, a recent study observed a large
enhancement of receptor–G-protein BRET upon addition of agonist, consistent with either
recruitment of G-protein to the receptor and/or with an optimized interaction with pre-
coupled G-protein [44]. Lambert and colleagues argued against pre-coupling of D2R and G-
protein and showed a marked increase in BRET signal after agonist stimulation, suggesting
that agonist stimulation of D2R promoted G-protein coupling [45]. Moreover, the agonist
stimulated BRET signal was significantly enhanced by depletion of guanine nucleotides,
which stabilizes the ternary complex [45]. A recent study of D1R even suggested that
receptor internalization promotes signaling, thus proposing a delayed onset of G-protein
activation [46]. Similar studies of other GPCRs have reported conflicting evidence for the
pre-coupling vs collision theory, consistent with the idea that the propensity for G-protein
pre-coupling may vary for different receptors [43,45,47–50].

It is important to realize that even the absence of pre-coupled D2R does not exclude high-
affinity agonist binding. The affinity of a ligand is the reciprocal of the equilibrium
dissociation constant Kd and dependent on the association and dissociation rate constants
(kon and koff):
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From this we can observe that changes in either of the rate constants will be reflected by a
change in affinity. That is, a faster on rate would lead to higher affinity, a faster off rate
would lead to lower affinity and vice versa. We know from binding assays in membrane
homogenates that high-affinity agonist binding reflects the rate constants from a stabilized
ternary complex under guanine nucleotide-depleted conditions. A major difference between
the membrane binding assays and PET imaging is that living cells, unlike membranes,
contain endogenous GTP and allow G-protein activation. By assuming that agonist binds to
a high-affinity state in vivo determined solely by pre-coupling to G-proteins, we
automatically exclude the impact of G-protein collision, activation and/or dissociation,
which can affect both kon and koff in living cells. Competition binding studies in intact cells
better reflect the in vivo situation. One such study detected a very small fraction of high-
affinity binding at D2R only when using a certain antagonist ([3H] domperidone) [51]. Two
other studies were unable to detect high-affinity binding to D2R, suggesting that stable
ternary complex does not accumulate in live cells [52,53]. In line with this, depletion of
endogenous GTP in intact cells expressing µ-opioid receptors decreased the koff of the
opioid agonist [3H]DAMGO with no change in the kon, resulting in increased affinity of the
agonist [54]. Interestingly, intact cell binding studies of β-adrenergic receptors under non-
equilibrium conditions have detected short-term (<1 min) high-affinity agonist binding,
however, when the binding assays were performed under equilibrium only low-affinity
binding was observed [55–57]. Thus, more sophisticated in vitro methods are needed to
determine how coupling and activation of G-proteins affect the affinity of agonist ligands.

It is important to note that practical experience has shown that PET imaging requires
radioligands with nanomolar to sub-nanomolar affinity in order to achieve high signal to
noise ratio. In membrane homogenates the Ki values of NPA have been reported to be in the
range of 0.1–0.4 nM (average 0.2 nM) for the D2R high-affinity state and 4.6–26 nM
(average 15 nM) for the low-affinity state [5,7,53,58,59]. Similar affinity values have been
reported for MNPA, while single Kd/Ki values in the range of 0.2– 8.5 nM (average 1.8 nM)
have been reported for PHNO, which is more selective for the D3R receptors in vivo
[53,58,60–63]. Given these values, D2R agonists would be expected to bind exclusively to
the high-affinity state in order to achieve a measurable signal under tracer conditions. A
recent review of multiple D2R ligands, reported that their apparent affinity generally was
about 10 fold lower in vivo than the in vitro measurements [64]. For example, measurements
of the apparent Kd of raclopride in vivo range from 1.6 to 12 nM (average 9.1 nM at
baseline) compared to 0.8–2.5 nM (average 1.2 nM) in vitro [64]. However most of the in
vivo studies did not correct for factors such as free fraction in brain tissue and concentration
of endogenous dopamine, which affect the accuracy of in vivo estimates of apparent
affinities [14,64,65]. D2R radioligands also bind with high affinity to the D3R, and in
particular PHNO has been shown to be D3-preferring in vivo. Therefore, the contribution of
D3R binding to BPND differs among the ligands and may interfere with direct comparisons
of agonist vs antagonist ligands [63,66]. As the D3R is expressed at lower density and in
more restricted regions (i.e. ventral striatum and globus pallidus) than the D2R, this
confound might be overcome by avoiding D3R rich regions and/or by development of
radioligands with higher D2R selectivity.

In summary, more studies are needed to establish whether D2Rs (and other GPCRs) are
stably configured in high and low-affinity states in vivo and whether the high-affinity state
can be measured with agonist radioligands. Possible approaches include the use of
genetically modified mice expressing a D2R incapable of G-protein coupling. It is possible
however, that high and low-affinity agonist binding may be undetectable in vivo, given the
dynamic alterations in receptor conformation that are associated with binding and unbinding
of both ligand and G-protein [67–71]. Considering that the affinity measure is an average of
numerous events per unit time, distinguishing between two populations of high and low-
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affinity state receptors is a simplification that perhaps does not capture the subtlety of the
actual phenomenon. It is conceivable that imaging approaches to detect GPCR activation in
vivo will become available and thereby provide alternative ways to measure the function of
GPCRs, G-protein activation and signal transduction. In addition, new approaches using
single molecule imaging may ultimately uncover the behavior of receptors at the level of an
individual receptor, thereby avoiding the confounds of time and event averaged data.
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Fig. 1.
The ternary complex model proposes that D2Rs exist as G-protein coupled and uncoupled,
of which the G-protein coupled form reflects a state with high-affinity for agonist binding
and the uncoupled form reflects a low affinity state [8].
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Fig. 2.
(A) The pre-coupled theory proposes that receptors form stable complexes with G-proteins
with high-affinity for agonist. (B) The collision theory proposes the receptors and G-proteins
diffuse freely within the plasma membrane in the absence of agonist. Upon agonist binding
the receptors will couple to and activate the G-proteins [39,40
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